Cherie Ho commited on
Commit
fd01725
·
0 Parent(s):

Initial upload

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +135 -0
  2. mapper/__init__.py +30 -0
  3. mapper/callbacks.py +105 -0
  4. mapper/conf/data/kitti.yaml +40 -0
  5. mapper/conf/data/mia.yaml +44 -0
  6. mapper/conf/data/nuscenes.yaml +38 -0
  7. mapper/conf/mapper_kitti.yaml +23 -0
  8. mapper/conf/mapper_nuscenes.yaml +26 -0
  9. mapper/conf/model/image_encoder/dino.yaml +5 -0
  10. mapper/conf/model/image_encoder/resnet.yaml +12 -0
  11. mapper/conf/model/mapper.yaml +15 -0
  12. mapper/conf/pretrain.yaml +24 -0
  13. mapper/conf/pretrain_resnet.yaml +26 -0
  14. mapper/conf/training.yaml +30 -0
  15. mapper/data/__init__.py +7 -0
  16. mapper/data/base.py +19 -0
  17. mapper/data/image.py +140 -0
  18. mapper/data/kitti/data_module.py +32 -0
  19. mapper/data/kitti/dataset.py +317 -0
  20. mapper/data/kitti/transform.py +149 -0
  21. mapper/data/mapillary/data_module.py +317 -0
  22. mapper/data/mapillary/dataset.py +255 -0
  23. mapper/data/module.py +64 -0
  24. mapper/data/nuscenes/data_module.py +33 -0
  25. mapper/data/nuscenes/dataset.py +207 -0
  26. mapper/data/nuscenes/splits_roddick.py +197 -0
  27. mapper/data/nuscenes/utils.py +214 -0
  28. mapper/data/schema.py +75 -0
  29. mapper/data/sequential.py +45 -0
  30. mapper/data/torch.py +102 -0
  31. mapper/data/utils.py +21 -0
  32. mapper/mapper.py +112 -0
  33. mapper/models/__init__.py +28 -0
  34. mapper/models/base.py +59 -0
  35. mapper/models/bev_projection.py +95 -0
  36. mapper/models/dinov2/__init__.py +6 -0
  37. mapper/models/dinov2/configs/__init__.py +22 -0
  38. mapper/models/dinov2/configs/eval/vitb14_pretrain.yaml +6 -0
  39. mapper/models/dinov2/configs/eval/vitg14_pretrain.yaml +7 -0
  40. mapper/models/dinov2/configs/eval/vitl14_pretrain.yaml +6 -0
  41. mapper/models/dinov2/configs/eval/vits14_pretrain.yaml +6 -0
  42. mapper/models/dinov2/configs/eval/vits14_reg4_pretrain.yaml +9 -0
  43. mapper/models/dinov2/configs/ssl_default_config.yaml +118 -0
  44. mapper/models/dinov2/configs/train/vitg14.yaml +26 -0
  45. mapper/models/dinov2/configs/train/vitl14.yaml +26 -0
  46. mapper/models/dinov2/configs/train/vitl16_short.yaml +6 -0
  47. mapper/models/dinov2/data/__init__.py +10 -0
  48. mapper/models/dinov2/data/adapters.py +28 -0
  49. mapper/models/dinov2/data/augmentations.py +118 -0
  50. mapper/models/dinov2/data/collate.py +49 -0
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center">
2
+ <h1 align="center">Map It Anywhere (MIA): Empowering Bird’s Eye View Mapping using Large-scale Public Data</h1>
3
+
4
+ <p align="center">
5
+ <a href="https://cherieho.com/"><strong>Cherie Ho*</strong></a>
6
+ ·
7
+ <a href="https://www.linkedin.com/in/tonyjzou/"><strong>Jiaye (Tony) Zou*</strong></a>
8
+ ·
9
+ <a href="https://www.linkedin.com/in/omaralama/"><strong>Omar Alama*</strong></a>
10
+ <br>
11
+ <a href="https://smj007.github.io/"><strong>Sai Mitheran Jagadesh Kumar</strong></a>
12
+ ·
13
+ <a href="https://github.com/chychiang"><strong>Benjamin Chiang</strong></a>
14
+ ·
15
+ <a href="https://www.linkedin.com/in/taneesh-gupta/"><strong>Taneesh Gupta</strong></a>
16
+ ·
17
+ <a href="https://sairlab.org/team/chenw/"><strong>Chen Wang</strong></a>
18
+ <br>
19
+ <a href="https://nik-v9.github.io/"><strong>Nikhil Keetha</strong></a>
20
+ ·
21
+ <a href="https://www.cs.cmu.edu/~./katia/"><strong>Katia Sycara</strong></a>
22
+ ·
23
+ <a href="https://theairlab.org/team/sebastian/"><strong>Sebastian Scherer</strong></a>
24
+ <br>
25
+ </p>
26
+
27
+ </p>
28
+
29
+ ![Map It Anywhere (MIA)](/assets/mia_pull_fig.png "Map It Anywhere (MIA)")
30
+
31
+ ## Table of Contents
32
+ - [Using the MIA Data Engine](#using-the-mia-data-engine)
33
+ - [Downloading the MIA dataset](#downloading-the-mia-dataset)
34
+ - [Training](#training)
35
+ - [Evaluation](#evaluation)
36
+ - [Acknowledgement](#acknowledgement)
37
+
38
+
39
+ ## Using the MIA data engine
40
+
41
+ ### 0. Setting up the environment
42
+ 0. Install docker by following the instructions on their [website](https://www.docker.com/get-started/)
43
+ 1. Build the docker image `mia/Dockerfile` by running:
44
+
45
+ docker build -t mia:release mia/Dockerfile
46
+ 2. Launch the container while mounting this repository to the container file system.
47
+
48
+ docker run -v <PATH_TO_THIS_REPO>:/home/MapItAnywhere --network=bridge -it mia:release
49
+
50
+ ### 1. Getting FPVs
51
+
52
+ The first stage of the MIA data engine is to get the first person images.
53
+ First, if you want to pull your own locations, copy the example configuration from `mia/conf/example.yaml` and edit the cities list to specify the cities you want. Feel free to explore the other well-documented FPV options in the configuration file.
54
+
55
+ Once configuration is done simply run the following from inside your docker container with working dir set to this repo:
56
+
57
+ python3.9 -m mia.fpv.get_fpv --cfg mia/conf/<YOUR_CONFIG>.yaml
58
+
59
+ That's it ! The engine will now automatically fetch, filter, and process your FPV images. You may get a few errors specifying that some images were unable to be fetched due to permission limitations. That is normal and the engine will continue.
60
+
61
+ Once all your locations have been downloaded, you will see that parquet files, images, and raw_images, have been populated in your `dataset_dir` for each location. You can now move on to getting BEVs.
62
+
63
+ ### 2. Getting BEVs
64
+ Once you have the FPV parquet dataframes downloaded, you are now ready to fetch and generate the BEV smenatic maps.
65
+
66
+ Edit the documented bev options in your configuration file to suit your use case. The defaults are tuned to what we used to produce the MIA datasets and you can use them as is.
67
+
68
+ Once configuration is done simply run the following from inside your docker container with working dir set to this repo:
69
+
70
+ python3.9 -m mia.bev.get_bev
71
+
72
+ The data engine will now fetch, process, and save the semantic masks.
73
+
74
+ You now have FPV-BEV pairs with associated metadata and camera parameters !
75
+
76
+ **Note** to get satellite imagery for comparison you must first download it by toggling the store_sat option in the configuration
77
+
78
+ ### 3. (Optional) Visualize your data
79
+ You can visualize a few samples using the tool `mia/misc_tools/vis_samples.py`.
80
+
81
+ From inside the container with working dir set to this repo, run:
82
+
83
+ python3.9 -m mia/misc_tools/vis_samples --dataset_dir /home/mia_dataset_release --locations <LOCATION_OF_INTEREST>
84
+
85
+ If successful, the script will generate a PDF called `compare.pdf` in the pittsburgh directory. Upon openning you should see the metadata, FPVs, and BEVs of a few samples of the dataset.
86
+
87
+
88
+ ## Downloading the MIA dataset
89
+ Refer to [mia/dataset.md](mia/dataset.md) for instructions.
90
+
91
+ ## Training
92
+
93
+ ### Pre-train with MIA Dataset
94
+ To pretrain using our paper configuration simply run:
95
+
96
+ python -m mapper.mapper data.split=<PATH TO SPLIT FILE> data.data_dir=<PATH TO MIA DATASET>
97
+
98
+ ### Finetune with NuScenes Dataset
99
+ To finetune using NuScenes Dataset with our paper configuration, run:
100
+
101
+ python -m mapper.mapper -cn mapper_nuscenes training.checkpoint=<PATH TO PRETRAINED MODEL> data.data_dir=<PATH TO NUSCENES DATA> data.map_dir=<PATH TO GENERATED NUSCENES MAP>
102
+
103
+ ## Reproduction
104
+ #### Dataset Setup
105
+ **MIA**: Follow download instructions in [Downloading the MIA Dataset](#downloading-the-mia-dataset)
106
+
107
+ **NuScenes**: Follow the data generation instructions in [Mono-Semantic-Maps](https://github.com/tom-roddick/mono-semantic-maps?tab=readme-ov-file#nuscenes). To match the newest available information, we use v1.3 of the NuScenes' map expansion pack.
108
+
109
+ **KITTI360-BEV**: Follow the KITTI360-BEV dataset instructions in [SkyEye](https://github.com/robot-learning-freiburg/SkyEye?tab=readme-ov-file#skyeye-datasets)
110
+
111
+ #### Inference
112
+ To generate MIA dataset prediction results(on test split), use:
113
+
114
+ python -m mapper.mapper data.split=<PATH TO SPLIT FILE> data.data_dir=<PATH TO MIA DATASET> training.checkpoint=<TRAINED WEIGHTS> training.eval=true
115
+ *To specify location, add `data.scenes` in the argument. For example, for held-out cities `data.scenes="[pittsburgh, houston]"`*
116
+
117
+ To Generate NuScenes dataset prediction results(on validation split), use:
118
+
119
+ python -m mapper.mapper -cn mapper_nuscenes training.checkpoint=<PATH TO PRETRAINED MODEL> data.data_dir=<PATH TO NUSCENES DATA> data.map_dir=<PATH TO GENERATED NUSCENES MAP> training.eval=true
120
+
121
+ To Generate KITTI360-BEV dataset prediction results (on validation split), use:
122
+
123
+ python -m mapper.mapper -cn mapper_kitti training.checkpoint=<PATH TO PRETRAINED MODEL> data.seam_root_dir=<PATH TO SEAM ROOT> data.dataset_root_dir=<PATH TO KITTI DATASET> training.eval=true
124
+
125
+
126
+ ## License
127
+ [More Information Needed]
128
+
129
+ ## Acknowledgement
130
+ We thank the authors of the following repositories for their open-source code:
131
+ - [OrienterNet](https://github.com/facebookresearch/OrienterNet)
132
+ - [Map Machine](https://github.com/enzet/map-machine)
133
+ - [Mono-Semantic-Maps](https://github.com/tom-roddick/mono-semantic-maps)
134
+ - [Translating Images Into Maps](https://github.com/avishkarsaha/translating-images-into-maps)
135
+ - [SkyEye](https://github.com/robot-learning-freiburg/SkyEye)
mapper/__init__.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ import os, sys
3
+
4
+ sys.path.append(os.path.dirname(os.path.realpath(__file__)))
5
+ from pathlib import Path
6
+ import logging
7
+
8
+ import pytorch_lightning # noqa: F401
9
+
10
+
11
+ formatter = logging.Formatter(
12
+ fmt="[%(asctime)s %(name)s %(levelname)s] %(message)s",
13
+ datefmt="%Y-%m-%d %H:%M:%S",
14
+ )
15
+ handler = logging.StreamHandler()
16
+ handler.setFormatter(formatter)
17
+ handler.setLevel(logging.INFO)
18
+
19
+ logger = logging.getLogger("mapper")
20
+ logger.setLevel(logging.INFO)
21
+ logger.addHandler(handler)
22
+ logger.propagate = False
23
+
24
+ pl_logger = logging.getLogger("pytorch_lightning")
25
+ if len(pl_logger.handlers):
26
+ pl_logger.handlers[0].setFormatter(formatter)
27
+
28
+ repo_dir = Path(__file__).parent.parent
29
+ EXPERIMENTS_PATH = repo_dir / "experiments/"
30
+ DATASETS_PATH = repo_dir / "datasets/"
mapper/callbacks.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as pl
3
+ from pathlib import Path
4
+ from typing import Any
5
+ import torchvision
6
+ import wandb
7
+
8
+
9
+ class EvalSaveCallback(pl.Callback):
10
+
11
+ def __init__(self, save_dir: Path) -> None:
12
+ super().__init__()
13
+ self.save_dir = save_dir
14
+
15
+ def save(self, outputs, batch, batch_idx):
16
+ name = batch['name']
17
+
18
+ filename = self.save_dir / f"{batch_idx:06d}_{name[0]}.pt"
19
+ torch.save({
20
+ "fpv": batch['image'],
21
+ "seg_masks": batch['seg_masks'],
22
+ 'name': name,
23
+ "output": outputs["output"],
24
+ "valid_bev": outputs["valid_bev"],
25
+ }, filename)
26
+
27
+ def on_test_batch_end(self, trainer: pl.Trainer,
28
+ pl_module: pl.LightningModule,
29
+ outputs: torch.Tensor | Any | None,
30
+ batch: Any,
31
+ batch_idx: int,
32
+ dataloader_idx: int = 0) -> None:
33
+ if not outputs:
34
+ return
35
+
36
+ self.save(outputs, batch, batch_idx)
37
+
38
+ def on_validation_batch_end(self, trainer: pl.Trainer,
39
+ pl_module: pl.LightningModule,
40
+ outputs: torch.Tensor | Any | None,
41
+ batch: Any,
42
+ batch_idx: int,
43
+ dataloader_idx: int = 0) -> None:
44
+ if not outputs:
45
+
46
+ return
47
+
48
+ self.save(outputs, batch, batch_idx)
49
+
50
+
51
+ class ImageLoggerCallback(pl.Callback):
52
+ def __init__(self, num_classes):
53
+ super().__init__()
54
+ self.num_classes = num_classes
55
+
56
+ def log_image(self, trainer, pl_module, outputs, batch, batch_idx, mode="train"):
57
+ fpv_rgb = batch["image"]
58
+ fpv_grid = torchvision.utils.make_grid(
59
+ fpv_rgb, nrow=8, normalize=False)
60
+ images = [
61
+ wandb.Image(fpv_grid, caption="fpv")
62
+ ]
63
+
64
+ pred = outputs['output'].permute(0, 2, 3, 1)
65
+ pred[outputs["valid_bev"][..., :-1] == 0] = 0
66
+ pred = (pred > 0.5).float()
67
+ pred = pred.permute(0, 3, 1, 2)
68
+
69
+ for i in range(self.num_classes):
70
+ gt_class_i = batch['seg_masks'][..., i]
71
+ gt_class_i_grid = torchvision.utils.make_grid(
72
+ gt_class_i.unsqueeze(1), nrow=8, normalize=False, pad_value=0)
73
+ pred_class_i = pred[:, i]
74
+ pred_class_i_grid = torchvision.utils.make_grid(
75
+ pred_class_i.unsqueeze(1), nrow=8, normalize=False, pad_value=0)
76
+
77
+ images += [
78
+ wandb.Image(gt_class_i_grid, caption=f"gt_class_{i}"),
79
+ wandb.Image(pred_class_i_grid, caption=f"pred_class_{i}")
80
+ ]
81
+
82
+ trainer.logger.experiment.log(
83
+ {
84
+ "{}/images".format(mode): images
85
+ }
86
+ )
87
+
88
+ def on_validation_batch_end(self, trainer, pl_module: pl.LightningModule, outputs, batch, batch_idx):
89
+ if batch_idx == 0:
90
+ with torch.no_grad():
91
+ outputs = pl_module(batch)
92
+ self.log_image(trainer, pl_module, outputs,
93
+ batch, batch_idx, mode="val")
94
+
95
+ def on_train_batch_end(self, trainer, pl_module: pl.LightningModule, outputs, batch, batch_idx):
96
+ if batch_idx == 0:
97
+ pl_module.eval()
98
+
99
+ with torch.no_grad():
100
+ outputs = pl_module(batch)
101
+
102
+ self.log_image(trainer, pl_module, outputs,
103
+ batch, batch_idx, mode="train")
104
+
105
+ pl_module.train()
mapper/conf/data/kitti.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: kitti
2
+ seam_root_dir: /path/to/generated/seam
3
+ dataset_root_dir: /path/to/kitti/dataset
4
+ bev_percentage: 100
5
+ pixel_per_meter: 2
6
+ crop_size_meters: 50
7
+ target_focal_length: 256
8
+ resize_image: null
9
+ pad_to_multiple: 14
10
+ num_classes: 8
11
+ loading:
12
+ train:
13
+ batch_size: 32
14
+ num_workers: 32
15
+ val:
16
+ batch_size: 32
17
+ num_workers: 32
18
+ test:
19
+ batch_size: 32
20
+ num_workers: 32
21
+ pad_to_square: true
22
+ rectify_pitch: true
23
+ gravity_align: false
24
+ class_mapping: [0, 0, 1, 2, 0, 3]
25
+ augmentations:
26
+ enabled: True
27
+ brightness: 0.5
28
+ contrast: 0.5
29
+ saturation: 0.5
30
+ random_flip: 0.5
31
+ hue: 0.5
32
+ random_resized_crop: False
33
+ gaussian_noise:
34
+ enabled: False
35
+ mean: 0.0
36
+ std: 0.1
37
+ brightness_contrast:
38
+ enabled: True
39
+ brightness_factor: 0.2
40
+ contrast_factor: 0.2
mapper/conf/data/mia.yaml ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: mapillary
2
+ scenes:
3
+ - chicago
4
+ - new_york
5
+ - los_angeles
6
+ - san_francisco
7
+ split: /path/to/split/file
8
+ data_dir: /path/to/mia/dataset
9
+ loading:
10
+ train:
11
+ batch_size: 128
12
+ num_workers: 30
13
+ val:
14
+ batch_size: 128
15
+ num_workers: 30
16
+ test:
17
+ batch_size: 1
18
+ num_workers: 0
19
+ testsmall:
20
+ batch_size: 1
21
+ num_workers: 0
22
+ num_classes: 6
23
+ pixel_per_meter: 2
24
+ crop_size_meters: 64
25
+ resize_image: 512
26
+ pad_to_square: true
27
+ rectify_pitch: true
28
+ gravity_align: true
29
+ augmentations:
30
+ enabled: True
31
+ brightness: 0.5
32
+ contrast: 0.5
33
+ saturation: 0.5
34
+ random_flip: 0.5
35
+ hue: 0.5
36
+ random_resized_crop: False
37
+ gaussian_noise:
38
+ enabled: False
39
+ mean: 0.0
40
+ std: 0.1
41
+ brightness_contrast:
42
+ enabled: True
43
+ brightness_factor: 0.2
44
