Jumpy-pku commited on
Commit
92aa0b1
1 Parent(s): a2c33cf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -0
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # pipe = pipeline(task="text2text-generation", model="Jumpy-pku/t5-dish-name-recognition")
5
+ # pipe_aux = pipeline(task="text2text-generation", model="Jumpy-pku/t5-dish-name-recognition-auxiliary")
6
+ pipe = pipeline(task="text2text-generation", model="model/t5-name-cot")
7
+ pipe_aux = pipeline(task="text2text-generation", model="model/t5-component")
8
+
9
+ def predict(input_text):
10
+
11
+ verbs = pipe_aux(f"“{input_text}”这个菜谱的主要操作是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"]
12
+ flavs = pipe_aux(f"“{input_text}”这个菜谱的主要风味是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"]
13
+ ings = pipe_aux(f"“{input_text}”这个菜谱的主要食材是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"]
14
+
15
+ comp_prompt = ""
16
+ if verbs:
17
+ comp_prompt += f"这个菜谱的主要操作是{verbs},"
18
+ if flavs:
19
+ comp_prompt += f"这个菜谱的主要风味是{flavs},"
20
+ if ings:
21
+ comp_prompt += f"这个菜谱的主要食材是{ings},"
22
+ comp_prompt += "这个菜谱的菜名是什么?"
23
+
24
+ return pipe(f"“{input_text}”{comp_prompt}", max_length=20, num_return_sequences=1)[0]["generated_text"]
25
+
26
+
27
+ demo = gr.Interface(fn=predict, inputs="text", outputs="text", title="菜名生成", description="输入菜谱步骤,生成菜名。")
28
+ demo.launch()