Spaces:
Sleeping
Sleeping
File size: 1,385 Bytes
92aa0b1 64d41ef 92aa0b1 0318ad0 92aa0b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import gradio as gr
from transformers import pipeline
pipe = pipeline(task="text2text-generation", model="Jumpy-pku/t5-dish-name-recognition")
pipe_aux = pipeline(task="text2text-generation", model="Jumpy-pku/t5-dish-name-recognition-auxiliary")
def predict(input_text):
verbs = pipe_aux(f"“{input_text}”这个菜谱的主要操作是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"]
flavs = pipe_aux(f"“{input_text}”这个菜谱的主要风味是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"]
ings = pipe_aux(f"“{input_text}”这个菜谱的主要食材是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"]
comp_prompt = ""
if verbs:
comp_prompt += f"这个菜谱的主要操作是{verbs},"
if flavs:
comp_prompt += f"这个菜谱的主要风味是{flavs},"
if ings:
comp_prompt += f"这个菜谱的主要食材是{ings},"
comp_prompt += "这个菜谱的菜名是什么?"
return pipe(f"“{input_text}”{comp_prompt}", max_length=20, num_return_sequences=1)[0]["generated_text"]
demo = gr.Interface(fn=predict, inputs="text", outputs="text", title="菜名生成", description="Input the instructions of a Chinese recipe, the model will generate the corresponding dish name.\n输入菜谱步骤,生成菜名。")
demo.launch() |