+ contrast_factor: 0.2
mapper/conf/data/nuscenes.yaml ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: nuscenes
2
+ data_dir: /path/to/nuscenes/data
3
+ map_dir: /path/to/generated/maps
4
+ version: v1.0-trainval
5
+ pixel_per_meter: 2
6
+ crop_size_meters: 50
7
+ resize_image: 512
8
+ percentage: 1.0
9
+ class_mapping: [0, 1, 2, 0, 0, 3]
10
+ num_classes: 14
11
+ loading:
12
+ train:
13
+ batch_size: 128
14
+ num_workers: 10
15
+ val:
16
+ batch_size: 128
17
+ num_workers: 10
18
+ test:
19
+ batch_size: 128
20
+ num_workers: 10
21
+ pad_to_square: true
22
+ rectify_pitch: true
23
+ gravity_align: true
24
+ augmentations:
25
+ enabled: True
26
+ brightness: 0.5
27
+ contrast: 0.5
28
+ saturation: 0.5
29
+ hue: 0.5
30
+ random_resized_crop: False
31
+ gaussian_noise:
32
+ enabled: False
33
+ mean: 0.0
34
+ std: 0.1
35
+ brightness_contrast:
36
+ enabled: True
37
+ brightness_factor: 0.2
38
+ contrast_factor: 0.2
mapper/conf/mapper_kitti.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ defaults:
2
+ - schema/data: kitti
3
+ - data: kitti
4
+ - model: mapper
5
+ - training
6
+ - _self_
7
+
8
+ experiment:
9
+ name: MIA_DINOv2_Mapper_KITTI
10
+
11
+ model:
12
+ loss:
13
+ xent_weight: 1.0
14
+ dice_weight: 1.0
15
+ focal_loss: false
16
+ focal_loss_gamma: 2.0
17
+ requires_frustrum: true
18
+ requires_flood_mask: true
19
+ class_weights: null
20
+ label_smoothing: 0.1
21
+
22
+ training:
23
+ checkpoint: /path/to/checkpoint
mapper/conf/mapper_nuscenes.yaml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ defaults:
2
+ - schema/data: nuscenes
3
+ - data: nuscenes
4
+ - model: mapper
5
+ - training
6
+ - _self_
7
+
8
+ experiment:
9
+ name: MIA_DINOv2_Mapper_NuScenes
10
+
11
+ model:
12
+ loss:
13
+ xent_weight: 1.0
14
+ dice_weight: 1.0
15
+ focal_loss: false
16
+ focal_loss_gamma: 2.0
17
+ class_weights: [1.00060036, 1.85908161, 1.0249052, 0., 0., 2.57267816]
18
+ requires_frustrum: true
19
+ label_smoothing: 0.1
20
+
21
+ training:
22
+ checkpoint: /path/to/checkpoint
23
+ finetune: true
24
+ lr: 0.0001
25
+ trainer:
26
+ max_epochs: 50
mapper/conf/model/image_encoder/dino.yaml ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ name: feature_extractor_DPT
2
+ backbone:
3
+ pretrained: true
4
+ frozen: true
5
+ output_dim: ${model.latent_dim} # Match Latent Dimension
mapper/conf/model/image_encoder/resnet.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: feature_extractor_resnet
2
+ backbone:
3
+ pretrained: true
4
+ frozen: true
5
+ output_dim: ${model.latent_dim} # Match Latent Dimension
6
+ input_dim: 3
7
+ encoder: resnet50
8
+ num_downsample: null
9
+ remove_stride_from_first_conv: false
10
+ decoder_norm: "nn.BatchNorm2d"
11
+ do_average_pooling: false
12
+ checkpointed: false
mapper/conf/model/mapper.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ defaults:
2
+ - schema/backbone: dino
3
+ - image_encoder: dino
4
+
5
+ segmentation_head:
6
+ dropout_rate: 0.2
7
+ name: map_perception_net
8
+ num_classes: 6
9
+ latent_dim: 128
10
+ z_max: 50
11
+ x_max: 25
12
+ pixel_per_meter: ${data.pixel_per_meter}
13
+ num_scale_bins: 32
14
+ loss:
15
+ num_classes: ${..num_classes}
mapper/conf/pretrain.yaml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ defaults:
2
+ - schema/data: mia
3
+ - data: mia
4
+ - model: mapper
5
+ - training
6
+ - _self_
7
+
8
+ experiment:
9
+ name: MIA_DINOv2_Pretrain
10
+
11
+ model:
12
+ loss:
13
+ xent_weight: 1.0
14
+ dice_weight: 1.0
15
+ focal_loss: false
16
+ focal_loss_gamma: 2.0
17
+ requires_frustrum: true
18
+ class_weights: [ 1.00351229, 4.34782609, 1.00110121, 1.03124678,
19
+ 6.69792364, 7.55857899 ]
20
+ label_smoothing: 0.1
21
+
22
+ training:
23
+ trainer:
24
+ max_epochs: 15
mapper/conf/pretrain_resnet.yaml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ defaults:
2
+ - schema/data: mia
3
+ - data: mia
4
+ - model: mapper
5
+ - training
6
+ - _self_
7
+ - override model/schema/backbone: resnet
8
+ - override model/image_encoder: resnet
9
+
10
+ experiment:
11
+ name: MIA_DINOv2_Pretrain
12
+
13
+ model:
14
+ loss:
15
+ xent_weight: 1.0
16
+ dice_weight: 1.0
17
+ focal_loss: false
18
+ focal_loss_gamma: 2.0
19
+ requires_frustrum: true
20
+ class_weights: [ 1.00351229, 4.34782609, 1.00110121, 1.03124678,
21
+ 6.69792364, 7.55857899 ]
22
+
23
+ training:
24
+ trainer:
25
+ max_steps: 10
26
+ max_epochs: 15
mapper/conf/training.yaml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ experiment:
2
+ name: MGL_DINOv2_v4-baseline-less-class
3
+ seed: 42
4
+ training:
5
+ num_classes: ${model.num_classes}
6
+ lr: 0.001
7
+ lr_scheduler:
8
+ name: "CosineAnnealingLR"
9
+ args:
10
+ T_max: $total_epochs
11
+ eta_min: 0.0000001
12
+ checkpoint: null
13
+ finetune: false
14
+ eval: false
15
+ save_dir: eval_results
16
+ trainer:
17
+ # val_check_interval: 250
18
+ # log_every_n_steps: 100
19
+ # limit_val_batches: 0
20
+ # max_steps: 500000
21
+ # num_epochs: 15
22
+ precision: bf16-mixed
23
+ accelerator: gpu
24
+ strategy: ddp_find_unused_parameters_true
25
+ checkpointing:
26
+ dirpath: checkpoints/
27
+ monitor: val/total/loss
28
+ save_top_k: -1
29
+ mode: min
30
+ save_last: True
mapper/data/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from .mapillary.data_module import MapillaryDataModule
2
+ from .nuscenes.data_module import NuScenesData
3
+
4
+ modules = {
5
+ "mapillary": MapillaryDataModule,
6
+ "nuscenes": NuScenesData
7
+ }
mapper/data/base.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from typing import Optional
3
+
4
+
5
+ class DataBase():
6
+ def __init__(self) -> None:
7
+ raise NotImplementedError
8
+
9
+ @abstractmethod
10
+ def prepare_data(self) -> None:
11
+ raise NotImplementedError
12
+
13
+ @abstractmethod
14
+ def setup(self, stage: Optional[str] = None):
15
+ raise NotImplementedError
16
+
17
+ @abstractmethod
18
+ def dataset(self, stage: str):
19
+ raise NotImplementedError
mapper/data/image.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+
3
+ from typing import Callable, Optional, Union, Sequence
4
+
5
+ import numpy as np
6
+ import torch
7
+ import torchvision.transforms.functional as tvf
8
+ import collections
9
+ from scipy.spatial.transform import Rotation
10
+
11
+ from ..utils.geometry import from_homogeneous, to_homogeneous
12
+ from ..utils.wrappers import Camera
13
+
14
+
15
+ def rectify_image(
16
+ image: torch.Tensor,
17
+ cam: Camera,
18
+ roll: float,
19
+ pitch: Optional[float] = None,
20
+ valid: Optional[torch.Tensor] = None,
21
+ ):
22
+ *_, h, w = image.shape
23
+ grid = torch.meshgrid(
24
+ [torch.arange(w, device=image.device), torch.arange(h, device=image.device)],
25
+ indexing="xy",
26
+ )
27
+ grid = torch.stack(grid, -1).to(image.dtype)
28
+
29
+ if pitch is not None:
30
+ args = ("ZX", (roll, pitch))
31
+ else:
32
+ args = ("Z", roll)
33
+ R = Rotation.from_euler(*args, degrees=True).as_matrix()
34
+ R = torch.from_numpy(R).to(image)
35
+
36
+ grid_rect = to_homogeneous(cam.normalize(grid)) @ R.T
37
+ grid_rect = cam.denormalize(from_homogeneous(grid_rect))
38
+ grid_norm = (grid_rect + 0.5) / grid.new_tensor([w, h]) * 2 - 1
39
+ rectified = torch.nn.functional.grid_sample(
40
+ image[None],
41
+ grid_norm[None],
42
+ align_corners=False,
43
+ mode="bilinear",
44
+ ).squeeze(0)
45
+ if valid is None:
46
+ valid = torch.all((grid_norm >= -1) & (grid_norm <= 1), -1)
47
+ else:
48
+ valid = (
49
+ torch.nn.functional.grid_sample(
50
+ valid[None, None].float(),
51
+ grid_norm[None],
52
+ align_corners=False,
53
+ mode="nearest",
54
+ )[0, 0]
55
+ > 0
56
+ )
57
+ return rectified, valid
58
+
59
+
60
+ def resize_image(
61
+ image: torch.Tensor,
62
+ size: Union[int, Sequence, np.ndarray],
63
+ fn: Optional[Callable] = None,
64
+ camera: Optional[Camera] = None,
65
+ valid: np.ndarray = None,
66
+ ):
67
+ """Resize an image to a fixed size, or according to max or min edge."""
68
+ *_, h, w = image.shape
69
+ if fn is not None:
70
+ assert isinstance(size, int)
71
+ scale = size / fn(h, w)
72
+ h_new, w_new = int(round(h * scale)), int(round(w * scale))
73
+ scale = (scale, scale)
74
+ else:
75
+ if isinstance(size, (collections.abc.Sequence, np.ndarray)):
76
+ w_new, h_new = size
77
+ elif isinstance(size, int):
78
+ w_new = h_new = size
79
+ else:
80
+ raise ValueError(f"Incorrect new size: {size}")
81
+ scale = (w_new / w, h_new / h)
82
+ if (w, h) != (w_new, h_new):
83
+ mode = tvf.InterpolationMode.BILINEAR
84
+ image = tvf.resize(image, (int(h_new), int(w_new)), interpolation=mode, antialias=True)
85
+ image.clip_(0, 1)
86
+ if camera is not None:
87
+ camera = camera.scale(scale)
88
+ if valid is not None:
89
+ valid = tvf.resize(
90
+ valid.unsqueeze(0),
91
+ (int(h_new), int(w_new)),
92
+ interpolation=tvf.InterpolationMode.NEAREST,
93
+ ).squeeze(0)
94
+ ret = [image, scale]
95
+ if camera is not None:
96
+ ret.append(camera)
97
+ if valid is not None:
98
+ ret.append(valid)
99
+ return ret
100
+
101
+
102
+ def pad_image(
103
+ image: torch.Tensor,
104
+ size: Union[int, Sequence, np.ndarray],
105
+ camera: Optional[Camera] = None,
106
+ valid: torch.Tensor = None,
107
+ crop_and_center: bool = False,
108
+ ):
109
+ if isinstance(size, int):
110
+ w_new = h_new = size
111
+ elif isinstance(size, (collections.abc.Sequence, np.ndarray)):
112
+ w_new, h_new = size
113
+ else:
114
+ raise ValueError(f"Incorrect new size: {size}")
115
+ *c, h, w = image.shape
116
+ if crop_and_center:
117
+ diff = np.array([w - w_new, h - h_new])
118
+ left, top = left_top = np.round(diff / 2).astype(int)
119
+ right, bottom = diff - left_top
120
+ else:
121
+ assert h <= h_new
122
+ assert w <= w_new
123
+ top = bottom = left = right = 0
124
+ slice_out = np.s_[..., : min(h, h_new), : min(w, w_new)]
125
+ slice_in = np.s_[
126
+ ..., max(top, 0) : h - max(bottom, 0), max(left, 0) : w - max(right, 0)
127
+ ]
128
+ if (w, h) == (w_new, h_new):
129
+ out = image
130
+ else:
131
+ out = torch.zeros((*c, h_new, w_new), dtype=image.dtype)
132
+ out[slice_out] = image[slice_in]
133
+ if camera is not None:
134
+ camera = camera.crop((max(left, 0), max(top, 0)), (w_new, h_new))
135
+ out_valid = torch.zeros((h_new, w_new), dtype=torch.bool)
136
+ out_valid[slice_out] = True if valid is None else valid[slice_in]
137
+ if camera is not None:
138
+ return out, out_valid, camera
139
+ else:
140
+ return out, out_valid
mapper/data/kitti/data_module.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ..base import DataBase
2
+ from .dataset import BEVKitti360Dataset
3
+ from ..schema import KITTIDataConfiguration
4
+
5
+ class BEVKitti360Data(DataBase):
6
+ def __init__(self, cfg: KITTIDataConfiguration) -> None:
7
+ self.cfg = cfg
8
+ self._dataset = {}
9
+
10
+ def prepare_data(self) -> None:
11
+ return
12
+
13
+ def setup(self, stage: str) -> None:
14
+ split = {
15
+ 'fit': 'train',
16
+ 'val': 'val',
17
+ 'validate': 'val',
18
+ 'test': 'val',
19
+ "train": "train"
20
+ }[stage]
21
+
22
+ self._dataset[stage] = BEVKitti360Dataset(
23
+ cfg=self.cfg,
24
+ split_name=split
25
+ )
26
+
27
+ def dataset(self, stage: str):
28
+ if self._dataset.get(stage) is None:
29
+ self.setup(stage)
30
+
31
+ return self._dataset[stage]
32
+
mapper/data/kitti/dataset.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import torch.utils.data as data
4
+ import umsgpack
5
+ from PIL import Image
6
+ import json
7
+ import torchvision.transforms as tvf
8
+
9
+ from .transform import BEVTransform
10
+ from ..schema import KITTIDataConfiguration
11
+
12
+ class BEVKitti360Dataset(data.Dataset):
13
+ _IMG_DIR = "img"
14
+ _BEV_MSK_DIR = "bev_msk"
15
+ _BEV_PLABEL_DIR = "bev_plabel_dynamic"
16
+ _FV_MSK_DIR = "front_msk_seam"
17
+ _BEV_DIR = "bev_ortho"
18
+ _LST_DIR = "split"
19
+ _PERCENTAGES_DIR = "percentages"
20
+ _BEV_METADATA_FILE = "metadata_ortho.bin"
21
+ _FV_METADATA_FILE = "metadata_front.bin"
22
+
23
+ def __init__(self, cfg: KITTIDataConfiguration, split_name="train"):
24
+ super(BEVKitti360Dataset, self).__init__()
25
+ self.cfg = cfg
26
+ self.seam_root_dir = cfg.seam_root_dir # Directory of seamless data
27
+ self.kitti_root_dir = cfg.dataset_root_dir # Directory of the KITTI360 data
28
+ self.split_name = split_name
29
+
30
+ self.rgb_cameras = ['front']
31
+ if cfg.bev_percentage < 1:
32
+ self.bev_percentage = cfg.bev_percentage
33
+ else:
34
+ self.bev_percentage = int(cfg.bev_percentage)
35
+
36
+ # Folders
37
+ self._img_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._IMG_DIR)
38
+ self._bev_msk_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._BEV_MSK_DIR, BEVKitti360Dataset._BEV_DIR)
39
+ self._bev_plabel_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._BEV_PLABEL_DIR, BEVKitti360Dataset._BEV_DIR)
40
+ self._fv_msk_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._FV_MSK_DIR, "front")
41
+ self._lst_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._LST_DIR)
42
+ self._percentages_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._LST_DIR, BEVKitti360Dataset._PERCENTAGES_DIR)
43
+
44
+ # Load meta-data and split
45
+ self._bev_meta, self._bev_images, self._bev_images_all, self._fv_meta, self._fv_images, self._fv_images_all,\
46
+ self._img_map, self.bev_percent_split = self._load_split()
47
+
48
+ self.tfs = self.get_augmentations() if split_name == "train" else tvf.Compose([])
49
+ self.transform = BEVTransform(cfg, self.tfs)
50
+
51
+ def get_augmentations(self):
52
+
53
+ print(f"Augmentation!", "\n" * 10)
54
+ augmentations = [
55
+ tvf.ColorJitter(
56
+ brightness=self.cfg.augmentations.brightness,
57
+ contrast=self.cfg.augmentations.contrast,
58
+ saturation=self.cfg.augmentations.saturation,
59
+ hue=self.cfg.augmentations.hue,
60
+ )
61
+ ]
62
+
63
+ if self.cfg.augmentations.random_resized_crop:
64
+ augmentations.append(
65
+ tvf.RandomResizedCrop(scale=(0.8, 1.0))
66
+ ) # RandomResizedCrop
67
+
68
+ if self.cfg.augmentations.gaussian_noise.enabled:
69
+ augmentations.append(
70
+ tvf.GaussianNoise(
71
+ mean=self.cfg.augmentations.gaussian_noise.mean,
72
+ std=self.cfg.augmentations.gaussian_noise.std,
73
+ )
74
+ ) # Gaussian noise
75
+
76
+ if self.cfg.augmentations.brightness_contrast.enabled:
77
+ augmentations.append(
78
+ tvf.ColorJitter(
79
+ brightness=self.cfg.augmentations.brightness_contrast.brightness_factor,
80
+ contrast=self.cfg.augmentations.brightness_contrast.contrast_factor,
81
+ saturation=0, # Keep saturation at 0 for brightness and contrast adjustment
82
+ hue=0,
83
+ )
84
+ ) # Brightness and contrast adjustment
85
+
86
+ return tvf.Compose(augmentations)
87
+
88
+ # Load the train or the validation split
89
+ def _load_split(self):
90
+ with open(os.path.join(self.seam_root_dir, BEVKitti360Dataset._BEV_METADATA_FILE), "rb") as fid:
91
+ bev_metadata = umsgpack.unpack(fid, encoding="utf-8")
92
+
93
+ with open(os.path.join(self.seam_root_dir, BEVKitti360Dataset._FV_METADATA_FILE), 'rb') as fid:
94
+ fv_metadata = umsgpack.unpack(fid, encoding="utf-8")
95
+
96
+ # Read the files for this split
97
+ with open(os.path.join(self._lst_dir, self.split_name + ".txt"), "r") as fid:
98
+ lst = fid.readlines()
99
+ lst = [line.strip() for line in lst]
100
+
101
+ if self.split_name == "train":
102
+ # Get all the frames in the train dataset. This will be used for generating samples for temporal consistency.
103
+ with open(os.path.join(self._lst_dir, "{}_all.txt".format(self.split_name)), 'r') as fid:
104
+ lst_all = fid.readlines()
105
+ lst_all = [line.strip() for line in lst_all]
106
+
107
+ # Get all the samples for which the BEV plabels have to be loaded.
