File size: 11,326 Bytes
fd01725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# Copyright (c) Meta Platforms, Inc. and affiliates.

# Adapted from PixLoc, Paul-Edouard Sarlin, ETH Zurich
# https://github.com/cvg/pixloc
# Released under the Apache License 2.0

"""
Convenience classes for an SE3 pose and a pinhole Camera with lens distortion.
Based on PyTorch tensors: differentiable, batched, with GPU support.
"""

import functools
import inspect
import math
from typing import Dict, List, NamedTuple, Tuple, Union

import numpy as np
import torch

from .geometry import undistort_points


def autocast(func):
    """Cast the inputs of a TensorWrapper method to PyTorch tensors
    if they are numpy arrays. Use the device and dtype of the wrapper.
    """

    @functools.wraps(func)
    def wrap(self, *args):
        device = torch.device("cpu")
        dtype = None
        if isinstance(self, TensorWrapper):
            if self._data is not None:
                device = self.device
                dtype = self.dtype
        elif not inspect.isclass(self) or not issubclass(self, TensorWrapper):
            raise ValueError(self)

        cast_args = []
        for arg in args:
            if isinstance(arg, np.ndarray):
                arg = torch.from_numpy(arg)
                arg = arg.to(device=device, dtype=dtype)
            cast_args.append(arg)
        return func(self, *cast_args)

    return wrap


class TensorWrapper:
    _data = None

    @autocast
    def __init__(self, data: torch.Tensor):
        self._data = data

    @property
    def shape(self):
        return self._data.shape[:-1]

    @property
    def device(self):
        return self._data.device

    @property
    def dtype(self):
        return self._data.dtype

    def __getitem__(self, index):
        return self.__class__(self._data[index])

    def __setitem__(self, index, item):
        self._data[index] = item.data

    def to(self, *args, **kwargs):
        return self.__class__(self._data.to(*args, **kwargs))

    def cpu(self):
        return self.__class__(self._data.cpu())

    def cuda(self):
        return self.__class__(self._data.cuda())

    def pin_memory(self):
        return self.__class__(self._data.pin_memory())

    def float(self):
        return self.__class__(self._data.float())

    def double(self):
        return self.__class__(self._data.double())

    def detach(self):
        return self.__class__(self._data.detach())

    @classmethod
    def stack(cls, objects: List, dim=0, *, out=None):
        data = torch.stack([obj._data for obj in objects], dim=dim, out=out)
        return cls(data)

    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        if kwargs is None:
            kwargs = {}
        if func is torch.stack:
            return cls.stack(*args, **kwargs)
        else:
            return NotImplemented


class Pose(TensorWrapper):
    def __init__(self, data: torch.Tensor):
        assert data.shape[-1] == 12
        super().__init__(data)

    @classmethod
    @autocast
    def from_Rt(cls, R: torch.Tensor, t: torch.Tensor):
        """Pose from a rotation matrix and translation vector.
        Accepts numpy arrays or PyTorch tensors.

        Args:
            R: rotation matrix with shape (..., 3, 3).
            t: translation vector with shape (..., 3).
        """
        assert R.shape[-2:] == (3, 3)
        assert t.shape[-1] == 3
        assert R.shape[:-2] == t.shape[:-1]
        data = torch.cat([R.flatten(start_dim=-2), t], -1)
        return cls(data)

    @classmethod
    def from_4x4mat(cls, T: torch.Tensor):
        """Pose from an SE(3) transformation matrix.
        Args:
            T: transformation matrix with shape (..., 4, 4).
        """
        assert T.shape[-2:] == (4, 4)
        R, t = T[..., :3, :3], T[..., :3, 3]
        return cls.from_Rt(R, t)

    @classmethod
    def from_colmap(cls, image: NamedTuple):
        """Pose from a COLMAP Image."""
        return cls.from_Rt(image.qvec2rotmat(), image.tvec)

    @property
    def R(self) -> torch.Tensor:
        """Underlying rotation matrix with shape (..., 3, 3)."""
        rvec = self._data[..., :9]
        return rvec.reshape(rvec.shape[:-1] + (3, 3))

