File size: 5,506 Bytes
fd01725 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Adapted from prepare.py
import asyncio
import argparse
from collections import defaultdict
import json
import shutil
from pathlib import Path
from typing import List, Dict
import numpy as np
import cv2
from tqdm import tqdm
from tqdm.contrib.concurrent import thread_map
from omegaconf import DictConfig, OmegaConf
from opensfm.pygeometry import Camera
from opensfm.pymap import Shot
from opensfm.undistort import (
perspective_camera_from_fisheye,
perspective_camera_from_perspective,
)
from .. import logger
# from ...osm.tiling import TileManager
# from ...osm.viz import GeoPlotter
from .geo import BoundaryBox, Projection
from .utils import decompose_rotmat
from .utils_sfm import (
keyframe_selection,
perspective_camera_from_pano,
scale_camera,
CameraUndistorter,
PanoramaUndistorter,
undistort_shot,
)
from .download import (
opensfm_shot_from_info,
image_filename,
)
default_cfg = OmegaConf.create(
{
"max_image_size": 512,
"do_legacy_pano_offset": True,
"min_dist_between_keyframes": 4,
"tiling": {
"tile_size": 128,
"margin": 128,
"ppm": 2,
},
}
)
def get_pano_offset(image_info: dict, do_legacy: bool = False) -> float:
if do_legacy:
seed = int(image_info["sfm_cluster"]["id"])
else:
seed = image_info["sequence"].__hash__()
seed = seed % (2**32 - 1)
return np.random.RandomState(seed).uniform(-45, 45)
def process_shot(
shot: Shot, info: dict, image_path: Path, output_dir: Path, cfg: DictConfig
) -> List[Shot]:
if not image_path.exists():
logger.warn(f"Image {image_path} does not exist !")
return None
image_orig = cv2.imread(str(image_path))
max_size = cfg.max_image_size
pano_offset = None
camera = shot.camera
camera.width, camera.height = image_orig.shape[:2][::-1]
if camera.is_panorama(camera.projection_type):
camera_new = perspective_camera_from_pano(camera, max_size)
undistorter = PanoramaUndistorter(camera, camera_new)
pano_offset = get_pano_offset(info, cfg.do_legacy_pano_offset)
elif camera.projection_type in ["fisheye", "perspective"]:
if camera.projection_type == "fisheye":
camera_new = perspective_camera_from_fisheye(camera)
else:
camera_new = perspective_camera_from_perspective(camera)
camera_new = scale_camera(camera_new, max_size)
camera_new.id = camera.id + "_undistorted"
undistorter = CameraUndistorter(camera, camera_new)
else:
raise NotImplementedError(camera.projection_type)
shots_undist, images_undist = undistort_shot(
image_orig, shot, undistorter, pano_offset
)
for shot, image in zip(shots_undist, images_undist):
cv2.imwrite(str(output_dir / f"{shot.id}.jpg"), image)
return shots_undist
def pack_shot_dict(shot: Shot, info: dict) -> dict:
latlong = info["computed_geometry.coordinates"][::-1]
latlong_gps = info["geometry.coordinates"][::-1]
w_p_c = shot.pose.get_origin()
w_r_c = shot.pose.get_R_cam_to_world()
rpy = decompose_rotmat(w_r_c)
return dict(
camera_id=shot.camera.id,
latlong=latlong,
t_c2w=w_p_c,
R_c2w=w_r_c,
roll_pitch_yaw=rpy,
capture_time=info["captured_at"],
gps_position=np.r_[latlong_gps, info["altitude"]],
compass_angle=info["compass_angle"],
chunk_id=int(info["sfm_cluster.id"]),
)
def pack_camera_dict(camera: Camera) -> dict:
assert camera.projection_type == "perspective"
K = camera.get_K_in_pixel_coordinates(camera.width, camera.height)
return dict(
id=camera.id,
model="PINHOLE",
width=camera.width,
height=camera.height,
params=K[[0, 1, 0, 1], [0, 1, 2, 2]],
)
def process_sequence(
image_ids: List[int],
image_infos: dict,
projection: Projection,
cfg: DictConfig,
raw_image_dir: Path,
out_image_dir: Path,
):
shots = []
dump = {}
processed_ids = list()
if len(image_ids) == 0:
return dump, processed_ids
image_ids = sorted(image_ids, key=lambda i: image_infos[i]["captured_at"])
for i in image_ids:
_, shot = opensfm_shot_from_info(image_infos[i], projection)
shots.append(shot)
shot_idxs = keyframe_selection(shots, min_dist=cfg.min_dist_between_keyframes)
shots = [shots[i] for i in shot_idxs]
shots_out = thread_map(
lambda shot: process_shot(
shot,
image_infos[shot.id],
raw_image_dir / image_filename.format(image_id=shot.id),
out_image_dir,
cfg,
),
shots,
disable=True,
)
shots_out = [s for s in shots_out if s is not None]
shots_out = [(i, s) for i, ss in enumerate(shots_out) for s in ss if ss is not None]
for index, shot in shots_out:
i, suffix = shot.id.rsplit("_", 1)
processed_ids.append(i)
info = image_infos[i]
seq_id = info["sequence"]
is_pano = not suffix.endswith("undistorted")
if is_pano:
seq_id += f"_{suffix}"
if seq_id not in dump:
dump[seq_id] = dict(views={}, cameras={})
view = pack_shot_dict(shot, info)
view["index"] = index
dump[seq_id]["views"][shot.id] = view
dump[seq_id]["cameras"][shot.camera.id] = pack_camera_dict(shot.camera)
return dump, processed_ids |