108
+ percentage_file = os.path.join(self._percentages_dir, "{}_{}.txt".format(self.split_name, self.bev_percentage))
109
+ print("Loading {}% file".format(self.bev_percentage))
110
+ with open(percentage_file, 'r') as fid:
111
+ lst_percent = fid.readlines()
112
+ lst_percent = [line.strip() for line in lst_percent]
113
+ else:
114
+ lst_all = lst
115
+ lst_percent = lst
116
+
117
+ # Remove elements from lst if they are not in _FRONT_MSK_DIR
118
+ fv_msk_frames = os.listdir(self._fv_msk_dir)
119
+ fv_msk_frames = [frame.split(".")[0] for frame in fv_msk_frames]
120
+ fv_msk_frames_exist_map = {entry: True for entry in fv_msk_frames} # This is to speed-up the dataloader
121
+ lst = [entry for entry in lst if entry in fv_msk_frames_exist_map]
122
+ lst_all = [entry for entry in lst_all if entry in fv_msk_frames_exist_map]
123
+
124
+ # Filter based on the samples plabels
125
+ if self.bev_percentage < 100:
126
+ lst_filt = [entry for entry in lst if entry in lst_percent]
127
+ lst = lst_filt
128
+
129
+ # Remove any potential duplicates
130
+ lst = set(lst)
131
+ lst_percent = set(lst_percent)
132
+
133
+ img_map = {}
134
+ for camera in self.rgb_cameras:
135
+ with open(os.path.join(self._img_dir, "{}.json".format(camera))) as fp:
136
+ map_list = json.load(fp)
137
+ map_dict = {k: v for d in map_list for k, v in d.items()}
138
+ img_map[camera] = map_dict
139
+
140
+ bev_meta = bev_metadata["meta"]
141
+ bev_images = [img_desc for img_desc in bev_metadata["images"] if img_desc["id"] in lst]
142
+ fv_meta = fv_metadata["meta"]
143
+ fv_images = [img_desc for img_desc in fv_metadata['images'] if img_desc['id'] in lst]
144
+
145
+ # Check for inconsistency due to inconsistencies in the input files or dataset
146
+ bev_images_ids = [bev_img["id"] for bev_img in bev_images]
147
+ fv_images_ids = [fv_img["id"] for fv_img in fv_images]
148
+ assert set(bev_images_ids) == set(fv_images_ids) and len(bev_images_ids) == len(fv_images_ids), 'Inconsistency between fv_images and bev_images detected'
149
+
150
+ if lst_all is not None:
151
+ bev_images_all = [img_desc for img_desc in bev_metadata['images'] if img_desc['id'] in lst_all]
152
+ fv_images_all = [img_desc for img_desc in fv_metadata['images'] if img_desc['id'] in lst_all]
153
+ else:
154
+ bev_images_all, fv_images_all = None, None
155
+
156
+ return bev_meta, bev_images, bev_images_all, fv_meta, fv_images, fv_images_all, img_map, lst_percent
157
+
158
+ def _find_index(self, list, key, value):
159
+ for i, dic in enumerate(list):
160
+ if dic[key] == value:
161
+ return i
162
+ return None
163
+
164
+ def _load_item(self, item_idx):
165
+ # Find the index of the element in the list containing all elements
166
+ all_idx = self._find_index(self._fv_images_all, "id", self._fv_images[item_idx]['id'])
167
+ if all_idx is None:
168
+ raise IOError("Required index not found!")
169
+
170
+ bev_img_desc = self._bev_images[item_idx]
171
+ fv_img_desc = self._fv_images[item_idx]
172
+
173
+ scene, frame_id = self._bev_images[item_idx]["id"].split(";")
174
+
175
+ # Get the RGB file names
176
+ img_file = os.path.join(
177
+ self.kitti_root_dir,
178
+ self._img_map["front"]["{}.png"
179
+ .format(bev_img_desc['id'])]
180
+ )
181
+
182
+ if not os.path.exists(img_file):
183
+ raise IOError(
184
+ "RGB image not found! Scene: {}, Frame: {}".format(scene, frame_id)
185
+ )
186
+
187
+ # Load the images
188
+ img = Image.open(img_file).convert(mode="RGB")
189
+
190
+ # Load the BEV mask
191
+ bev_msk_file = os.path.join(
192
+ self._bev_msk_dir,
193
+ "{}.png".format(bev_img_desc['id'])
194
+ )
195
+ bev_msk = Image.open(bev_msk_file)
196
+ bev_plabel = None
197
+
198
+ # Load the front mask
199
+ fv_msk_file = os.path.join(
200
+ self._fv_msk_dir,
201
+ "{}.png".format(fv_img_desc['id'])
202
+ )
203
+ fv_msk = Image.open(fv_msk_file)
204
+
205
+
206
+ bev_weights_msk_combined = None
207
+
208
+ # Get the other information
209
+ bev_cat = bev_img_desc["cat"]
210
+ bev_iscrowd = bev_img_desc["iscrowd"]
211
+ fv_cat = fv_img_desc['cat']
212
+ fv_iscrowd = fv_img_desc['iscrowd']
213
+ fv_intrinsics = fv_img_desc["cam_intrinsic"]
214
+ ego_pose = fv_img_desc['ego_pose'] # This loads the cam0 pose
215
+
216
+ # Get the ids of all the frames
217
+ frame_ids = bev_img_desc["id"]
218
+
219
+ return img, bev_msk, bev_plabel, fv_msk, bev_weights_msk_combined, bev_cat, \
220
+ bev_iscrowd, fv_cat, fv_iscrowd, fv_intrinsics, ego_pose, frame_ids
221
+
222
+ @property
223
+ def fv_categories(self):
224
+ """Category names"""
225
+ return self._fv_meta["categories"]
226
+
227
+ @property
228
+ def fv_num_categories(self):
229
+ """Number of categories"""
230
+ return len(self.fv_categories)
231
+
232
+ @property
233
+ def fv_num_stuff(self):
234
+ """Number of "stuff" categories"""
235
+ return self._fv_meta["num_stuff"]
236
+
237
+ @property
238
+ def fv_num_thing(self):
239
+ """Number of "thing" categories"""
240
+ return self.fv_num_categories - self.fv_num_stuff
241
+
242
+ @property
243
+ def bev_categories(self):
244
+ """Category names"""
245
+ return self._bev_meta["categories"]
246
+
247
+ @property
248
+ def bev_num_categories(self):
249
+ """Number of categories"""
250
+ return len(self.bev_categories)
251
+
252
+ @property
253
+ def bev_num_stuff(self):
254
+ """Number of "stuff" categories"""
255
+ return self._bev_meta["num_stuff"]
256
+
257
+ @property
258
+ def bev_num_thing(self):
259
+ """Number of "thing" categories"""
260
+ return self.bev_num_categories - self.bev_num_stuff
261
+
262
+ @property
263
+ def original_ids(self):
264
+ """Original class id of each category"""
265
+ return self._fv_meta["original_ids"]
266
+
267
+ @property
268
+ def palette(self):
269
+ """Default palette to be used when color-coding semantic labels"""
270
+ return np.array(self._fv_meta["palette"], dtype=np.uint8)
271
+
272
+ @property
273
+ def img_sizes(self):
274
+ """Size of each image of the dataset"""
275
+ return [img_desc["size"] for img_desc in self._fv_images]
276
+
277
+ @property
278
+ def img_categories(self):
279
+ """Categories present in each image of the dataset"""
280
+ return [img_desc["cat"] for img_desc in self._fv_images]
281
+
282
+ @property
283
+ def dataset_name(self):
284
+ return "Kitti360"
285
+
286
+ def __len__(self):
287
+ if self.cfg.percentage < 1:
288
+ return int(len(self._fv_images) * self.cfg.percentage)
289
+
290
+ return len(self._fv_images)
291
+
292
+ def __getitem__(self, item):
293
+ img, bev_msk, bev_plabel, fv_msk, bev_weights_msk, bev_cat, bev_iscrowd, fv_cat, fv_iscrowd, fv_intrinsics, ego_pose, idx = self._load_item(item)
294
+
295
+ rec = self.transform(img=img, bev_msk=bev_msk, bev_plabel=bev_plabel, fv_msk=fv_msk, bev_weights_msk=bev_weights_msk, bev_cat=bev_cat,
296
+ bev_iscrowd=bev_iscrowd, fv_cat=fv_cat, fv_iscrowd=fv_iscrowd, fv_intrinsics=fv_intrinsics,
297
+ ego_pose=ego_pose)
298
+ size = (img.size[1], img.size[0])
299
+
300
+ # Close the file
301
+ img.close()
302
+ bev_msk.close()
303
+ fv_msk.close()
304
+
305
+ rec["index"] = idx
306
+ rec["size"] = size
307
+ rec['name'] = idx
308
+
309
+ return rec
310
+
311
+ def get_image_desc(self, idx):
312
+ """Look up an image descriptor given the id"""
313
+ matching = [img_desc for img_desc in self._images if img_desc["id"] == idx]
314
+ if len(matching) == 1:
315
+ return matching[0]
316
+ else:
317
+ raise ValueError("No image found with id %s" % idx)
mapper/data/kitti/transform.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from torchvision.transforms import functional as tfn
4
+ import torchvision.transforms.functional as tvf
5
+
6
+ from ..utils import decompose_rotmat
7
+ from ..image import pad_image, rectify_image, resize_image
8
+ from ...utils.wrappers import Camera
9
+ from ..schema import KITTIDataConfiguration
10
+
11
+
12
+ class BEVTransform:
13
+ def __init__(self,
14
+ cfg: KITTIDataConfiguration, augmentations):
15
+ self.cfg = cfg
16
+ self.augmentations = augmentations
17
+
18
+ @staticmethod
19
+ def _compact_labels(msk, cat, iscrowd):
20
+ ids = np.unique(msk)
21
+ if 0 not in ids:
22
+ ids = np.concatenate((np.array([0], dtype=np.int32), ids), axis=0)
23
+
24
+ ids_to_compact = np.zeros((ids.max() + 1,), dtype=np.int32)
25
+ ids_to_compact[ids] = np.arange(0, ids.size, dtype=np.int32)
26
+
27
+ msk = ids_to_compact[msk]
28
+ cat = cat[ids]
29
+ iscrowd = iscrowd[ids]
30
+
31
+ return msk, cat, iscrowd
32
+
33
+ def __call__(self, img, bev_msk=None, bev_plabel=None, fv_msk=None, bev_weights_msk=None,
34
+ bev_cat=None, bev_iscrowd=None, fv_cat=None, fv_iscrowd=None,
35
+ fv_intrinsics=None, ego_pose=None):
36
+ # Wrap in np.array
37
+ if bev_cat is not None:
38
+ bev_cat = np.array(bev_cat, dtype=np.int32)
39
+ if bev_iscrowd is not None:
40
+ bev_iscrowd = np.array(bev_iscrowd, dtype=np.uint8)
41
+
42
+ if ego_pose is not None:
43
+ ego_pose = np.array(ego_pose, dtype=np.float32)
44
+
45
+ roll, pitch, yaw = decompose_rotmat(ego_pose[:3, :3])
46
+
47
+ # Image transformations
48
+ img = tfn.to_tensor(img)
49
+ # img = [self._normalize_image(rgb) for rgb in img]
50
+ fx = fv_intrinsics[0][0]
51
+ fy = fv_intrinsics[1][1]
52
+ cx = fv_intrinsics[0][2]
53
+ cy = fv_intrinsics[1][2]
54
+ width = img.shape[2]
55
+ height = img.shape[1]
56
+
57
+ cam = Camera(torch.tensor(
58
+ [width, height, fx, fy, cx - 0.5, cy - 0.5])).float()
59
+
60
+ if not self.cfg.gravity_align:
61
+ # Turn off gravity alignment
62
+ roll = 0.0
63
+ pitch = 0.0
64
+ img, valid = rectify_image(img, cam, roll, pitch)
65
+ else:
66
+ img, valid = rectify_image(
67
+ img, cam, roll, pitch if self.cfg.rectify_pitch else None
68
+ )
69
+ roll = 0.0
70
+ if self.cfg.rectify_pitch:
71
+ pitch = 0.0
72
+
73
+ if self.cfg.target_focal_length is not None:
74
+ # Resize to a canonical focal length
75
+ factor = self.cfg.target_focal_length / cam.f.numpy()
76
+ size = (np.array(img.shape[-2:][::-1]) * factor).astype(int)
77
+ img, _, cam, valid = resize_image(img, size, camera=cam, valid=valid)
78
+ size_out = self.cfg.resize_image
79
+ if size_out is None:
80
+ # Round the edges up such that they are multiple of a factor
81
+ stride = self.cfg.pad_to_multiple
82
+ size_out = (np.ceil((size / stride)) * stride).astype(int)
83
+ # Crop or pad such that both edges are of the given size
84
+ img, valid, cam = pad_image(
85
+ img, size_out, cam, valid, crop_and_center=False
86
+ )
87
+ elif self.cfg.resize_image is not None:
88
+ img, _, cam, valid = resize_image(
89
+ img, self.cfg.resize_image, fn=max, camera=cam, valid=valid
90
+ )
91
+ if self.cfg.pad_to_square:
92
+ # Pad such that both edges are of the given size
93
+ img, valid, cam = pad_image(img, self.cfg.resize_image, cam, valid)
94
+
95
+ # Label transformations,
96
+ if bev_msk is not None:
97
+ bev_msk = np.expand_dims(
98
+ np.array(bev_msk, dtype=np.int32, copy=False),
99
+ axis=0
100
+ )
101
+ bev_msk, bev_cat, bev_iscrowd = self._compact_labels(
102
+ bev_msk, bev_cat, bev_iscrowd
103
+ )
104
+
105
+ bev_msk = torch.from_numpy(bev_msk)
106
+ bev_cat = torch.from_numpy(bev_cat)
107
+
108
+ rotated_mask = torch.rot90(bev_msk, dims=(1, 2))
109
+ cropped_mask = rotated_mask[:, :672, (rotated_mask.size(2) - 672) // 2:-(rotated_mask.size(2) - 672) // 2]
110
+
111
+ bev_msk = cropped_mask.squeeze(0)
112
+ seg_masks = bev_cat[bev_msk]
113
+
114
+ seg_masks_onehot = seg_masks.clone()
115
+ seg_masks_onehot[seg_masks_onehot == 255] = 0
116
+ seg_masks_onehot = torch.nn.functional.one_hot(
117
+ seg_masks_onehot.to(torch.int64),
118
+ num_classes=self.cfg.num_classes
119
+ )
120
+ seg_masks_onehot[seg_masks == 255] = 0
121
+
122
+ seg_masks_onehot = seg_masks_onehot.permute(2, 0, 1)
123
+
124
+ seg_masks_down = tvf.resize(seg_masks_onehot, (100, 100))
125
+
126
+ seg_masks_down = seg_masks_down.permute(1, 2, 0)
127
+
128
+ if self.cfg.class_mapping is not None:
129
+ seg_masks_down = seg_masks_down[:, :, self.cfg.class_mapping]
130
+
131
+ img = self.augmentations(img)
132
+ flood_masks = torch.all(seg_masks_down == 0, dim=2).float()
133
+
134
+
135
+ ret = {
136
+ "image": img,
137
+ "valid": valid,
138
+ "camera": cam,
139
+ "seg_masks": (seg_masks_down).float().contiguous(),
140
+ "flood_masks": flood_masks,
141
+ "roll_pitch_yaw": torch.tensor((roll, pitch, yaw)).float(),
142
+ "confidence_map": flood_masks,
143
+ }
144
+
145
+ for key, value in ret.items():
146
+ if isinstance(value, np.ndarray):
147
+ ret[key] = torch.from_numpy(value)
148
+
149
+ return ret
mapper/data/mapillary/data_module.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from collections import defaultdict
3
+ import os
4
+ import shutil
5
+ import tarfile
6
+ from pathlib import Path
7
+ from typing import Optional
8
+
9
+ import numpy as np
10
+ import pytorch_lightning as pl
11
+ import torch
12
+ import torch.utils.data as torchdata
13
+ from omegaconf import DictConfig
14
+
15
+ from ... import logger
16
+ from .dataset import MapLocDataset
17
+ from ..sequential import chunk_sequence
18
+ from ..torch import collate, worker_init_fn
19
+ from ..schema import MIADataConfiguration
20
+
21
+ def pack_dump_dict(dump):
22
+ for per_seq in dump.values():
23
+ if "points" in per_seq:
24
+ for chunk in list(per_seq["points"]):
25
+ points = per_seq["points"].pop(chunk)
26
+ if points is not None:
27
+ per_seq["points"][chunk] = np.array(
28
+ per_seq["points"][chunk], np.float64
29
+ )
30
+ for view in per_seq["views"].values():
31
+ for k in ["R_c2w", "roll_pitch_yaw"]:
32
+ view[k] = np.array(view[k], np.float32)
33
+ for k in ["chunk_id"]:
34
+ if k in view:
35
+ view.pop(k)
36
+ if "observations" in view:
37
+ view["observations"] = np.array(view["observations"])
38
+ for camera in per_seq["cameras"].values():
39
+ for k in ["params"]:
40
+ camera[k] = np.array(camera[k], np.float32)
41
+ return dump
42
+
43
+
44
+ class MapillaryDataModule(pl.LightningDataModule):
45
+ dump_filename = "dump.json"
46
+ images_archive = "images.tar.gz"
47
+ images_dirname = "images/"
48
+ semantic_masks_dirname = "semantic_masks/"
49
+ flood_dirname = "flood_fill/"
50
+
51
+ def __init__(self, cfg: MIADataConfiguration):
52
+ super().__init__()
53
+ self.cfg = cfg
54
+ self.root = self.cfg.data_dir
55
+ self.local_dir = None
56
+
57
+ def prepare_data(self):
58
+ for scene in self.cfg.scenes:
59
+ dump_dir = self.root / scene
60
+ assert (dump_dir / self.dump_filename).exists(), dump_dir
61
+ # assert (dump_dir / self.cfg.tiles_filename).exists(), dump_dir
62
+ if self.local_dir is None:
63
+ assert (dump_dir / self.images_dirname).exists(), dump_dir
64
+ continue
65
+ assert (dump_dir / self.semantic_masks_dirname).exists(), dump_dir
66
+ assert (dump_dir / self.flood_dirname).exists(), dump_dir
67
+ # Cache the folder of images locally to speed up reading
68
+ local_dir = self.local_dir / scene
69
+ if local_dir.exists():
70
+ shutil.rmtree(local_dir)
71
+ local_dir.mkdir(exist_ok=True, parents=True)
72
+ images_archive = dump_dir / self.images_archive
73
+ logger.info("Extracting the image archive %s.", images_archive)
74
+ with tarfile.open(images_archive) as fp:
75
+ fp.extractall(local_dir)
76
+
77
+ def setup(self, stage: Optional[str] = None):
78
+ self.dumps = {}
79
+ # self.tile_managers = {}
80
+ self.image_dirs = {}
81
+ self.seg_masks_dir = {}
82
+ self.flood_masks_dir = {}
83
+ names = []
84
+
85
+ for scene in self.cfg.scenes:
86
+ logger.info("Loading scene %s.", scene)
87
+ dump_dir = self.root / scene
88
+
89
+ logger.info("Loading dump json file %s.", self.dump_filename)
90
+ with (dump_dir / self.dump_filename).open("r") as fp:
91
+ self.dumps[scene] = pack_dump_dict(json.load(fp))
92
+ for seq, per_seq in self.dumps[scene].items():
93
+ for cam_id, cam_dict in per_seq["cameras"].items():
94
+ if cam_dict["model"] != "PINHOLE":
95
+ raise ValueError(
96
+ f"Unsupported camera model: {cam_dict['model']} for {scene},{seq},{cam_id}"
97
+ )
98
+
99
+ self.image_dirs[scene] = (
100
+ (self.local_dir or self.root) / scene / self.images_dirname
101
+ )
102
+ assert self.image_dirs[scene].exists(), self.image_dirs[scene]
103
+
104
+ self.seg_masks_dir[scene] = (
105
+ (self.local_dir or self.root) / scene / self.semantic_masks_dirname
106
+ )
107
+ assert self.seg_masks_dir[scene].exists(), self.seg_masks_dir[scene]
108
+
109
+ self.flood_masks_dir[scene] = (
110
+ (self.local_dir or self.root) / scene / self.flood_dirname
111
+ )
112
+ assert self.flood_masks_dir[scene].exists(), self.flood_masks_dir[scene]
113
+
114
+ images = set(x.split('.')[0] for x in os.listdir(self.image_dirs[scene]))
