Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import modin.pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline
|
7 |
+
|
8 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
+
torch.cuda.max_memory_allocated(device=device)
|
10 |
+
torch.cuda.empty_cache()
|
11 |
+
|
12 |
+
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, refine, high_noise_frac, upscale):
|
13 |
+
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
14 |
+
|
15 |
+
if Model == "PhotoReal":
|
16 |
+
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
|
17 |
+
pipe.enable_xformers_memory_efficient_attention()
|
18 |
+
pipe = pipe.to(device)
|
19 |
+
torch.cuda.empty_cache()
|
20 |
+
if refine == "Yes":
|
21 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
22 |
+
refiner.enable_xformers_memory_efficient_attention()
|
23 |
+
refiner = refiner.to(device)
|
24 |
+
torch.cuda.empty_cache()
|
25 |
+
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
26 |
+
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
27 |
+
torch.cuda.empty_cache()
|
28 |
+
if upscale == "Yes":
|
29 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
30 |
+
refiner.enable_xformers_memory_efficient_attention()
|
31 |
+
refiner = refiner.to(device)
|
32 |
+
torch.cuda.empty_cache()
|
33 |
+
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
34 |
+
torch.cuda.empty_cache()
|
35 |
+
return upscaled
|
36 |
+
else:
|
37 |
+
return image
|
38 |
+
else:
|
39 |
+
if upscale == "Yes":
|
40 |
+
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
41 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
42 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
43 |
+
upscaler = upscaler.to(device)
|
44 |
+
torch.cuda.empty_cache()
|
45 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
46 |
+
torch.cuda.empty_cache()
|
47 |
+
return upscaled
|
48 |
+
else:
|
49 |
+
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
50 |
+
torch.cuda.empty_cache()
|
51 |
+
return image
|
52 |
+
|
53 |
+
if Model == "Anime":
|
54 |
+
anime = DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1")
|
55 |
+
anime.enable_xformers_memory_efficient_attention()
|
56 |
+
anime = anime.to(device)
|
57 |
+
torch.cuda.empty_cache()
|
58 |
+
if refine == "Yes":
|
59 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
60 |
+
refiner.enable_xformers_memory_efficient_attention()
|
61 |
+
refiner = refiner.to(device)
|
62 |
+
torch.cuda.empty_cache()
|
63 |
+
int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
64 |
+
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
65 |
+
torch.cuda.empty_cache()
|
66 |
+
if upscale == "Yes":
|
67 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
68 |
+
refiner.enable_xformers_memory_efficient_attention()
|
69 |
+
refiner = refiner.to(device)
|
70 |
+
torch.cuda.empty_cache()
|
71 |
+
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
72 |
+
torch.cuda.empty_cache()
|
73 |
+
return upscaled
|
74 |
+
else:
|
75 |
+
return image
|
76 |
+
else:
|
77 |
+
if upscale == "Yes":
|
78 |
+
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
79 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
80 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
81 |
+
upscaler = upscaler.to(device)
|
82 |
+
torch.cuda.empty_cache()
|
83 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
84 |
+
torch.cuda.empty_cache()
|
85 |
+
return upscaled
|
86 |
+
else:
|
87 |
+
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
88 |
+
torch.cuda.empty_cache()
|
89 |
+
return image
|
90 |
+
|
91 |
+
if Model == "Disney":
|
92 |
+
disney = DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1")
|
93 |
+
disney.enable_xformers_memory_efficient_attention()
|
94 |
+
disney = disney.to(device)
|
95 |
+
torch.cuda.empty_cache()
|
96 |
+
if refine == "Yes":
|
97 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
98 |
+
refiner.enable_xformers_memory_efficient_attention()
|
99 |
+
refiner = refiner.to(device)
|
100 |
+
torch.cuda.empty_cache()
|
101 |
+
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
102 |
+
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
103 |
+
torch.cuda.empty_cache()
|
104 |
+
|
105 |
+
if upscale == "Yes":
|
106 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
107 |
+
refiner.enable_xformers_memory_efficient_attention()
|
108 |
+
refiner = refiner.to(device)
|
109 |
+
torch.cuda.empty_cache()
|
110 |
+
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
111 |
+