115
+ flood_masks = set(x.split('.')[0] for x in os.listdir(self.flood_masks_dir[scene]))
116
+ semantic_masks = set(x.split('.')[0] for x in os.listdir(self.seg_masks_dir[scene]))
117
+
118
+ for seq, data in self.dumps[scene].items():
119
+ for name in data["views"]:
120
+ if name in images and name.split("_")[0] in flood_masks and name.split("_")[0] in semantic_masks:
121
+ names.append((scene, seq, name))
122
+
123
+ self.parse_splits(self.cfg.split, names)
124
+ if self.cfg.filter_for is not None:
125
+ self.filter_elements()
126
+ self.pack_data()
127
+
128
+ def pack_data(self):
129
+ # We pack the data into compact tensors that can be shared across processes without copy
130
+ exclude = {
131
+ "compass_angle",
132
+ "compass_accuracy",
133
+ "gps_accuracy",
134
+ "chunk_key",
135
+ "panorama_offset",
136
+ }
137
+ cameras = {
138
+ scene: {seq: per_seq["cameras"] for seq, per_seq in per_scene.items()}
139
+ for scene, per_scene in self.dumps.items()
140
+ }
141
+ points = {
142
+ scene: {
143
+ seq: {
144
+ i: torch.from_numpy(p) for i, p in per_seq.get("points", {}).items()
145
+ }
146
+ for seq, per_seq in per_scene.items()
147
+ }
148
+ for scene, per_scene in self.dumps.items()
149
+ }
150
+ self.data = {}
151
+
152
+ # TODO: remove
153
+ if self.cfg.split == "splits_MGL_13loc.json":
154
+ # Use Last 20% as Val
155
+ num_samples_to_move = int(len(self.splits['train']) * 0.2)
156
+ samples_to_move = self.splits['train'][-num_samples_to_move:]
157
+ self.splits['val'].extend(samples_to_move)
158
+ self.splits['train'] = self.splits['train'][:-num_samples_to_move]
159
+ print(f"Dataset Len: {len(self.splits['train']), len(self.splits['val'])}\n\n\n\n")
160
+ elif self.cfg.split == "splits_MGL_soma_70k_mappred_random.json":
161
+ for stage, names in self.splits.items():
162
+ print("Length of splits {}: ".format(stage), len(self.splits[stage]))
163
+ for stage, names in self.splits.items():
164
+ view = self.dumps[names[0][0]][names[0][1]]["views"][names[0][2]]
165
+ data = {k: [] for k in view.keys() - exclude}
166
+ for scene, seq, name in names:
167
+ for k in data:
168
+ data[k].append(self.dumps[scene][seq]["views"][name].get(k, None))
169
+ for k in data:
170
+ v = np.array(data[k])
171
+ if np.issubdtype(v.dtype, np.integer) or np.issubdtype(
172
+ v.dtype, np.floating
173
+ ):
174
+ v = torch.from_numpy(v)
175
+ data[k] = v
176
+ data["cameras"] = cameras
177
+ data["points"] = points
178
+ self.data[stage] = data
179
+ self.splits[stage] = np.array(names)
180
+
181
+ def filter_elements(self):
182
+ for stage, names in self.splits.items():
183
+ names_select = []
184
+ for scene, seq, name in names:
185
+ view = self.dumps[scene][seq]["views"][name]
186
+ if self.cfg.filter_for == "ground_plane":
187
+ if not (1.0 <= view["height"] <= 3.0):
188
+ continue
189
+ planes = self.dumps[scene][seq].get("plane")
190
+ if planes is not None:
191
+ inliers = planes[str(view["chunk_id"])][-1]
192
+ if inliers < 10:
193
+ continue
194
+ if self.cfg.filter_by_ground_angle is not None:
195
+ plane = np.array(view["plane_params"])
196
+ normal = plane[:3] / np.linalg.norm(plane[:3])
197
+ angle = np.rad2deg(np.arccos(np.abs(normal[-1])))
198
+ if angle > self.cfg.filter_by_ground_angle:
199
+ continue
200
+ elif self.cfg.filter_for == "pointcloud":
201
+ if len(view["observations"]) < self.cfg.min_num_points:
202
+ continue
203
+ elif self.cfg.filter_for is not None:
204
+ raise ValueError(f"Unknown filtering: {self.cfg.filter_for}")
205
+ names_select.append((scene, seq, name))
206
+ logger.info(
207
+ "%s: Keep %d/%d images after filtering for %s.",
208
+ stage,
209
+ len(names_select),
210
+ len(names),
211
+ self.cfg.filter_for,
212
+ )
213
+ self.splits[stage] = names_select
214
+
215
+ def parse_splits(self, split_arg, names):
216
+ if split_arg is None:
217
+ self.splits = {
218
+ "train": names,
219
+ "val": names,
220
+ }
221
+ elif isinstance(split_arg, int):
222
+ names = np.random.RandomState(self.cfg.seed).permutation(names).tolist()
223
+ self.splits = {
224
+ "train": names[split_arg:],
225
+ "val": names[:split_arg],
226
+ }
227
+ elif isinstance(split_arg, float):
228
+ names = np.random.RandomState(self.cfg.seed).permutation(names).tolist()
229
+ self.splits = {
230
+ "train": names[int(split_arg * len(names)) :],
231
+ "val": names[: int(split_arg * len(names))],
232
+ }
233
+ elif isinstance(split_arg, DictConfig):
234
+ scenes_val = set(split_arg.val)
235
+ scenes_train = set(split_arg.train)
236
+ assert len(scenes_val - set(self.cfg.scenes)) == 0
237
+ assert len(scenes_train - set(self.cfg.scenes)) == 0
238
+ self.splits = {
239
+ "train": [n for n in names if n[0] in scenes_train],
240
+ "val": [n for n in names if n[0] in scenes_val],
241
+ }
242
+ elif isinstance(split_arg, str):
243
+
244
+ if "/" in split_arg:
245
+ split_path = self.root / split_arg
246
+ else:
247
+ split_path = Path(split_arg)
248
+
249
+ with split_path.open("r") as fp:
250
+ splits = json.load(fp)
251
+ splits = {
252
+ k: {loc: set(ids) for loc, ids in split.items()}
253
+ for k, split in splits.items()
254
+ }
255
+ self.splits = {}
256
+
257
+ for k, split in splits.items():
258
+ self.splits[k] = [
259
+ n
260
+ for n in names
261
+ if n[0] in split and int(n[-1].rsplit("_", 1)[0]) in split[n[0]]
262
+ ]
263
+ else:
264
+ raise ValueError(split_arg)
265
+
266
+ def dataset(self, stage: str):
267
+ return MapLocDataset(
268
+ stage,
269
+ self.cfg,
270
+ self.splits[stage],
271
+ self.data[stage],
272
+ self.image_dirs,
273
+ self.seg_masks_dir,
274
+ self.flood_masks_dir,
275
+
276
+ image_ext=".jpg",
277
+ )
278
+
279
+ def sequence_dataset(self, stage: str, **kwargs):
280
+ keys = self.splits[stage]
281
+ seq2indices = defaultdict(list)
282
+ for index, (_, seq, _) in enumerate(keys):
283
+ seq2indices[seq].append(index)
284
+ # chunk the sequences to the required length
285
+ chunk2indices = {}
286
+ for seq, indices in seq2indices.items():
287
+ chunks = chunk_sequence(self.data[stage], indices, **kwargs)
288
+ for i, sub_indices in enumerate(chunks):
289
+ chunk2indices[seq, i] = sub_indices
290
+ # store the index of each chunk in its sequence
291
+ chunk_indices = torch.full((len(keys),), -1)
292
+ for (_, chunk_index), idx in chunk2indices.items():
293
+ chunk_indices[idx] = chunk_index
294
+ self.data[stage]["chunk_index"] = chunk_indices
295
+ dataset = self.dataset(stage)
296
+ return dataset, chunk2indices
297
+
298
+ def sequence_dataloader(self, stage: str, shuffle: bool = False, **kwargs):
299
+ dataset, chunk2idx = self.sequence_dataset(stage, **kwargs)
300
+ chunk_keys = sorted(chunk2idx)
301
+ if shuffle:
302
+ perm = torch.randperm(len(chunk_keys))
303
+ chunk_keys = [chunk_keys[i] for i in perm]
304
+ key_indices = [i for key in chunk_keys for i in chunk2idx[key]]
305
+ num_workers = self.cfg.loading[stage]["num_workers"]
306
+ loader = torchdata.DataLoader(
307
+ dataset,
308
+ batch_size=None,
309
+ sampler=key_indices,
310
+ num_workers=num_workers,
311
+ shuffle=False,
312
+ pin_memory=True,
313
+ persistent_workers=num_workers > 0,
314
+ worker_init_fn=worker_init_fn,
315
+ collate_fn=collate,
316
+ )
317
+ return loader, chunk_keys, chunk2idx
mapper/data/mapillary/dataset.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from copy import deepcopy
2
+ from pathlib import Path
3
+ from typing import Any, Dict, List
4
+
5
+ import numpy as np
6
+ import torch
7
+ import torch.utils.data as torchdata
8
+ import torchvision.transforms as tvf
9
+ from PIL import Image
10
+ from pathlib import Path
11
+
12
+ from ...models.utils import deg2rad, rotmat2d
13
+ from ...utils.io import read_image
14
+ from ...utils.wrappers import Camera
15
+ from ..image import pad_image, rectify_image, resize_image
16
+ from ..utils import decompose_rotmat
17
+ from ..schema import MIADataConfiguration
18
+
19
+
20
+ class MapLocDataset(torchdata.Dataset):
21
+ def __init__(
22
+ self,
23
+ stage: str,
24
+ cfg: MIADataConfiguration,
25
+ names: List[str],
26
+ data: Dict[str, Any],
27
+ image_dirs: Dict[str, Path],
28
+ seg_mask_dirs: Dict[str, Path],
29
+ flood_masks_dirs: Dict[str, Path],
30
+ image_ext: str = "",
31
+ ):
32
+ self.stage = stage
33
+ self.cfg = deepcopy(cfg)
34
+ self.data = data
35
+ self.image_dirs = image_dirs
36
+ self.seg_mask_dirs = seg_mask_dirs
37
+ self.flood_masks_dirs = flood_masks_dirs
38
+ self.names = names
39
+ self.image_ext = image_ext
40
+
41
+ tfs = []
42
+ self.tfs = tvf.Compose(tfs)
43
+ self.augmentations = self.get_augmentations()
44
+
45
+ def __len__(self):
46
+ return len(self.names)
47
+
48
+ def __getitem__(self, idx):
49
+ if self.stage == "train" and self.cfg.random:
50
+ seed = None
51
+ else:
52
+ seed = [self.cfg.seed, idx]
53
+ (seed,) = np.random.SeedSequence(seed).generate_state(1)
54
+
55
+ scene, seq, name = self.names[idx]
56
+
57
+ view = self.get_view(
58
+ idx, scene, seq, name, seed
59
+ )
60
+
61
+ return view
62
+
63
+ def get_augmentations(self):
64
+ if self.stage != "train" or not self.cfg.augmentations.enabled:
65
+ print(f"No Augmentation!", "\n" * 10)
66
+ self.cfg.augmentations.random_flip = 0.0
67
+ return tvf.Compose([])
68
+
69
+ print(f"Augmentation!", "\n" * 10)
70
+ augmentations = [
71
+ tvf.ColorJitter(
72
+ brightness=self.cfg.augmentations.brightness,
73
+ contrast=self.cfg.augmentations.contrast,
74
+ saturation=self.cfg.augmentations.saturation,
75
+ hue=self.cfg.augmentations.hue,
76
+ )
77
+ ]
78
+
79
+ if self.cfg.augmentations.random_resized_crop:
80
+ augmentations.append(
81
+ tvf.RandomResizedCrop(scale=(0.8, 1.0))
82
+ ) # RandomResizedCrop
83
+
84
+ if self.cfg.augmentations.gaussian_noise.enabled:
85
+ augmentations.append(
86
+ tvf.GaussianNoise(
87
+ mean=self.cfg.augmentations.gaussian_noise.mean,
88
+ std=self.cfg.augmentations.gaussian_noise.std,
89
+ )
90
+ ) # Gaussian noise
91
+
92
+ if self.cfg.augmentations.brightness_contrast.enabled:
93
+ augmentations.append(
94
+ tvf.ColorJitter(
95
+ brightness=self.cfg.augmentations.brightness_contrast.brightness_factor,
96
+ contrast=self.cfg.augmentations.brightness_contrast.contrast_factor,
97
+ saturation=0, # Keep saturation at 0 for brightness and contrast adjustment
98
+ hue=0,
99
+ )
100
+ ) # Brightness and contrast adjustment
101
+
102
+ return tvf.Compose(augmentations)
103
+
104
+ def random_flip(self, image, cam, valid, seg_mask, flood_mask, conf_mask):
105
+ if torch.rand(1) < self.cfg.augmentations.random_flip:
106
+ image = torch.flip(image, [-1])
107
+ cam = cam.flip()
108
+ valid = torch.flip(valid, [-1])
109
+ seg_mask = torch.flip(seg_mask, [1])
110
+ flood_mask = torch.flip(flood_mask, [-1])
111
+ conf_mask = torch.flip(conf_mask, [-1])
112
+
113
+ return image, cam, valid, seg_mask, flood_mask, conf_mask
114
+
115
+ def get_view(self, idx, scene, seq, name, seed):
116
+ data = {
117
+ "index": idx,
118
+ "name": name,
119
+ "scene": scene,
120
+ "sequence": seq,
121
+ }
122
+ cam_dict = self.data["cameras"][scene][seq][self.data["camera_id"][idx]]
123
+ cam = Camera.from_dict(cam_dict).float()
124
+
125
+ if "roll_pitch_yaw" in self.data:
126
+ roll, pitch, yaw = self.data["roll_pitch_yaw"][idx].numpy()
127
+ else:
128
+ roll, pitch, yaw = decompose_rotmat(
129
+ self.data["R_c2w"][idx].numpy())
130
+
131
+ image = read_image(self.image_dirs[scene] / (name + self.image_ext))
132
+ image = Image.fromarray(image)
133
+ image = self.augmentations(image)
134
+ image = np.array(image)
135
+
136
+ if "plane_params" in self.data:
137
+ # transform the plane parameters from world to camera frames
138
+ plane_w = self.data["plane_params"][idx]
139
+ data["ground_plane"] = torch.cat(
140
+ [rotmat2d(deg2rad(torch.tensor(yaw)))
141
+ @ plane_w[:2], plane_w[2:]]
142
+ )
143
+
144
+ image, valid, cam, roll, pitch = self.process_image(
145
+ image, cam, roll, pitch, seed
146
+ )
147
+
148
+ if "chunk_index" in self.data: # TODO: (cherie) do we need this?
149
+ data["chunk_id"] = (scene, seq, self.data["chunk_index"][idx])
150
+
151
+ # Semantic map extraction
152
+ seg_mask_path = self.seg_mask_dirs[scene] / \
153
+ (name.split("_")[0] + ".npy")
154
+ seg_masks_ours = np.load(seg_mask_path)
155
+ mask_center = (
156
+ seg_masks_ours.shape[0] // 2, seg_masks_ours.shape[1] // 2)
157
+
158
+ seg_masks_ours = seg_masks_ours[mask_center[0] -
159
+ 100:mask_center[0], mask_center[1] - 50: mask_center[1] + 50]
160
+
161
+ if self.cfg.num_classes == 6:
162
+ seg_masks_ours = seg_masks_ours[..., [0, 1, 2, 4, 6, 7]]
163
+
164
+ flood_mask_path = self.flood_masks_dirs[scene] / \
165
+ (name.split("_")[0] + ".npy")
166
+ flood_mask = np.load(flood_mask_path)
167
+
168
+ flood_mask = flood_mask[mask_center[0]-100:mask_center[0],
169
+ mask_center[1] - 50: mask_center[1] + 50]
170
+
171
+ confidence_map = flood_mask.copy()
172
+ confidence_map = (confidence_map - confidence_map.min()) / \
173
+ (confidence_map.max() - confidence_map.min() + 1e-6)
174
+
175
+ seg_masks_ours = torch.from_numpy(seg_masks_ours).float()
176
+ flood_mask = torch.from_numpy(flood_mask).float()
177
+ confidence_map = torch.from_numpy(confidence_map).float()
178
+
179
+ # Map Augmentations
180
+ with torch.random.fork_rng(devices=[]):
181
+ torch.manual_seed(seed)
182
+ image, cam, valid, seg_masks_ours, flood_mask, confidence_map = self.random_flip(
183
+ image, cam, valid, seg_masks_ours, flood_mask, confidence_map)
184
+
185
+ return {
186
+ **data,
187
+ "image": image,
188
+ "valid": valid,
189
+ "camera": cam,
190
+ "seg_masks": seg_masks_ours,
191
+ "flood_masks": flood_mask,
192
+ "roll_pitch_yaw": torch.tensor((roll, pitch, yaw)).float(),
193
+ "confidence_map": confidence_map
194
+ # "pixels_per_meter": torch.tensor(canvas.ppm).float(),
195
+ }
196
+
197
+ def process_image(self, image, cam, roll, pitch, seed):
198
+ image = (
199
+ torch.from_numpy(np.ascontiguousarray(image))
200
+ .permute(2, 0, 1)
201
+ .float()
202
+ .div_(255)
203
+ )
204
+
205
+ if not self.cfg.gravity_align:
206
+ # Turn off gravity alignment
207
+ roll = 0.0
208
+ pitch = 0.0
209
+ image, valid = rectify_image(image, cam, roll, pitch)
210
+ else:
211
+ image, valid = rectify_image(
212
+ image, cam, roll, pitch if self.cfg.rectify_pitch else None
213
+ )
214
+ roll = 0.0
215
+ if self.cfg.rectify_pitch:
216
+ pitch = 0.0
217
+
218
+ if self.cfg.target_focal_length is not None:
219
+ # Resize to a canonical focal length
220
+ factor = self.cfg.target_focal_length / cam.f.numpy()
221
+ size = (np.array(image.shape[-2:][::-1]) * factor).astype(int)
222
+ image, _, cam, valid = resize_image(
223
+ image, size, camera=cam, valid=valid)
224
+ size_out = self.cfg.resize_image
225
+ if size_out is None:
226
+ # Round the edges up such that they are multiple of a factor
227
+ stride = self.cfg.pad_to_multiple
228
+ size_out = (np.ceil((size / stride)) * stride).astype(int)
229
+ # Crop or pad such that both edges are of the given size
230
+ image, valid, cam = pad_image(
231
+ image, size_out, cam, valid, crop_and_center=True
232
+ )
233
+ elif self.cfg.resize_image is not None:
234
+ image, _, cam, valid = resize_image(
235
+ image, self.cfg.resize_image, fn=max, camera=cam, valid=valid
236
+ )
237
+ if self.cfg.pad_to_square:
238
+ # Pad such that both edges are of the given size
239
+ image, valid, cam = pad_image(
240
+ image, self.cfg.resize_image, cam, valid)
241
+
242
+ if self.cfg.reduce_fov is not None:
243
+ h, w = image.shape[-2:]
244
+ f = float(cam.f[0])
245
+ fov = np.arctan(w / f / 2)
246
+ w_new = round(2 * f * np.tan(self.cfg.reduce_fov * fov))
247
+ image, valid, cam = pad_image(
248
+ image, (w_new, h), cam, valid, crop_and_center=True
249
+ )
250
+
251
+ with torch.random.fork_rng(devices=[]):
252
+ torch.manual_seed(seed)
253
+ image = self.tfs(image)
254
+
255
+ return image, valid, cam, roll, pitch
mapper/data/module.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ from omegaconf import DictConfig
3
+ import pytorch_lightning as L
4
+ import torch.utils.data as torchdata
5
+ from .torch import collate, worker_init_fn
6
+
7
+
8
+ def get_dataset(name):
9
+ if name == "mapillary":
10
+ from .mapillary.data_module import MapillaryDataModule
11
+ return MapillaryDataModule
12
+ elif name == "nuscenes":
13
+ from .nuscenes.data_module import NuScenesData
14
+ return NuScenesData
15
+ elif name == "kitti":
16
+ from .kitti.data_module import BEVKitti360Data
17
+ return BEVKitti360Data
18
+ else:
19
+ raise NotImplementedError(f"Dataset {name} not implemented.")
20
+
21
+
22
+ class GenericDataModule(L.LightningDataModule):
23
+ def __init__(self, cfg: DictConfig):
24
+ super().__init__()
25
+ self.cfg = cfg
26
+ self.data_module = get_dataset(cfg.name)(cfg)
27
+
28
+ def prepare_data(self) -> None:
29
+ self.data_module.prepare_data()
30
+
31
+ def setup(self, stage: Optional[str] = None):
32
+ self.data_module.setup(stage)
33
+
34
+ def dataloader(
35
+ self,
36
+ stage: str,
37
+ shuffle: bool = False,
38
+ num_workers: int = None,
39
+ sampler: Optional[torchdata.Sampler] = None,
40
+ ):
41
+ dataset = self.data_module.dataset(stage)
42
+ cfg = self.cfg["loading"][stage]
43
+ num_workers = cfg["num_workers"] if num_workers is None else num_workers
44
+ loader = torchdata.DataLoader(
45
+ dataset,
46
+ batch_size=cfg["batch_size"],
47
+ num_workers=num_workers,
48
+ shuffle=shuffle or (stage == "train"),
49
+ pin_memory=True,
50
+ persistent_workers=num_workers > 0,
51
+ worker_init_fn=worker_init_fn,
52
+ collate_fn=collate,
53
+ sampler=sampler,
54
+ )
55
+ return loader
56
+
57
+ def train_dataloader(self, **kwargs):
58
+ return self.dataloader("train", **kwargs)
59
+
60
+ def val_dataloader(self, **kwargs):
61
+ return self.dataloader("val", **kwargs)
62
+
63
+ def test_dataloader(self, **kwargs):
64
+ return self.dataloader("test", **kwargs)
mapper/data/nuscenes/data_module.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ..base import DataBase
2
+ from .dataset import NuScenesDataset
3
+ from ..schema import NuScenesDataConfiguration
4
+
5
+ class NuScenesData(DataBase):
6
+ def __init__(self, cfg: NuScenesDataConfiguration):
7
+ self.cfg = cfg
8
+ self._dataset = {}
9
+
10
+ def prepare_data(self):
11
+ pass
12
+
13
+ def setup(self, stage):
14
+ if stage is None:
15
+ stage = 'fit'
16
+
17
+ split = {
18
+ 'fit': 'train',
19
+ 'val': 'val',
20
+ 'validate': 'val',
21
+ 'test': 'test'
22
+ }[stage]
23
+
24
+ self._dataset[split] = NuScenesDataset(
25
+ split=split,
26
+ cfg=self.cfg
27
+ )
28
+
29
+ def dataset(self, stage):
30
+ if self._dataset.get(stage) is None:
31
+ self.setup(stage)
32
+
33
+ return self._dataset[stage]
mapper/data/nuscenes/dataset.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import numpy as np
4
+ from pyquaternion import Quaternion
5
+ from nuscenes.nuscenes import NuScenes
6
+ from itertools import chain
7
+ from PIL import Image
8
+ from torchvision import transforms as T
9
+ import torchvision.transforms as tvf
10
+ from torchvision.transforms.functional import to_tensor
11
+
12
+ from .splits_roddick import create_splits_scenes_roddick
13
+ from ..image import pad_image, rectify_image, resize_image
14
+ from .utils import decode_binary_labels
15
+ from ..utils import decompose_rotmat
16
+ from ...utils.io import read_image
17
+ from ...utils.wrappers import Camera
18
+ from ..schema import NuScenesDataConfiguration
19
+
20
+
21
+ class NuScenesDataset(torch.utils.data.Dataset):
22
+ def __init__(self, cfg: NuScenesDataConfiguration, split="train"):
23
+
24
+ self.cfg = cfg
25
+ self.nusc = NuScenes(version=cfg.version, dataroot=str(cfg.data_dir))
26
+ self.map_data_root = cfg.map_dir
27
+ self.split = split
28
+
29
+ self.scenes = create_splits_scenes_roddick() # custom based on Roddick et al.
30
+
31
+ scene_split = {
32
+ 'v1.0-trainval': {'train': 'train', 'val': 'val', 'test': 'val'},
33
+ 'v1.0-mini': {'train': 'mini_train', 'val': 'mini_val'},
34
+ }[cfg.version][split]
35
+ self.scenes = self.scenes[scene_split]
36
+ self.sample = list(filter(lambda sample: self.nusc.get(
37
+ 'scene', sample['scene_token'])['name'] in self.scenes, self.nusc.sample))
38
+
39
+ self.tfs = self.get_augmentations() if split == "train" else T.Compose([])
40
+
41
+ data_tokens = []
42
+ for sample in self.sample:
43
+ data_token = sample['data']
44
+ data_token = [v for k,v in data_token.items() if k == "CAM_FRONT"]
45
+
46
+ data_tokens.append(data_token)
47
+
48
+ data_tokens = list(chain.from_iterable(data_tokens))
49
+ data = [self.nusc.get('sample_data', token) for token in data_tokens]
50
+
51
+ self.data = []
52
+ for d in data:
53
+ sample = self.nusc.get('sample', d['sample_token'])
54
+ scene = self.nusc.get('scene', sample['scene_token'])
55
+ location = self.nusc.get('log', scene['log_token'])['location']
56
+
57
+ file_name = d['filename']
58
+ ego_pose = self.nusc.get('ego_pose', d['ego_pose_token'])
59
+ calibrated_sensor = self.nusc.get(
60
+ "calibrated_sensor", d['calibrated_sensor_token'])
61
+
62
+ ego2global = np.eye(4).astype(np.float32)
63
+ ego2global[:3, :3] = Quaternion(ego_pose['rotation']).rotation_matrix
64
+ ego2global[:3, 3] = ego_pose['translation']
65
+
66
+ sensor2ego = np.eye(4).astype(np.float32)
67
+ sensor2ego[:3, :3] = Quaternion(
68
+ calibrated_sensor['rotation']).rotation_matrix
69
+ sensor2ego[:3, 3] = calibrated_sensor['translation']
70
+
71
+ sensor2global = ego2global @ sensor2ego
72
+
73
+ rotation = sensor2global[:3, :3]
74
+ roll, pitch, yaw = decompose_rotmat(rotation)
75
+
76
+ fx = calibrated_sensor['camera_intrinsic'][0][0]
77
+ fy = calibrated_sensor['camera_intrinsic'][1][1]
78
+ cx = calibrated_sensor['camera_intrinsic'][0][2]
79
+ cy = calibrated_sensor['camera_intrinsic'][1][2]
80
+ width = d['width']
81
+ height = d['height']
82
+
83
+ cam = Camera(torch.tensor(
84
+ [width, height, fx, fy, cx - 0.5, cy - 0.5])).float()
85
+ self.data.append({
86
+ 'filename': file_name,
87
+ 'yaw': yaw,
88
+ 'pitch': pitch,
89
+ 'roll': roll,
90
+ 'cam': cam,
91
+ 'sensor2global': sensor2global,
92
+ 'token': d['token'],
93
+ 'sample_token': d['sample_token'],
94
+ 'location': location
95
+ })
96
+
97
+ if self.cfg.percentage < 1.0 and split == "train":
98
+ self.data = self.data[:int(len(self.data) * self.cfg.percentage)]
99
+
100
+ def get_augmentations(self):
101
+
102
+ print(f"Augmentation!", "\n" * 10)
103
+ augmentations = [
104
+ tvf.ColorJitter(
105
+ brightness=self.cfg.augmentations.brightness,
106
+ contrast=self.cfg.augmentations.contrast,
107
+ saturation=self.cfg.augmentations.saturation,
108
+ hue=self.cfg.augmentations.hue,
109
+ )
110
+ ]
111
+
112
+ if self.cfg.augmentations.random_resized_crop:
113
+ augmentations.append(
114
+ tvf.RandomResizedCrop(scale=(0.8, 1.0))
115
+ ) # RandomResizedCrop
116
+
117
+ if self.cfg.augmentations.gaussian_noise.enabled:
118
+ augmentations.append(
119
+ tvf.GaussianNoise(
120
+ mean=self.cfg.augmentations.gaussian_noise.mean,
121
+ std=self.cfg.augmentations.gaussian_noise.std,
122
+ )
123
+ ) # Gaussian noise
124
+
125
+ if self.cfg.augmentations.brightness_contrast.enabled:
126
+ augmentations.append(
127
+ tvf.ColorJitter(
128
+ brightness=self.cfg.augmentations.brightness_contrast.brightness_factor,
129
+ contrast=self.cfg.augmentations.brightness_contrast.contrast_factor,
130
+ saturation=0, # Keep saturation at 0 for brightness and contrast adjustment
131
+ hue=0,
132
+ )
133
+ ) # Brightness and contrast adjustment
134
+
135
+ return tvf.Compose(augmentations)
136
+
137
+ def __len__(self):
138
+ return len(self.data)
139
+
140
+ def __getitem__(self, idx):
141
+ d = self.data[idx]
142
+
143
+ image = read_image(os.path.join(self.nusc.dataroot, d['filename']))
144
+ image = np.array(image)
145
+ cam = d['cam']
146
+ roll = d['roll']
147
+ pitch = d['pitch']
148
+ yaw = d['yaw']
149
+
150
+ with Image.open(self.map_data_root / f"{d['token']}.png") as semantic_image:
151
+ semantic_mask = to_tensor(semantic_image)
152
+
153
+ semantic_mask = decode_binary_labels(semantic_mask, self.cfg.num_classes + 1)
154
+ semantic_mask = torch.nn.functional.max_pool2d(semantic_mask.float(), (2, 2), stride=2) # 2 times downsample
155
+ semantic_mask = semantic_mask.permute(1, 2, 0)
156
+ semantic_mask = torch.flip(semantic_mask, [0])
157
+
158
+ visibility_mask = semantic_mask[..., -1]
159
+ semantic_mask = semantic_mask[..., :-1]
160
+
161
+ if self.cfg.class_mapping is not None:
162
+ semantic_mask = semantic_mask[..., self.cfg.class_mapping]
163
+
164
+ image = (
165
+ torch.from_numpy(np.ascontiguousarray(image))
166
+ .permute(2, 0, 1)
167
+ .float()
168
+ .div_(255)
169
+ )
170
+
171
+ if not self.cfg.gravity_align:
172
+ # Turn off gravity alignment
173
+ roll = 0.0
174
+ pitch = 0.0
175
+ image, valid = rectify_image(image, cam, roll, pitch)
176
+
177
+ else:
178
+ image, valid = rectify_image(
179
+ image, cam, roll, pitch if self.cfg.rectify_pitch else None
180
+ )
181
+ roll = 0.0
182
+ if self.cfg.rectify_pitch:
183
+ pitch = 0.0
184
+ if self.cfg.resize_image is not None:
185
+ image, _, cam, valid = resize_image(
186
+ image, self.cfg.resize_image, fn=max, camera=cam, valid=valid
187
+ )
188
+ if self.cfg.pad_to_square:
189
+ image, valid, cam = pad_image(image, self.cfg.resize_image, cam, valid)
190
+ image = self.tfs(image)
191
+
192
+ confidence_map = visibility_mask.clone().float()
193
+ confidence_map = (confidence_map - confidence_map.min()) / (confidence_map.max() - confidence_map.min())
194
+
195
+ return {
196
+ "image": image,
197
+ "roll_pitch_yaw": torch.tensor([roll, pitch, yaw]).float(),
198
+ "camera": cam,
199
+ "valid": valid,
200
+ "seg_masks": semantic_mask.float(),
201
+ "token": d['token'],
202
+ "sample_token": d['sample_token'],
203
+ 'location': d['location'],
204
+ 'flood_masks': visibility_mask.float(),
205
+ "confidence_map": confidence_map,
206
+ 'name': d['sample_token']
207
+ }
mapper/data/nuscenes/splits_roddick.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def create_splits_scenes_roddick():
2
+ train_roddick_scenes = [
3
+ "scene-0002", "scene-0003", "scene-0004", "scene-0005", "scene-0006",
4
+ "scene-0007", "scene-0008", "scene-0009", "scene-0012", "scene-0013",
5
+ "scene-0014", "scene-0015", "scene-0016", "scene-0017", "scene-0018",
6
+ "scene-0019", "scene-0021", "scene-0022", "scene-0023", "scene-0024",
7
+ "scene-0025", "scene-0026", "scene-0027", "scene-0028", "scene-0029",
8
+ "scene-0030", "scene-0031", "scene-0032", "scene-0033", "scene-0034",
9
+ "scene-0035", "scene-0036", "scene-0039", "scene-0042", "scene-0043",
10
+ "scene-0044", "scene-0045", "scene-0046", "scene-0047", "scene-0048",
11
+ "scene-0049", "scene-0050", "scene-0051", "scene-0052", "scene-0055",
12
+ "scene-0056", "scene-0057", "scene-0058", "scene-0059", "scene-0060",
13
+ "scene-0061", "scene-0062", "scene-0063", "scene-0064", "scene-0065",
14
+ "scene-0066", "scene-0067", "scene-0068", "scene-0069", "scene-0070",
15
+ "scene-0071", "scene-0072", "scene-0073", "scene-0074", "scene-0075",
16
+ "scene-0076", "scene-0092", "scene-0093", "scene-0094", "scene-0095",
17
+ "scene-0096", "scene-0097", "scene-0098", "scene-0099", "scene-0100",
18
+ "scene-0101", "scene-0102", "scene-0103", "scene-0104", "scene-0105",
19
+ "scene-0106", "scene-0107", "scene-0108", "scene-0109", "scene-0110",
20
+ "scene-0120", "scene-0123", "scene-0124", "scene-0125", "scene-0126",
21
+ "scene-0127", "scene-0128", "scene-0129", "scene-0130", "scene-0131",
22
+ "scene-0132", "scene-0133", "scene-0134", "scene-0135", "scene-0138",
23
+ "scene-0149", "scene-0150", "scene-0151", "scene-0154", "scene-0155",
24
+ "scene-0157", "scene-0158", "scene-0159", "scene-0161", "scene-0162",
25
+ "scene-0163", "scene-0164", "scene-0165", "scene-0166", "scene-0167",
26
+ "scene-0168", "scene-0170", "scene-0171", "scene-0172", "scene-0173",
27
+ "scene-0174", "scene-0175", "scene-0176", "scene-0177", "scene-0178",
28
+ "scene-0179", "scene-0180", "scene-0181", "scene-0182", "scene-0183",
29
+ "scene-0185", "scene-0187", "scene-0188", "scene-0190", "scene-0191",
30
+ "scene-0192", "scene-0193", "scene-0194", "scene-0195", "scene-0196",
31
+ "scene-0199", "scene-0200", "scene-0202", "scene-0203", "scene-0204",
32
+ "scene-0206", "scene-0207", "scene-0208", "scene-0209", "scene-0210",
33
+ "scene-0211", "scene-0212", "scene-0213", "scene-0214", "scene-0218",
34
+ "scene-0219", "scene-0220", "scene-0221", "scene-0222", "scene-0224",
35
+ "scene-0225", "scene-0226", "scene-0227", "scene-0228", "scene-0229",
36
+ "scene-0230", "scene-0231", "scene-0232", "scene-0233", "scene-0234",
37
+ "scene-0235", "scene-0236", "scene-0237", "scene-0238", "scene-0239",
38
+ "scene-0240", "scene-0241", "scene-0242", "scene-0243", "scene-0244",
39
+ "scene-0245", "scene-0246", "scene-0247", "scene-0248", "scene-0249",
40
+ "scene-0250", "scene-0251", "scene-0252", "scene-0253", "scene-0254",
41
+ "scene-0255", "scene-0256", "scene-0257", "scene-0258", "scene-0259",
42
+ "scene-0260", "scene-0261", "scene-0262", "scene-0263", "scene-0264",
43
+ "scene-0268", "scene-0270", "scene-0271", "scene-0272", "scene-0273",
44
+ "scene-0274", "scene-0275", "scene-0276", "scene-0277", "scene-0278",
45
+ "scene-0283", "scene-0284", "scene-0285", "scene-0286", "scene-0287",
46
+ "scene-0288", "scene-0289", "scene-0290", "scene-0291", "scene-0292",
47
+ "scene-0293", "scene-0294", "scene-0295", "scene-0296", "scene-0297",
48
+ "scene-0298", "scene-0299", "scene-0300", "scene-0301", "scene-0302",
49
+ "scene-0303", "scene-0304", "scene-0305", "scene-0306", "scene-0315",
50
+ "scene-0316", "scene-0317", "scene-0318", "scene-0321", "scene-0323",
51
+ "scene-0324", "scene-0328", "scene-0329", "scene-0330", "scene-0331",
52
+ "scene-0332", "scene-0344", "scene-0345", "scene-0346", "scene-0349",
53
+ "scene-0350", "scene-0351", "scene-0352", "scene-0353", "scene-0354",
54
+ "scene-0355", "scene-0356", "scene-0357", "scene-0358", "scene-0359",
55
+ "scene-0360", "scene-0361", "scene-0362", "scene-0363", "scene-0364",
56
+ "scene-0365", "scene-0367", "scene-0370", "scene-0371", "scene-0372",
57
+ "scene-0373", "scene-0374", "scene-0375", "scene-0376", "scene-0377",
58
+ "scene-0379", "scene-0380", "scene-0381", "scene-0382", "scene-0383",
59
+ "scene-0384", "scene-0385", "scene-0386", "scene-0388", "scene-0399",
60
+ "scene-0400", "scene-0401", "scene-0402", "scene-0403", "scene-0405",
61
+ "scene-0406", "scene-0407", "scene-0408", "scene-0420", "scene-0421",
62
+ "scene-0422", "scene-0423", "scene-0424", "scene-0425", "scene-0426",
63
+ "scene-0427", "scene-0428", "scene-0429", "scene-0430", "scene-0431",
64
+ "scene-0432", "scene-0433", "scene-0434", "scene-0435", "scene-0436",
65
+ "scene-0437", "scene-0438", "scene-0439", "scene-0440", "scene-0441",
66
+ "scene-0442", "scene-0443", "scene-0444", "scene-0445", "scene-0446",
67
+ "scene-0447", "scene-0448", "scene-0449", "scene-0450", "scene-0451",
68
+ "scene-0452", "scene-0453", "scene-0454", "scene-0455", "scene-0456",
69
+ "scene-0457", "scene-0458", "scene-0459", "scene-0461", "scene-0462",
70
+ "scene-0463", "scene-0464", "scene-0465", "scene-0467", "scene-0468",
71
+ "scene-0469", "scene-0471", "scene-0472", "scene-0474", "scene-0475",
72
+ "scene-0476", "scene-0477", "scene-0478", "scene-0479", "scene-0480",
73
+ "scene-0499", "scene-0500", "scene-0501", "scene-0502", "scene-0504",
74
+ "scene-0505", "scene-0506", "scene-0507", "scene-0508", "scene-0509",