torch.cuda.empty_cache()
|
112 |
+
return upscaled
|
113 |
+
else:
|
114 |
+
return image
|
115 |
+
else:
|
116 |
+
if upscale == "Yes":
|
117 |
+
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
118 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
119 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
120 |
+
upscaler = upscaler.to(device)
|
121 |
+
torch.cuda.empty_cache()
|
122 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
123 |
+
torch.cuda.empty_cache()
|
124 |
+
return upscaled
|
125 |
+
else:
|
126 |
+
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
127 |
+
torch.cuda.empty_cache()
|
128 |
+
return image
|
129 |
+
|
130 |
+
if Model == "StoryBook":
|
131 |
+
story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
|
132 |
+
story.enable_xformers_memory_efficient_attention()
|
133 |
+
story = story.to(device)
|
134 |
+
torch.cuda.empty_cache()
|
135 |
+
if refine == "Yes":
|
136 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
137 |
+
refiner.enable_xformers_memory_efficient_attention()
|
138 |
+
refiner = refiner.to(device)
|
139 |
+
torch.cuda.empty_cache()
|
140 |
+
int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
141 |
+
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
142 |
+
torch.cuda.empty_cache()
|
143 |
+
|
144 |
+
if upscale == "Yes":
|
145 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
146 |
+
refiner.enable_xformers_memory_efficient_attention()
|
147 |
+
refiner = refiner.to(device)
|
148 |
+
torch.cuda.empty_cache()
|
149 |
+
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
150 |
+
torch.cuda.empty_cache()
|
151 |
+
return upscaled
|
152 |
+
else:
|
153 |
+
return image
|
154 |
+
else:
|
155 |
+
if upscale == "Yes":
|
156 |
+
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
157 |
+
|
158 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
159 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
160 |
+
upscaler = upscaler.to(device)
|
161 |
+
torch.cuda.empty_cache()
|
162 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
163 |
+
torch.cuda.empty_cache()
|
164 |
+
return upscaled
|
165 |
+
else:
|
166 |
+
|
167 |
+
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
168 |
+
torch.cuda.empty_cache()
|
169 |
+
return image
|
170 |
+
|
171 |
+
if Model == "SemiReal":
|
172 |
+
semi = DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1")
|
173 |
+
semi.enable_xformers_memory_efficient_attention()
|
174 |
+
semi = semi.to(device)
|
175 |
+
torch.cuda.empty_cache()
|
176 |
+
if refine == "Yes":
|
177 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
178 |
+
refiner.enable_xformers_memory_efficient_attention()
|
179 |
+
refiner = refiner.to(device)
|
180 |
+
torch.cuda.empty_cache()
|
181 |
+
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
182 |
+
image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
183 |
+
torch.cuda.empty_cache()
|
184 |
+
|
185 |
+
if upscale == "Yes":
|
186 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
187 |
+
refiner.enable_xformers_memory_efficient_attention()
|
188 |
+
refiner = refiner.to(device)
|
189 |
+
torch.cuda.empty_cache()
|
190 |
+
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
191 |
+
torch.cuda.empty_cache()
|
192 |
+
return upscaled
|
193 |
+
else:
|
194 |
+
return image
|
195 |
+
else:
|
196 |
+
if upscale == "Yes":
|
197 |
+
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
198 |
+
|
199 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
200 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
201 |
+
upscaler = upscaler.to(device)
|
202 |
+
torch.cuda.empty_cache()
|
203 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
204 |
+
torch.cuda.empty_cache()
|
205 |
+
return upscaled
|
206 |
+
else:
|
207 |
+
|
208 |
+
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
209 |
+
torch.cuda.empty_cache()
|
210 |
+
return image
|
211 |
+
|
212 |
+
if Model == "Animagine XL 3.0":
|
213 |
+
animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0")
|
214 |
+
animagine.enable_xformers_memory_efficient_attention()
|
215 |
+
animagine = animagine.to(device)
|
216 |
+
torch.cuda.empty_cache()
|
217 |
+
if refine == "Yes":
|
218 |
+
torch.cuda.empty_cache()
|
219 |
+
torch.cuda.max_memory_allocated(device=device)
|
220 |
+
int_image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
221 |
+
torch.cuda.empty_cache()
|
222 |
+
animagine = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
223 |
+