75
+ "scene-0510", "scene-0511", "scene-0512", "scene-0513", "scene-0514",
76
+ "scene-0515", "scene-0517", "scene-0518", "scene-0519", "scene-0520",
77
+ "scene-0521", "scene-0522", "scene-0523", "scene-0524", "scene-0552",
78
+ "scene-0553", "scene-0554", "scene-0555", "scene-0559", "scene-0560",
79
+ "scene-0561", "scene-0562", "scene-0563", "scene-0564", "scene-0565",
80
+ "scene-0584", "scene-0585", "scene-0586", "scene-0587", "scene-0588",
81
+ "scene-0589", "scene-0590", "scene-0591", "scene-0592", "scene-0593",
82
+ "scene-0594", "scene-0595", "scene-0596", "scene-0597", "scene-0598",
83
+ "scene-0599", "scene-0600", "scene-0625", "scene-0626", "scene-0627",
84
+ "scene-0629", "scene-0630", "scene-0632", "scene-0633", "scene-0634",
85
+ "scene-0635", "scene-0636", "scene-0637", "scene-0638", "scene-0639",
86
+ "scene-0640", "scene-0652", "scene-0653", "scene-0654", "scene-0655",
87
+ "scene-0656", "scene-0657", "scene-0658", "scene-0659", "scene-0660",
88
+ "scene-0661", "scene-0662", "scene-0663", "scene-0664", "scene-0665",
89
+ "scene-0666", "scene-0667", "scene-0668", "scene-0669", "scene-0670",
90
+ "scene-0671", "scene-0672", "scene-0673", "scene-0674", "scene-0675",
91
+ "scene-0676", "scene-0677", "scene-0678", "scene-0679", "scene-0681",
92
+ "scene-0683", "scene-0684", "scene-0685", "scene-0686", "scene-0687",
93
+ "scene-0688", "scene-0689", "scene-0695", "scene-0696", "scene-0697",
94
+ "scene-0698", "scene-0700", "scene-0701", "scene-0703", "scene-0704",
95
+ "scene-0705", "scene-0706", "scene-0707", "scene-0708", "scene-0709",
96
+ "scene-0710", "scene-0711", "scene-0712", "scene-0713", "scene-0714",
97
+ "scene-0715", "scene-0716", "scene-0717", "scene-0718", "scene-0719",
98
+ "scene-0726", "scene-0727", "scene-0728", "scene-0730", "scene-0731",
99
+ "scene-0733", "scene-0734", "scene-0735", "scene-0736", "scene-0737",
100
+ "scene-0738", "scene-0780", "scene-0781", "scene-0782", "scene-0783",
101
+ "scene-0784", "scene-0786", "scene-0787", "scene-0789", "scene-0790",
102
+ "scene-0791", "scene-0792", "scene-0802", "scene-0806", "scene-0808",
103
+ "scene-0809", "scene-0810", "scene-0811", "scene-0812", "scene-0813",
104
+ "scene-0815", "scene-0816", "scene-0817", "scene-0819", "scene-0820",
105
+ "scene-0821", "scene-0822", "scene-0847", "scene-0848", "scene-0849",
106
+ "scene-0850", "scene-0851", "scene-0852", "scene-0853", "scene-0854",
107
+ "scene-0855", "scene-0856", "scene-0858", "scene-0860", "scene-0861",
108
+ "scene-0862", "scene-0863", "scene-0864", "scene-0865", "scene-0866",
109
+ "scene-0868", "scene-0869", "scene-0870", "scene-0871", "scene-0872",
110
+ "scene-0873", "scene-0875", "scene-0876", "scene-0877", "scene-0878",
111
+ "scene-0880", "scene-0882", "scene-0883", "scene-0884", "scene-0885",
112
+ "scene-0886", "scene-0887", "scene-0888", "scene-0889", "scene-0890",
113
+ "scene-0891", "scene-0892", "scene-0893", "scene-0894", "scene-0895",
114
+ "scene-0896", "scene-0897", "scene-0898", "scene-0899", "scene-0900",
115
+ "scene-0901", "scene-0902", "scene-0903", "scene-0904", "scene-0905",
116
+ "scene-0906", "scene-0907", "scene-0908", "scene-0909", "scene-0916",
117
+ "scene-0917", "scene-0921", "scene-0922", "scene-0923", "scene-0925",
118
+ "scene-0926", "scene-0927", "scene-0928", "scene-0929", "scene-0930",
119
+ "scene-0931", "scene-0945", "scene-0947", "scene-0949", "scene-0952",
120
+ "scene-0953", "scene-0955", "scene-0956", "scene-0957", "scene-0958",
121
+ "scene-0959", "scene-0960", "scene-0961", "scene-0966", "scene-0967",
122
+ "scene-0968", "scene-0969", "scene-0971", "scene-0972", "scene-0975",
123
+ "scene-0976", "scene-0977", "scene-0978", "scene-0979", "scene-0980",
124
+ "scene-0981", "scene-0982", "scene-0983", "scene-0984", "scene-0988",
125
+ "scene-0989", "scene-0990", "scene-0991", "scene-0992", "scene-0994",
126
+ "scene-0995", "scene-0996", "scene-0997", "scene-0998", "scene-0999",
127
+ "scene-1000", "scene-1001", "scene-1004", "scene-1005", "scene-1006",
128
+ "scene-1007", "scene-1008", "scene-1009", "scene-1010", "scene-1011",
129
+ "scene-1012", "scene-1013", "scene-1014", "scene-1015", "scene-1019",
130
+ "scene-1020", "scene-1021", "scene-1022", "scene-1023", "scene-1024",
131
+ "scene-1025", "scene-1044", "scene-1045", "scene-1046", "scene-1047",
132
+ "scene-1048", "scene-1049", "scene-1050", "scene-1051", "scene-1052",
133
+ "scene-1053", "scene-1054", "scene-1064", "scene-1065", "scene-1066",
134
+ "scene-1067", "scene-1068", "scene-1069", "scene-1070", "scene-1071",
135
+ "scene-1072", "scene-1073", "scene-1074", "scene-1075", "scene-1076",
136
+ "scene-1077", "scene-1078", "scene-1079", "scene-1080", "scene-1081",
137
+ "scene-1082", "scene-1083", "scene-1084", "scene-1085", "scene-1086",
138
+ "scene-1087", "scene-1088", "scene-1089", "scene-1090", "scene-1091",
139
+ "scene-1092", "scene-1093", "scene-1094", "scene-1095", "scene-1096",
140
+ "scene-1097", "scene-1098", "scene-1099", "scene-1100", "scene-1101",
141
+ "scene-1102", "scene-1104", "scene-1105", "scene-1106", "scene-1107",
142
+ "scene-1108", "scene-1109", "scene-1110"]
143
+
144
+ val_roddick_scenes = [
145
+ "scene-0001", "scene-0010", "scene-0011", "scene-0020", "scene-0038",
146
+ "scene-0041", "scene-0053", "scene-0054", "scene-0121", "scene-0122",
147
+ "scene-0139", "scene-0152", "scene-0160", "scene-0184", "scene-0269",
148
+ "scene-0347", "scene-0348", "scene-0366", "scene-0368", "scene-0369",
149
+ "scene-0378", "scene-0389", "scene-0390", "scene-0391", "scene-0392",
150
+ "scene-0393", "scene-0394", "scene-0395", "scene-0396", "scene-0397",
151
+ "scene-0398", "scene-0411", "scene-0412", "scene-0413", "scene-0414",
152
+ "scene-0415", "scene-0416", "scene-0417", "scene-0418", "scene-0419",
153
+ "scene-0525", "scene-0526", "scene-0527", "scene-0528", "scene-0529",
154
+ "scene-0530", "scene-0531", "scene-0532", "scene-0533", "scene-0534",
155
+ "scene-0535", "scene-0536", "scene-0537", "scene-0538", "scene-0539",
156
+ "scene-0541", "scene-0542", "scene-0543", "scene-0544", "scene-0545",
157
+ "scene-0546", "scene-0556", "scene-0557", "scene-0558", "scene-0566",
158
+ "scene-0568", "scene-0570", "scene-0571", "scene-0572", "scene-0573",
159
+ "scene-0574", "scene-0575", "scene-0576", "scene-0577", "scene-0578",
160
+ "scene-0580", "scene-0582", "scene-0583", "scene-0642", "scene-0643",
161
+ "scene-0644", "scene-0645", "scene-0646", "scene-0647", "scene-0648",
162
+ "scene-0649", "scene-0650", "scene-0651", "scene-0739", "scene-0740",
163
+ "scene-0741", "scene-0744", "scene-0746", "scene-0747", "scene-0749",
164
+ "scene-0750", "scene-0751", "scene-0752", "scene-0757", "scene-0758",
165
+ "scene-0759", "scene-0760", "scene-0761", "scene-0762", "scene-0763",
166
+ "scene-0764", "scene-0765", "scene-0767", "scene-0768", "scene-0769",
167
+ "scene-0770", "scene-0771", "scene-0775", "scene-0777", "scene-0778",
168
+ "scene-0794", "scene-0795", "scene-0796", "scene-0797", "scene-0798",
169
+ "scene-0799", "scene-0800", "scene-0803", "scene-0804", "scene-0911",
170
+ "scene-0912", "scene-0913", "scene-0914", "scene-0915", "scene-0919",
171
+ "scene-0920", "scene-0924", "scene-0962", "scene-0963", "scene-1002",
172
+ "scene-1003", "scene-1016", "scene-1017", "scene-1018", "scene-1055",
173
+ "scene-1056", "scene-1057", "scene-1058", "scene-1059", "scene-1060",
174
+ "scene-1061", "scene-1062", "scene-1063"]
175
+
176
+
177
+ calibration_roddick_scenes = [
178
+ "scene-0852", "scene-0429", "scene-0956", "scene-0194", "scene-0811",
179
+ "scene-1110", "scene-1107", "scene-0294", "scene-0900", "scene-0596",
180
+ "scene-0296", "scene-0885", "scene-0866", "scene-0105", "scene-0782",
181
+ "scene-0191", "scene-0876", "scene-0133", "scene-0231", "scene-0847",
182
+ "scene-0363", "scene-0026", "scene-0791", "scene-0909", "scene-0002",
183
+ "scene-0283", "scene-0007", "scene-0251", "scene-1100", "scene-0668",
184
+ "scene-0584", "scene-0287", "scene-0260", "scene-0171", "scene-0789",
185
+ "scene-0108", "scene-0190", "scene-0206", "scene-0635", "scene-0815",
186
+ "scene-0058", "scene-0710", "scene-0302", "scene-0639", "scene-0166",
187
+ "scene-0094", "scene-0735", "scene-0321", "scene-1091", "scene-0344"
188
+ ]
189
+
190
+
191
+ scenes_dict = {
192
+ "train": train_roddick_scenes,
193
+ "val": val_roddick_scenes,
194
+ "calibration": calibration_roddick_scenes
195
+ }
196
+
197
+ return scenes_dict
mapper/data/nuscenes/utils.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ from shapely import geometry, affinity
4
+ from pyquaternion import Quaternion
5
+ import cv2
6
+
7
+ from nuscenes.eval.detection.utils import category_to_detection_name
8
+ from nuscenes.eval.detection.constants import DETECTION_NAMES
9
+ from nuscenes.utils.data_classes import LidarPointCloud
10
+
11
+ from nuscenes.map_expansion.map_api import NuScenesMap
12
+ from shapely.strtree import STRtree
13
+ from collections import OrderedDict
14
+ import torch
15
+
16
+ def decode_binary_labels(labels, nclass):
17
+ bits = torch.pow(2, torch.arange(nclass))
18
+ return (labels & bits.view(-1, 1, 1)) > 0
19
+
20
+ def transform_polygon(polygon, affine):
21
+ """
22
+ Transform a 2D polygon
23
+ """
24
+ a, b, tx, c, d, ty = affine.flatten()[:6]
25
+ return affinity.affine_transform(polygon, [a, b, c, d, tx, ty])
26
+
27
+
28
+ def render_polygon(mask, polygon, extents, resolution, value=1):
29
+ if len(polygon) == 0:
30
+ return
31
+ polygon = (polygon - np.array(extents[:2])) / resolution
32
+ polygon = np.ascontiguousarray(polygon).round().astype(np.int32)
33
+ cv2.fillConvexPoly(mask, polygon, value)
34
+
35
+ def transform(matrix, vectors):
36
+ vectors = np.dot(matrix[:-1, :-1], vectors.T)
37
+ vectors = vectors.T + matrix[:-1, -1]
38
+ return vectors
39
+
40
+ CAMERA_NAMES = ['CAM_FRONT', 'CAM_FRONT_LEFT', 'CAM_FRONT_RIGHT',
41
+ 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT', 'CAM_BACK']
42
+
43
+ NUSCENES_CLASS_NAMES = [
44
+ 'drivable_area', 'ped_crossing', 'walkway', 'carpark', 'car', 'truck',
45
+ 'bus', 'trailer', 'construction_vehicle', 'pedestrian', 'motorcycle',
46
+ 'bicycle', 'traffic_cone', 'barrier'
47
+ ]
48
+
49
+ STATIC_CLASSES = ['drivable_area', 'ped_crossing', 'walkway', 'carpark_area']
50
+
51
+ LOCATIONS = ['boston-seaport', 'singapore-onenorth', 'singapore-queenstown',
52
+ 'singapore-hollandvillage']
53
+
54
+ def load_map_data(dataroot, location):
55
+
56
+ # Load the NuScenes map object
57
+ nusc_map = NuScenesMap(dataroot, location)
58
+
59
+ map_data = OrderedDict()
60
+ for layer in STATIC_CLASSES:
61
+
62
+ # Retrieve all data associated with the current layer
63
+ records = getattr(nusc_map, layer)
64
+ polygons = list()
65
+
66
+ # Drivable area records can contain multiple polygons
67
+ if layer == 'drivable_area':
68
+ for record in records:
69
+
70
+ # Convert each entry in the record into a shapely object
71
+ for token in record['polygon_tokens']:
72
+ poly = nusc_map.extract_polygon(token)
73
+ if poly.is_valid:
74
+ polygons.append(poly)
75
+ else:
76
+ for record in records:
77
+
78
+ # Convert each entry in the record into a shapely object
79
+ poly = nusc_map.extract_polygon(record['polygon_token'])
80
+ if poly.is_valid:
81
+ polygons.append(poly)
82
+
83
+
84
+ # Store as an R-Tree for fast intersection queries
85
+ map_data[layer] = STRtree(polygons)
86
+
87
+ return map_data
88
+
89
+ def iterate_samples(nuscenes, start_token):
90
+ sample_token = start_token
91
+ while sample_token != '':
92
+ sample = nuscenes.get('sample', sample_token)
93
+ yield sample
94
+ sample_token = sample['next']
95
+
96
+
97
+ def get_map_masks(nuscenes, map_data, sample_data, extents, resolution):
98
+
99
+ # Render each layer sequentially
100
+ layers = [get_layer_mask(nuscenes, polys, sample_data, extents,
101
+ resolution) for layer, polys in map_data.items()]
102
+
103
+ return np.stack(layers, axis=0)
104
+
105
+
106
+ def get_layer_mask(nuscenes, polygons, sample_data, extents, resolution):
107
+
108
+ # Get the 2D affine transform from bev coords to map coords
109
+ tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]]
110
+ inv_tfm = np.linalg.inv(tfm)
111
+
112
+ # Create a patch representing the birds-eye-view region in map coordinates
113
+ map_patch = geometry.box(*extents)
114
+ map_patch = transform_polygon(map_patch, tfm)
115
+
116
+ # Initialise the map mask
117
+ x1, z1, x2, z2 = extents
118
+ mask = np.zeros((int((z2 - z1) / resolution), int((x2 - x1) / resolution)),
119
+ dtype=np.uint8)
120
+
121
+ # Find all polygons which intersect with the area of interest
122
+ for polygon in polygons.query(map_patch):
123
+
124
+ polygon = polygon.intersection(map_patch)
125
+
126
+ # Transform into map coordinates
127
+ polygon = transform_polygon(polygon, inv_tfm)
128
+
129
+ # Render the polygon to the mask
130
+ render_shapely_polygon(mask, polygon, extents, resolution)
131
+
132
+ return mask
133
+
134
+
135
+
136
+
137
+ def get_object_masks(nuscenes, sample_data, extents, resolution):
138
+
139
+ # Initialize object masks
140
+ nclass = len(DETECTION_NAMES) + 1
141
+ grid_width = int((extents[2] - extents[0]) / resolution)
142
+ grid_height = int((extents[3] - extents[1]) / resolution)
143
+ masks = np.zeros((nclass, grid_height, grid_width), dtype=np.uint8)
144
+
145
+ # Get the 2D affine transform from bev coords to map coords
146
+ tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]]
147
+ inv_tfm = np.linalg.inv(tfm)
148
+
149
+ for box in nuscenes.get_boxes(sample_data['token']):
150
+
151
+ # Get the index of the class
152
+ det_name = category_to_detection_name(box.name)
153
+ if det_name not in DETECTION_NAMES:
154
+ class_id = -1
155
+ else:
156
+ class_id = DETECTION_NAMES.index(det_name)
157
+
158
+ # Get bounding box coordinates in the grid coordinate frame
159
+ bbox = box.bottom_corners()[:2]
160
+ local_bbox = np.dot(inv_tfm[:2, :2], bbox).T + inv_tfm[:2, 2]
161
+
162
+ # Render the rotated bounding box to the mask
163
+ render_polygon(masks[class_id], local_bbox, extents, resolution)
164
+
165
+ return masks.astype(np.bool)
166
+
167
+
168
+ def get_sensor_transform(nuscenes, sample_data):
169
+
170
+ # Load sensor transform data
171
+ sensor = nuscenes.get(
172
+ 'calibrated_sensor', sample_data['calibrated_sensor_token'])
173
+ sensor_tfm = make_transform_matrix(sensor)
174
+
175
+ # Load ego pose data
176
+ pose = nuscenes.get('ego_pose', sample_data['ego_pose_token'])
177
+ pose_tfm = make_transform_matrix(pose)
178
+
179
+ return np.dot(pose_tfm, sensor_tfm)
180
+
181
+
182
+ def load_point_cloud(nuscenes, sample_data):
183
+
184
+ # Load point cloud
185
+ lidar_path = os.path.join(nuscenes.dataroot, sample_data['filename'])
186
+ pcl = LidarPointCloud.from_file(lidar_path)
187
+ return pcl.points[:3, :].T
188
+
189
+
190
+ def make_transform_matrix(record):
191
+ """
192
+ Create a 4x4 transform matrix from a calibrated_sensor or ego_pose record
193
+ """
194
+ transform = np.eye(4)
195
+ transform[:3, :3] = Quaternion(record['rotation']).rotation_matrix
196
+ transform[:3, 3] = np.array(record['translation'])
197
+ return transform
198
+
199
+
200
+ def render_shapely_polygon(mask, polygon, extents, resolution):
201
+
202
+ if polygon.geom_type == 'Polygon':
203
+
204
+ # Render exteriors
205
+ render_polygon(mask, polygon.exterior.coords, extents, resolution, 1)
206
+
207
+ # Render interiors
208
+ for hole in polygon.interiors:
209
+ render_polygon(mask, hole.coords, extents, resolution, 0)
210
+
211
+ # Handle the case of compound shapes
212
+ else:
213
+ for poly in polygon:
214
+ render_shapely_polygon(mask, poly, extents, resolution)
mapper/data/schema.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Optional, Any, Dict
3
+ from pathlib import Path
4
+
5
+ @dataclass
6
+ class AugmentationConfiguration:
7
+ gaussian_noise: dict
8
+ brightness_contrast: dict
9
+
10
+ enabled: bool = False
11
+ brightness: float = 0.5
12
+ contrast: float = 0.5
13
+ saturation: float = 0.5
14
+ hue: float = 0.5
15
+ random_resized_crop: Any = False
16
+ random_flip: float = 0.5
17
+
18
+
19
+ @dataclass(kw_only=True)
20
+ class DataConfiguration:
21
+ augmentations: AugmentationConfiguration
22
+
23
+ loading: Dict[str, Dict[str, Any]]
24
+
25
+ target_focal_length: Optional[int] = None
26
+ reduce_fov: Optional[bool] = None
27
+ resize_image: Optional[Any] = None
28
+ pad_to_square: Optional[bool] = None
29
+ pad_to_multiple: Optional[int] = None
30
+ gravity_align: Optional[bool] = None
31
+ rectify_pitch: Optional[bool] = True
32
+ num_classes: int
33
+
34
+ name: str
35
+ seed: Optional[int] = 0
36
+ random: Optional[bool] = True
37
+ num_threads: Optional[int] = None
38
+
39
+ @dataclass(kw_only=True)
40
+ class MIADataConfiguration(DataConfiguration):
41
+
42
+ scenes: list[str]
43
+ split: Any
44
+ data_dir: Path
45
+ pixel_per_meter: int
46
+ crop_size_meters: int
47
+
48
+ name: str = "mapillary"
49
+ filter_for: Optional[str] = None
50
+ filter_by_ground_angle: Optional[float] = None
51
+ min_num_points: int = 0
52
+
53
+ @dataclass(kw_only=True)
54
+ class KITTIDataConfiguration(DataConfiguration):
55
+ seam_root_dir: Path
56
+ dataset_root_dir: Path
57
+ bev_percentage: float
58
+
59
+ pixel_per_meter: int
60
+ crop_size_meters: int
61
+
62
+ class_mapping: Optional[Any] = None
63
+ percentage: float = 1.0
64
+
65
+ @dataclass(kw_only=True)
66
+ class NuScenesDataConfiguration(DataConfiguration):
67
+ data_dir: Path
68
+ map_dir: Path
69
+ pixel_per_meter: int
70
+ crop_size_meters: int
71
+
72
+ percentage: float = 1.0
73
+ class_mapping: Optional[Any] = None
74
+ version: str = "v1.0-trainval"
75
+
mapper/data/sequential.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+
3
+ import numpy as np
4
+ import torch
5
+
6
+
7
+ def chunk_sequence(
8
+ data,
9
+ indices,
10
+ *,
11
+ names=None,
12
+ max_length=100,
13
+ min_length=1,
14
+ max_delay_s=None,
15
+ max_inter_dist=None,
16
+ max_total_dist=None,
17
+ ):
18
+ sort_array = data.get("capture_time", data.get("index"))
19
+ if sort_array is None:
20
+ sort_array = indices if names is None else names
21
+ indices = sorted(indices, key=lambda i: sort_array[i].tolist())
22
+ centers = torch.stack([data["t_c2w"][i][:2] for i in indices]).numpy()
23
+ dists = np.linalg.norm(np.diff(centers, axis=0), axis=-1)
24
+ if "capture_time" in data:
25
+ times = torch.stack([data["capture_time"][i] for i in indices])
26
+ times = times.double() / 1e3 # ms to s
27
+ delays = np.diff(times, axis=0)
28
+ else:
29
+ delays = np.zeros_like(dists)
30
+ chunks = [[indices[0]]]
31
+ dist_total = 0
32
+ for dist, delay, idx in zip(dists, delays, indices[1:]):
33
+ dist_total += dist
34
+ if (
35
+ (max_inter_dist is not None and dist > max_inter_dist)
36
+ or (max_total_dist is not None and dist_total > max_total_dist)
37
+ or (max_delay_s is not None and delay > max_delay_s)
38
+ or len(chunks[-1]) >= max_length
39
+ ):
40
+ chunks.append([])
41
+ dist_total = 0
42
+ chunks[-1].append(idx)
43
+ chunks = list(filter(lambda c: len(c) >= min_length, chunks))
44
+ chunks = sorted(chunks, key=len, reverse=True)
45
+ return chunks
mapper/data/torch.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+
3
+ import collections
4
+ import os
5
+
6
+ import torch
7
+ from torch.utils.data import get_worker_info
8
+ from torch.utils.data._utils.collate import (
9
+ default_collate_err_msg_format,
10
+ np_str_obj_array_pattern,
11
+ )
12
+ from lightning_fabric.utilities.seed import pl_worker_init_function
13
+
14
+ def collate(batch):
15
+ """Difference with PyTorch default_collate: it can stack other tensor-like objects.
16
+ Adapted from PixLoc, Paul-Edouard Sarlin, ETH Zurich
17
+ https://github.com/cvg/pixloc
18
+ Released under the Apache License 2.0
19
+ """
20
+ if not isinstance(batch, list): # no batching
21
+ return batch
22
+
23
+ # Filter None Elements
24
+ batch = [elem for elem in batch if elem is not None]
25
+ elem = batch[0]
26
+ elem_type = type(elem)
27
+ if isinstance(elem, torch.Tensor):
28
+ out = None
29
+ if torch.utils.data.get_worker_info() is not None:
30
+ # If we're in a background process, concatenate directly into a
31
+ # shared memory tensor to avoid an extra copy
32
+ numel = sum(x.numel() for x in batch)
33
+ storage = elem.storage()._new_shared(numel, device=elem.device)
34
+ out = elem.new(storage).resize_(len(batch), *list(elem.size()))
35
+ return torch.stack(batch, 0, out=out)
36
+ elif (
37
+ elem_type.__module__ == "numpy"
38
+ and elem_type.__name__ != "str_"
39
+ and elem_type.__name__ != "string_"
40
+ ):
41
+ if elem_type.__name__ == "ndarray" or elem_type.__name__ == "memmap":
42
+ # array of string classes and object
43
+ if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
44
+ raise TypeError(default_collate_err_msg_format.format(elem.dtype))
45
+
46
+ return collate([torch.as_tensor(b) for b in batch])
47
+ elif elem.shape == (): # scalars
48
+ return torch.as_tensor(batch)
49
+ elif isinstance(elem, float):
50
+ return torch.tensor(batch, dtype=torch.float64)
51
+ elif isinstance(elem, int):
52
+ return torch.tensor(batch)
53
+ elif isinstance(elem, (str, bytes)):
54
+ return batch
55
+ elif isinstance(elem, collections.abc.Mapping):
56
+ return {key: collate([d[key] for d in batch]) for key in elem}
57
+ elif isinstance(elem, tuple) and hasattr(elem, "_fields"): # namedtuple
58
+ return elem_type(*(collate(samples) for samples in zip(*batch)))
59
+ elif isinstance(elem, collections.abc.Sequence):
60
+ # check to make sure that the elements in batch have consistent size
61
+ it = iter(batch)
62
+ elem_size = len(next(it))
63
+ if not all(len(elem) == elem_size for elem in it):
64
+ raise RuntimeError("each element in list of batch should be of equal size")
65
+ transposed = zip(*batch)
66
+ return [collate(samples) for samples in transposed]
67
+ else:
68
+ # try to stack anyway in case the object implements stacking.
69
+ try:
70
+ return torch.stack(batch, 0)
71
+ except TypeError as e:
72
+ if "expected Tensor as element" in str(e):
73
+ return batch
74
+ else:
75
+ raise e
76
+
77
+
78
+ def set_num_threads(nt):
79
+ """Force numpy and other libraries to use a limited number of threads."""
80
+ try:
81
+ import mkl
82
+ except ImportError:
83
+ pass
84
+ else:
85
+ mkl.set_num_threads(nt)
86
+ torch.set_num_threads(1)
87
+ os.environ["IPC_ENABLE"] = "1"
88
+ for o in [
89
+ "OPENBLAS_NUM_THREADS",
90
+ "NUMEXPR_NUM_THREADS",
91
+ "OMP_NUM_THREADS",
92
+ "MKL_NUM_THREADS",
93
+ ]:
94
+ os.environ[o] = str(nt)
95
+
96
+
97
+ def worker_init_fn(i):
98
+ info = get_worker_info()
99
+ pl_worker_init_function(info.id)
100
+ num_threads = info.dataset.cfg.get("num_threads")
101
+ if num_threads is not None:
102
+ set_num_threads(num_threads)
mapper/data/utils.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+
3
+ import numpy as np
4
+ from scipy.spatial.transform import Rotation
5
+
6
+
7
+ def crop_map(raster, xy, size, seed=None):
8
+ h, w = raster.shape[-2:]
9
+ state = np.random.RandomState(seed)
10
+ top = state.randint(0, h - size + 1)
11
+ left = state.randint(0, w - size + 1)
12
+ raster = raster[..., top : top + size, left : left + size]
13
+ xy -= np.array([left, top])
14
+ return raster, xy
15
+
16
+
17
+ def decompose_rotmat(R_c2w):
18
+ R_cv2xyz = Rotation.from_euler("X", -90, degrees=True)
19
+ rot_w2c = R_cv2xyz * Rotation.from_matrix(R_c2w).inv()
20
+ roll, pitch, yaw = rot_w2c.as_euler("YXZ", degrees=True)
21
+ return roll, pitch, yaw
mapper/mapper.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import torch
3
+ import hydra
4
+ import pytorch_lightning as pl
5
+ from typing import Any
6
+
7
+ from hydra.core.config_store import ConfigStore
8
+ from omegaconf import OmegaConf
9
+ from pytorch_lightning.loggers import WandbLogger
10
+ from pytorch_lightning.callbacks import ModelCheckpoint
11
+
12
+ from pathlib import Path
13
+ from dataclasses import dataclass
14
+
15
+ from .module import GenericModule
16
+ from .data.module import GenericDataModule
17
+ from .callbacks import EvalSaveCallback, ImageLoggerCallback
18
+ from .models.schema import ModelConfiguration, DINOConfiguration, ResNetConfiguration
19
+ from .data.schema import MIADataConfiguration, KITTIDataConfiguration, NuScenesDataConfiguration
20
+
21
+
22
+ @dataclass
23
+ class ExperimentConfiguration:
24
+ name: str
25
+
26
+ @dataclass
27
+ class Configuration:
28
+ model: ModelConfiguration
29
+ experiment: ExperimentConfiguration
30
+ data: Any
31
+ training: Any
32
+
33
+
34
+ cs = ConfigStore.instance()
35
+
36
+ # Store root configuration schema
37
+ cs.store(name="pretrain", node=Configuration)
38
+ cs.store(name="mapper_nuscenes", node=Configuration)
39
+ cs.store(name="mapper_kitti", node=Configuration)
40
+
41
+ # Store data configuration schema
42
+ cs.store(group="schema/data", name="mia",
43
+ node=MIADataConfiguration, package="data")
44
+ cs.store(group="schema/data", name="kitti", node=KITTIDataConfiguration, package="data")
45
+ cs.store(group="schema/data", name="nuscenes", node=NuScenesDataConfiguration, package="data")
46
+
47
+ cs.store(group="model/schema/backbone", name="dino", node=DINOConfiguration, package="model.image_encoder.backbone")
48
+ cs.store(group="model/schema/backbone", name="resnet", node=ResNetConfiguration, package="model.image_encoder.backbone")
49
+
50
+
51
+ @hydra.main(version_base=None, config_path="conf", config_name="pretrain")
52
+ def train(cfg: Configuration):
53
+ OmegaConf.resolve(cfg)
54
+
55
+ dm = GenericDataModule(cfg.data)
56
+
57
+ model = GenericModule(cfg)
58
+
59
+ exp_name_with_time = cfg.experiment.name + \
60
+ "_" + time.strftime("%Y-%m-%d_%H-%M-%S")
61
+
62
+ callbacks: list[pl.Callback]
63
+
64
+ if cfg.training.eval:
65
+ save_dir = Path(cfg.training.save_dir)
66
+ save_dir.mkdir(parents=True, exist_ok=True)
67
+
68
+ callbacks = [
69
+ EvalSaveCallback(save_dir=save_dir)
70
+ ]
71
+
72
+ logger = None
73
+ else:
74
+ callbacks = [
75
+ ImageLoggerCallback(num_classes=cfg.training.num_classes),
76
+ ModelCheckpoint(
77
+ monitor=cfg.training.checkpointing.monitor,
78
+ save_last=cfg.training.checkpointing.save_last,
79
+ save_top_k=cfg.training.checkpointing.save_top_k,
80
+ )
81
+ ]
82
+
83
+ logger = WandbLogger(
84
+ name=exp_name_with_time,
85
+ id=exp_name_with_time,
86
+ entity="mappred-large",
87
+ project="map-pred-full-v3",
88
+ )
89
+
90
+ logger.watch(model, log="all", log_freq=500)
91
+
92
+ if cfg.training.checkpoint is not None:
93
+ state_dict = torch.load(cfg.training.checkpoint)['state_dict']
94
+ model.load_state_dict(state_dict, strict=False)
95
+
96
+ trainer_args = OmegaConf.to_container(cfg.training.trainer)
97
+ trainer_args['callbacks'] = callbacks
98
+ trainer_args['logger'] = logger
99
+
100
+ trainer = pl.Trainer(**trainer_args)
101
+
102
+ if cfg.training.eval:
103
+ trainer.test(model, datamodule=dm)
104
+ else:
105
+ trainer.fit(model, datamodule=dm)
106
+
107
+
108
+ if __name__ == "__main__":
109
+ pl.seed_everything(42)
110
+ torch.set_float32_matmul_precision("high")
111
+
112
+ train()
mapper/models/__init__.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+
3
+ # Adapted from PixLoc, Paul-Edouard Sarlin, ETH Zurich
4
+ # https://github.com/cvg/pixloc
5
+ # Released under the Apache License 2.0
6
+
7
+ import inspect
8
+
9
+ from .base import BaseModel
10
+
11
+
12
+ def get_class(mod_name, base_path, BaseClass):
13
+ """Get the class object which inherits from BaseClass and is defined in
14
+ the module named mod_name, child of base_path.
15
+ """
16
+ mod_path = "{}.{}".format(base_path, mod_name)
17
+ mod = __import__(mod_path, fromlist=[""])
18
+ classes = inspect.getmembers(mod, inspect.isclass)
19
+ # Filter classes defined in the module
20
+ classes = [c for c in classes if c[1].__module__ == mod_path]
21
+ # Filter classes inherited from BaseModel
22
+ classes = [c for c in classes if issubclass(c[1], BaseClass)]
23
+ assert len(classes) == 1, classes
24
+ return classes[0][1]
25
+
26
+
27
+ def get_model(name):
28
+ return get_class(name, __name__, BaseModel)
mapper/models/base.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+
3
+ # Adapted from PixLoc, Paul-Edouard Sarlin, ETH Zurich
4
+ # https://github.com/cvg/pixloc
5
+ # Released under the Apache License 2.0
6
+
7
+ """
8
+ Base class for trainable models.
9
+ """
10
+
11
+ from abc import ABCMeta, abstractmethod
12
+ from copy import copy
13
+
14
+ from omegaconf import OmegaConf
15
+ from torch import nn
16
+
17
+
18
+ class BaseModel(nn.Module, metaclass=ABCMeta):
19
+
20
+ required_data_keys = []
21
+ strict_conf = True
22
+
23
+ def __init__(self, conf):
24
+ """Perform some logic and call the _init method of the child model."""
25
+ super().__init__()
26
+ self.conf = conf
27
+ OmegaConf.set_readonly(conf, True)
28
+ OmegaConf.set_struct(conf, True)
29
+ self.required_data_keys = copy(self.required_data_keys)
30
+ self._init(conf)
31
+
32
+ def forward(self, data):
33
+ """Check the data and call the _forward method of the child model."""
34
+
35
+ def recursive_key_check(expected, given):
36
+ for key in expected:
37
+ assert key in given, f"Missing key {key} in data"
38
+ if isinstance(expected, dict):
39
+ recursive_key_check(expected[key], given[key])
40
+
41
+ recursive_key_check(self.required_data_keys, data)
42
+ return self._forward(data)
43
+
44
+ @abstractmethod
45
+ def _init(self, conf):
46
+ """To be implemented by the child class."""
47
+ raise NotImplementedError
48
+
49
+ @abstractmethod
50
+ def _forward(self, data):
51
+ """To be implemented by the child class."""
52
+ raise NotImplementedError
53
+
54
+ def loss(self, pred, data):
55
+ """To be implemented by the child class."""