animagine.enable_xformers_memory_efficient_attention()
|
224 |
+
animagine = animagine.to(device)
|
225 |
+
torch.cuda.empty_cache()
|
226 |
+
image = animagine(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
227 |
+
torch.cuda.empty_cache()
|
228 |
+
|
229 |
+
if upscale == "Yes":
|
230 |
+
animagine = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
231 |
+
animagine.enable_xformers_memory_efficient_attention()
|
232 |
+
animagine = animagine.to(device)
|
233 |
+
torch.cuda.empty_cache()
|
234 |
+
upscaled = animagine(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
235 |
+
torch.cuda.empty_cache()
|
236 |
+
return upscaled
|
237 |
+
else:
|
238 |
+
return image
|
239 |
+
else:
|
240 |
+
if upscale == "Yes":
|
241 |
+
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
242 |
+
|
243 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
244 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
245 |
+
upscaler = upscaler.to(device)
|
246 |
+
torch.cuda.empty_cache()
|
247 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
248 |
+
torch.cuda.empty_cache()
|
249 |
+
return upscaled
|
250 |
+
else:
|
251 |
+
|
252 |
+
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
253 |
+
torch.cuda.empty_cache()
|
254 |
+
return image
|
255 |
+
|
256 |
+
if Model == "SDXL 1.0":
|
257 |
+
torch.cuda.empty_cache()
|
258 |
+
torch.cuda.max_memory_allocated(device=device)
|
259 |
+
sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
260 |
+
sdxl.enable_xformers_memory_efficient_attention()
|
261 |
+
sdxl = sdxl.to(device)
|
262 |
+
torch.cuda.empty_cache()
|
263 |
+
|
264 |
+
if refine == "Yes":
|
265 |
+
torch.cuda.max_memory_allocated(device=device)
|
266 |
+
torch.cuda.empty_cache()
|
267 |
+
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
268 |
+
torch.cuda.empty_cache()
|
269 |
+
sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
270 |
+
sdxl.enable_xformers_memory_efficient_attention()
|
271 |
+
sdxl = sdxl.to(device)
|
272 |
+
torch.cuda.empty_cache()
|
273 |
+
refined = sdxl(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
274 |
+
torch.cuda.empty_cache()
|
275 |
+
|
276 |
+
if upscale == "Yes":
|
277 |
+
sdxl = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
278 |
+
sdxl.enable_xformers_memory_efficient_attention()
|
279 |
+
sdxl = sdxl.to(device)
|
280 |
+
torch.cuda.empty_cache()
|
281 |
+
upscaled = sdxl(prompt=Prompt, negative_prompt=negative_prompt, image=refined, num_inference_steps=15, guidance_scale=0).images[0]
|
282 |
+
torch.cuda.empty_cache()
|
283 |
+
return upscaled
|
284 |
+
else:
|
285 |
+
return refined
|
286 |
+
else:
|
287 |
+
if upscale == "Yes":
|
288 |
+
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
289 |
+
|
290 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
291 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
292 |
+
upscaler = upscaler.to(device)
|
293 |
+
torch.cuda.empty_cache()
|
294 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
295 |
+
torch.cuda.empty_cache()
|
296 |
+
return upscaled
|
297 |
+
else:
|
298 |
+
|
299 |
+
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
300 |
+
torch.cuda.empty_cache()
|
301 |
+
|
302 |
+
|
303 |
+
return image
|
304 |
+
|
305 |
+
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Anime', 'Disney', 'StoryBook', 'SemiReal', 'Animagine XL 3.0', 'SDXL 1.0'], value='PhotoReal', label='Choose Model'),
|
306 |
+
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
307 |
+
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
308 |
+
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
309 |
+
gr.Slider(512, 1024, 768, step=128, label='Width'),
|
310 |
+
gr.Slider(1, maximum=15, value=5, step=.25, label='Guidance Scale'),
|
311 |
+
gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'),
|
312 |
+
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
|
313 |
+
gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner: Use if the Image has too much Noise', value='No'),
|
314 |
+
gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %'),
|
315 |
+
gr.Radio(["Yes", "No"], label = 'SD X2 Latent Upscaler?', value="No")],
|
316 |
+
outputs=gr.Image(label='Generated Image'),
|
317 |
+
title="Manju Dream Booth V1.7 with SDXL 1.0 Refiner and SD X2 Latent Upscaler - GPU",
|
318 |
+
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
|
319 |
+
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>BTC2: 3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)
|