56
+ raise NotImplementedError
57
+
58
+ def metrics(self):
59
+ return {} # no metrics
mapper/models/bev_projection.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+
3
+ import torch
4
+ from torch.nn.functional import grid_sample
5
+
6
+ from ..utils.geometry import from_homogeneous
7
+ from .utils import make_grid
8
+
9
+
10
+ class PolarProjectionDepth(torch.nn.Module):
11
+ def __init__(self, z_max, ppm, scale_range, z_min=None):
12
+ super().__init__()
13
+ self.z_max = z_max
14
+ self.Δ = Δ = 1 / ppm
15
+ self.z_min = z_min = Δ if z_min is None else z_min
16
+ self.scale_range = scale_range
17
+ z_steps = torch.arange(z_min, z_max + Δ, Δ)
18
+ self.register_buffer("depth_steps", z_steps, persistent=False)
19
+
20
+ def sample_depth_scores(self, pixel_scales, camera):
21
+ scale_steps = camera.f[..., None, 1] / self.depth_steps.flip(-1)
22
+ log_scale_steps = torch.log2(scale_steps)
23
+ scale_min, scale_max = self.scale_range
24
+ log_scale_norm = (log_scale_steps - scale_min) / \
25
+ (scale_max - scale_min)
26
+ log_scale_norm = log_scale_norm * 2 - 1 # in [-1, 1]
27
+
28
+ values = pixel_scales.flatten(1, 2).unsqueeze(-1)
29
+ indices = log_scale_norm.unsqueeze(-1)
30
+ indices = torch.stack([torch.zeros_like(indices), indices], -1)
31
+ depth_scores = grid_sample(values, indices, align_corners=True)
32
+ depth_scores = depth_scores.reshape(
33
+ pixel_scales.shape[:-1] + (len(self.depth_steps),)
34
+ )
35
+ return depth_scores
36
+
37
+ def forward(
38
+ self,
39
+ image,
40
+ pixel_scales,
41
+ camera,
42
+ return_total_score=False,
43
+ ):
44
+ depth_scores = self.sample_depth_scores(pixel_scales, camera)
45
+ depth_prob = torch.softmax(depth_scores, dim=1)
46
+ image_polar = torch.einsum("...dhw,...hwz->...dzw", image, depth_prob)
47
+ if return_total_score:
48
+ cell_score = torch.logsumexp(depth_scores, dim=1, keepdim=True)
49
+ return image_polar, cell_score.squeeze(1)
50
+ return image_polar
51
+
52
+
53
+ class CartesianProjection(torch.nn.Module):
54
+ def __init__(self, z_max, x_max, ppm, z_min=None):
55
+ super().__init__()
56
+ self.z_max = z_max
57
+ self.x_max = x_max
58
+ self.Δ = Δ = 1 / ppm
59
+ self.z_min = z_min = Δ if z_min is None else z_min
60
+
61
+ grid_xz = make_grid(
62
+ x_max * 2 + Δ, z_max, step_y=Δ, step_x=Δ, orig_y=Δ, orig_x=-x_max, y_up=True
63
+ )
64
+ self.register_buffer("grid_xz", grid_xz, persistent=False)
65
+
66
+ def grid_to_polar(self, cam):
67
+ f, c = cam.f[..., 0][..., None, None], cam.c[..., 0][..., None, None]
68
+ u = from_homogeneous(self.grid_xz).squeeze(-1) * f + c
69
+ z_idx = (self.grid_xz[..., 1] - self.z_min) / \
70
+ self.Δ # convert z value to index
71
+ z_idx = z_idx[None].expand_as(u)
72
+ grid_polar = torch.stack([u, z_idx], -1)
73
+ return grid_polar
74
+
75
+ def sample_from_polar(self, image_polar, valid_polar, grid_uz):
76
+ size = grid_uz.new_tensor(image_polar.shape[-2:][::-1])
77
+ grid_uz_norm = (grid_uz + 0.5) / size * 2 - 1
78
+ grid_uz_norm = grid_uz_norm * \
79
+ grid_uz.new_tensor([1, -1]) # y axis is up
80
+ image_bev = grid_sample(image_polar, grid_uz_norm, align_corners=False)
81
+
82
+ if valid_polar is None:
83
+ valid = torch.ones_like(image_polar[..., :1, :, :])
84
+ else:
85
+ valid = valid_polar.to(image_polar)[:, None]
86
+ valid = grid_sample(valid, grid_uz_norm, align_corners=False)
87
+ valid = valid.squeeze(1) > (1 - 1e-4)
88
+
89
+ return image_bev, valid
90
+
91
+ def forward(self, image_polar, valid_polar, cam):
92
+ grid_uz = self.grid_to_polar(cam)
93
+ image, valid = self.sample_from_polar(
94
+ image_polar, valid_polar, grid_uz)
95
+ return image, valid, grid_uz
mapper/models/dinov2/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ __version__ = "0.0.1"
mapper/models/dinov2/configs/__init__.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ import pathlib
7
+
8
+ from omegaconf import OmegaConf
9
+
10
+
11
+ def load_config(config_name: str):
12
+ config_filename = config_name + ".yaml"
13
+ return OmegaConf.load(pathlib.Path(__file__).parent.resolve() / config_filename)
14
+
15
+
16
+ dinov2_default_config = load_config("ssl_default_config")
17
+
18
+
19
+ def load_and_merge_config(config_name: str):
20
+ default_config = OmegaConf.create(dinov2_default_config)
21
+ loaded_config = load_config(config_name)
22
+ return OmegaConf.merge(default_config, loaded_config)
mapper/models/dinov2/configs/eval/vitb14_pretrain.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ student:
2
+ arch: vit_base
3
+ patch_size: 14
4
+ crops:
5
+ global_crops_size: 518 # this is to set up the position embeddings properly
6
+ local_crops_size: 98
mapper/models/dinov2/configs/eval/vitg14_pretrain.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ student:
2
+ arch: vit_giant2
3
+ patch_size: 14
4
+ ffn_layer: swiglufused
5
+ crops:
6
+ global_crops_size: 518 # this is to set up the position embeddings properly
7
+ local_crops_size: 98
mapper/models/dinov2/configs/eval/vitl14_pretrain.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ student:
2
+ arch: vit_large
3
+ patch_size: 14
4
+ crops:
5
+ global_crops_size: 518 # this is to set up the position embeddings properly
6
+ local_crops_size: 98
mapper/models/dinov2/configs/eval/vits14_pretrain.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ student:
2
+ arch: vit_small
3
+ patch_size: 14
4
+ crops:
5
+ global_crops_size: 518 # this is to set up the position embeddings properly
6
+ local_crops_size: 98
mapper/models/dinov2/configs/eval/vits14_reg4_pretrain.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ student:
2
+ arch: vit_small
3
+ patch_size: 14
4
+ num_register_tokens: 4
5
+ interpolate_antialias: true
6
+ interpolate_offset: 0.0
7
+ crops:
8
+ global_crops_size: 518 # this is to set up the position embeddings properly
9
+ local_crops_size: 98
mapper/models/dinov2/configs/ssl_default_config.yaml ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MODEL:
2
+ WEIGHTS: ''
3
+ compute_precision:
4
+ grad_scaler: true
5
+ teacher:
6
+ backbone:
7
+ sharding_strategy: SHARD_GRAD_OP
8
+ mixed_precision:
9
+ param_dtype: fp16
10
+ reduce_dtype: fp16
11
+ buffer_dtype: fp32
12
+ dino_head:
13
+ sharding_strategy: SHARD_GRAD_OP
14
+ mixed_precision:
15
+ param_dtype: fp16
16
+ reduce_dtype: fp16
17
+ buffer_dtype: fp32
18
+ ibot_head:
19
+ sharding_strategy: SHARD_GRAD_OP
20
+ mixed_precision:
21
+ param_dtype: fp16
22
+ reduce_dtype: fp16
23
+ buffer_dtype: fp32
24
+ student:
25
+ backbone:
26
+ sharding_strategy: SHARD_GRAD_OP
27
+ mixed_precision:
28
+ param_dtype: fp16
29
+ reduce_dtype: fp16
30
+ buffer_dtype: fp32
31
+ dino_head:
32
+ sharding_strategy: SHARD_GRAD_OP
33
+ mixed_precision:
34
+ param_dtype: fp16
35
+ reduce_dtype: fp32
36
+ buffer_dtype: fp32
37
+ ibot_head:
38
+ sharding_strategy: SHARD_GRAD_OP
39
+ mixed_precision:
40
+ param_dtype: fp16
41
+ reduce_dtype: fp32
42
+ buffer_dtype: fp32
43
+ dino:
44
+ loss_weight: 1.0
45
+ head_n_prototypes: 65536
46
+ head_bottleneck_dim: 256
47
+ head_nlayers: 3
48
+ head_hidden_dim: 2048
49
+ koleo_loss_weight: 0.1
50
+ ibot:
51
+ loss_weight: 1.0
52
+ mask_sample_probability: 0.5
53
+ mask_ratio_min_max:
54
+ - 0.1
55
+ - 0.5
56
+ separate_head: false
57
+ head_n_prototypes: 65536
58
+ head_bottleneck_dim: 256
59
+ head_nlayers: 3
60
+ head_hidden_dim: 2048
61
+ train:
62
+ batch_size_per_gpu: 64
63
+ dataset_path: ImageNet:split=TRAIN
64
+ output_dir: .
65
+ saveckp_freq: 20
66
+ seed: 0
67
+ num_workers: 10
68
+ OFFICIAL_EPOCH_LENGTH: 1250
69
+ cache_dataset: true
70
+ centering: "centering" # or "sinkhorn_knopp"
71
+ student:
72
+ arch: vit_large
73
+ patch_size: 16
74
+ drop_path_rate: 0.3
75
+ layerscale: 1.0e-05
76
+ drop_path_uniform: true
77
+ pretrained_weights: ''
78
+ ffn_layer: "mlp"
79
+ block_chunks: 0
80
+ qkv_bias: true
81
+ proj_bias: true
82
+ ffn_bias: true
83
+ num_register_tokens: 0
84
+ interpolate_antialias: false
85
+ interpolate_offset: 0.1
86
+ teacher:
87
+ momentum_teacher: 0.992
88
+ final_momentum_teacher: 1
89
+ warmup_teacher_temp: 0.04
90
+ teacher_temp: 0.07
91
+ warmup_teacher_temp_epochs: 30
92
+ optim:
93
+ epochs: 100
94
+ weight_decay: 0.04
95
+ weight_decay_end: 0.4
96
+ base_lr: 0.004 # learning rate for a batch size of 1024
97
+ lr: 0. # will be set after applying scaling rule
98
+ warmup_epochs: 10
99
+ min_lr: 1.0e-06
100
+ clip_grad: 3.0
101
+ freeze_last_layer_epochs: 1
102
+ scaling_rule: sqrt_wrt_1024
103
+ patch_embed_lr_mult: 0.2
104
+ layerwise_decay: 0.9
105
+ adamw_beta1: 0.9
106
+ adamw_beta2: 0.999
107
+ crops:
108
+ global_crops_scale:
109
+ - 0.32
110
+ - 1.0
111
+ local_crops_number: 8
112
+ local_crops_scale:
113
+ - 0.05
114
+ - 0.32
115
+ global_crops_size: 224
116
+ local_crops_size: 96
117
+ evaluation:
118
+ eval_period_iterations: 12500
mapper/models/dinov2/configs/train/vitg14.yaml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dino:
2
+ head_n_prototypes: 131072
3
+ head_bottleneck_dim: 384
4
+ ibot:
5
+ separate_head: true
6
+ head_n_prototypes: 131072
7
+ train:
8
+ batch_size_per_gpu: 12
9
+ dataset_path: ImageNet22k
10
+ centering: sinkhorn_knopp
11
+ student:
12
+ arch: vit_giant2
13
+ patch_size: 14
14
+ drop_path_rate: 0.4
15
+ ffn_layer: swiglufused
16
+ block_chunks: 4
17
+ teacher:
18
+ momentum_teacher: 0.994
19
+ optim:
20
+ epochs: 500
21
+ weight_decay_end: 0.2
22
+ base_lr: 2.0e-04 # learning rate for a batch size of 1024
23
+ warmup_epochs: 80
24
+ layerwise_decay: 1.0
25
+ crops:
26
+ local_crops_size: 98
mapper/models/dinov2/configs/train/vitl14.yaml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dino:
2
+ head_n_prototypes: 131072
3
+ head_bottleneck_dim: 384
4
+ ibot:
5
+ separate_head: true
6
+ head_n_prototypes: 131072
7
+ train:
8
+ batch_size_per_gpu: 32
9
+ dataset_path: ImageNet22k
10
+ centering: sinkhorn_knopp
11
+ student:
12
+ arch: vit_large
13
+ patch_size: 14
14
+ drop_path_rate: 0.4
15
+ ffn_layer: swiglufused
16
+ block_chunks: 4
17
+ teacher:
18
+ momentum_teacher: 0.994
19
+ optim:
20
+ epochs: 500
21
+ weight_decay_end: 0.2
22
+ base_lr: 2.0e-04 # learning rate for a batch size of 1024
23
+ warmup_epochs: 80
24
+ layerwise_decay: 1.0
25
+ crops:
26
+ local_crops_size: 98
mapper/models/dinov2/configs/train/vitl16_short.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # this corresponds to the default config
2
+ train:
3
+ dataset_path: ImageNet:split=TRAIN
4
+ batch_size_per_gpu: 64
5
+ student:
6
+ block_chunks: 4
mapper/models/dinov2/data/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ from .adapters import DatasetWithEnumeratedTargets
7
+ from .loaders import make_data_loader, make_dataset, SamplerType
8
+ from .collate import collate_data_and_cast
9
+ from .masking import MaskingGenerator
10
+ from .augmentations import DataAugmentationDINO
mapper/models/dinov2/data/adapters.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ from typing import Any, Tuple
7
+
8
+ from torch.utils.data import Dataset
9
+
10
+
11
+ class DatasetWithEnumeratedTargets(Dataset):
12
+ def __init__(self, dataset):
13
+ self._dataset = dataset
14
+
15
+ def get_image_data(self, index: int) -> bytes:
16
+ return self._dataset.get_image_data(index)
17
+
18
+ def get_target(self, index: int) -> Tuple[Any, int]:
19
+ target = self._dataset.get_target(index)
20
+ return (index, target)
21
+
22
+ def __getitem__(self, index: int) -> Tuple[Any, Tuple[Any, int]]:
23
+ image, target = self._dataset[index]
24
+ target = index if target is None else target
25
+ return image, (index, target)
26
+
27
+ def __len__(self) -> int:
28
+ return len(self._dataset)
mapper/models/dinov2/data/augmentations.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ import logging
7
+
8
+ from torchvision import transforms
9
+
10
+ from .transforms import (
11
+ GaussianBlur,
12
+ make_normalize_transform,
13
+ )
14
+
15
+
16
+ logger = logging.getLogger("dinov2")
17
+
18
+
19
+ class DataAugmentationDINO(object):
20
+ def __init__(
21
+ self,
22
+ global_crops_scale,
23
+ local_crops_scale,
24
+ local_crops_number,
25
+ global_crops_size=224,
26
+ local_crops_size=96,
27
+ ):
28
+ self.global_crops_scale = global_crops_scale
29
+ self.local_crops_scale = local_crops_scale
30
+ self.local_crops_number = local_crops_number
31
+ self.global_crops_size = global_crops_size
32
+ self.local_crops_size = local_crops_size
33
+
34
+ logger.info("###################################")
35
+ logger.info("Using data augmentation parameters:")
36
+ logger.info(f"global_crops_scale: {global_crops_scale}")
37
+ logger.info(f"local_crops_scale: {local_crops_scale}")
38
+ logger.info(f"local_crops_number: {local_crops_number}")
39
+ logger.info(f"global_crops_size: {global_crops_size}")
40
+ logger.info(f"local_crops_size: {local_crops_size}")
41
+ logger.info("###################################")
42
+
43
+ # random resized crop and flip
44
+ self.geometric_augmentation_global = transforms.Compose(
45
+ [
46
+ transforms.RandomResizedCrop(
47
+ global_crops_size, scale=global_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC
48
+ ),
49
+ transforms.RandomHorizontalFlip(p=0.5),
50
+ ]
51
+ )
52
+
53
+ self.geometric_augmentation_local = transforms.Compose(
54
+ [
55
+ transforms.RandomResizedCrop(
56
+ local_crops_size, scale=local_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC
57
+ ),
58
+ transforms.RandomHorizontalFlip(p=0.5),
59
+ ]
60
+ )
61
+
62
+ # color distorsions / blurring
63
+ color_jittering = transforms.Compose(
64
+ [
65
+ transforms.RandomApply(
66
+ [transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)],
67
+ p=0.8,
68
+ ),
69
+ transforms.RandomGrayscale(p=0.2),
70
+ ]
71
+ )
72
+
73
+ global_transfo1_extra = GaussianBlur(p=1.0)
74
+
75
+ global_transfo2_extra = transforms.Compose(
76
+ [
77
+ GaussianBlur(p=0.1),
78
+ transforms.RandomSolarize(threshold=128, p=0.2),
79
+ ]
80
+ )
81
+
82
+ local_transfo_extra = GaussianBlur(p=0.5)
83
+
84
+ # normalization
85
+ self.normalize = transforms.Compose(
86
+ [
87
+ transforms.ToTensor(),
88
+ make_normalize_transform(),
89
+ ]
90
+ )
91
+
92
+ self.global_transfo1 = transforms.Compose([color_jittering, global_transfo1_extra, self.normalize])
93
+ self.global_transfo2 = transforms.Compose([color_jittering, global_transfo2_extra, self.normalize])
94
+ self.local_transfo = transforms.Compose([color_jittering, local_transfo_extra, self.normalize])
95
+
96
+ def __call__(self, image):
97
+ output = {}
98
+
99
+ # global crops:
100
+ im1_base = self.geometric_augmentation_global(image)
101
+ global_crop_1 = self.global_transfo1(im1_base)
102
+
103
+ im2_base = self.geometric_augmentation_global(image)
104
+ global_crop_2 = self.global_transfo2(im2_base)
105
+
106
+ output["global_crops"] = [global_crop_1, global_crop_2]
107
+
108
+ # global crops for teacher:
109
+ output["global_crops_teacher"] = [global_crop_1, global_crop_2]
110
+
111
+ # local crops:
112
+ local_crops = [
113
+ self.local_transfo(self.geometric_augmentation_local(image)) for _ in range(self.local_crops_number)
114
+ ]
115
+ output["local_crops"] = local_crops
116
+ output["offsets"] = ()
117
+
118
+ return output
mapper/models/dinov2/data/collate.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ import torch
7
+ import random
8
+
9
+
10
+ def collate_data_and_cast(samples_list, mask_ratio_tuple, mask_probability, dtype, n_tokens=None, mask_generator=None):
11
+ # dtype = torch.half # TODO: Remove
12
+
13
+ n_global_crops = len(samples_list[0][0]["global_crops"])
14
+ n_local_crops = len(samples_list[0][0]["local_crops"])
15
+
16
+ collated_global_crops = torch.stack([s[0]["global_crops"][i] for i in range(n_global_crops) for s in samples_list])
17
+
18
+ collated_local_crops = torch.stack([s[0]["local_crops"][i] for i in range(n_local_crops) for s in samples_list])
19
+
20
+ B = len(collated_global_crops)
21
+ N = n_tokens
22
+ n_samples_masked = int(B * mask_probability)
23
+ probs = torch.linspace(*mask_ratio_tuple, n_samples_masked + 1)
24
+ upperbound = 0
25
+ masks_list = []
26
+ for i in range(0, n_samples_masked):
27
+ prob_min = probs[i]
28
+ prob_max = probs[i + 1]
29
+ masks_list.append(torch.BoolTensor(mask_generator(int(N * random.uniform(prob_min, prob_max)))))
30
+ upperbound += int(N * prob_max)
31
+ for i in range(n_samples_masked, B):
32
+ masks_list.append(torch.BoolTensor(mask_generator(0)))
33
+
34
+ random.shuffle(masks_list)
35
+
36
+ collated_masks = torch.stack(masks_list).flatten(1)
37
+ mask_indices_list = collated_masks.flatten().nonzero().flatten()
38
+
39
+ masks_weight = (1 / collated_masks.sum(-1).clamp(min=1.0)).unsqueeze(-1).expand_as(collated_masks)[collated_masks]
40
+
41
+ return {
42
+ "collated_global_crops": collated_global_crops.to(dtype),
43
+ "collated_local_crops": collated_local_crops.to(dtype),
44
+ "collated_masks": collated_masks,
45
+ "mask_indices_list": mask_indices_list,
46
+ "masks_weight": masks_weight,
47
+ "upperbound": upperbound,
48
+ "n_masked_patches": torch.full((1,), fill_value=mask_indices_list.shape[0], dtype=torch.long),
49
+ }