    @property
    def t(self) -> torch.Tensor:
        """Underlying translation vector with shape (..., 3)."""
        return self._data[..., -3:]

    def inv(self) -> "Pose":
        """Invert an SE(3) pose."""
        R = self.R.transpose(-1, -2)
        t = -(R @ self.t.unsqueeze(-1)).squeeze(-1)
        return self.__class__.from_Rt(R, t)

    def compose(self, other: "Pose") -> "Pose":
        """Chain two SE(3) poses: T_B2C.compose(T_A2B) -> T_A2C."""
        R = self.R @ other.R
        t = self.t + (self.R @ other.t.unsqueeze(-1)).squeeze(-1)
        return self.__class__.from_Rt(R, t)

    @autocast
    def transform(self, p3d: torch.Tensor) -> torch.Tensor:
        """Transform a set of 3D points.
        Args:
            p3d: 3D points, numpy array or PyTorch tensor with shape (..., 3).
        """
        assert p3d.shape[-1] == 3
        # assert p3d.shape[:-2] == self.shape  # allow broadcasting
        return p3d @ self.R.transpose(-1, -2) + self.t.unsqueeze(-2)

    def __matmul__(
        self, other: Union["Pose", torch.Tensor]
    ) -> Union["Pose", torch.Tensor]:
        """Transform a set of 3D points: T_A2B * p3D_A -> p3D_B.
        or chain two SE(3) poses: T_B2C @ T_A2B -> T_A2C."""
        if isinstance(other, self.__class__):
            return self.compose(other)
        else:
            return self.transform(other)

    def numpy(self) -> Tuple[np.ndarray]:
        return self.R.numpy(), self.t.numpy()

    def magnitude(self) -> Tuple[torch.Tensor]:
        """Magnitude of the SE(3) transformation.
        Returns:
            dr: rotation anngle in degrees.
            dt: translation distance in meters.
        """
        trace = torch.diagonal(self.R, dim1=-1, dim2=-2).sum(-1)
        cos = torch.clamp((trace - 1) / 2, -1, 1)
        dr = torch.acos(cos).abs() / math.pi * 180
        dt = torch.norm(self.t, dim=-1)
        return dr, dt

    def __repr__(self):
        return f"Pose: {self.shape} {self.dtype} {self.device}"


class Camera(TensorWrapper):
    eps = 1e-4

    def __init__(self, data: torch.Tensor):
        assert data.shape[-1] in {6, 8, 10}
        super().__init__(data)

    @classmethod
    def from_dict(cls, camera: Union[Dict, NamedTuple]):
        """Camera from a COLMAP Camera tuple or dictionary.
        We assume that the origin (0, 0) is the center of the top-left pixel.
        This is different from COLMAP.
        """
        if isinstance(camera, tuple):
            camera = camera._asdict()

        model = camera["model"]
        params = camera["params"]

        if model in ["OPENCV", "PINHOLE"]:
            (fx, fy, cx, cy), params = np.split(params, [4])
        elif model in ["SIMPLE_PINHOLE", "SIMPLE_RADIAL", "RADIAL"]:
            (f, cx, cy), params = np.split(params, [3])
            fx = fy = f
            if model == "SIMPLE_RADIAL":
                params = np.r_[params, 0.0]
        else:
            raise NotImplementedError(model)

        data = np.r_[
            camera["width"], camera["height"], fx, fy, cx - 0.5, cy - 0.5, params
        ]
        return cls(data)

    @property
    def size(self) -> torch.Tensor:
        """Size (width height) of the images, with shape (..., 2)."""
        return self._data[..., :2]

    @property
    def f(self) -> torch.Tensor:
        """Focal lengths (fx, fy) with shape (..., 2)."""
        return self._data[..., 2:4]

    @property
    def c(self) -> torch.Tensor:
        """Principal points (cx, cy) with shape (..., 2)."""
        return self._data[..., 4:6]

    @property
    def dist(self) -> torch.Tensor:
        """Distortion parameters, with shape (..., {0, 2, 4})."""
        return self._data[..., 6:]

    def scale(self, scales: Union[float, int, Tuple[Union[float, int]]]):
        """Update the camera parameters after resizing an image."""
        if isinstance(scales, (int, float)):
            scales = (scales, scales)
        s = self._data.new_tensor(scales)
        data = torch.cat(
            [self.size * s, self.f * s, (self.c + 0.5) * s - 0.5, self.dist], -1
        )
        return self.__class__(data)

    def crop(self, left_top: Tuple[float], size: Tuple[int]):
        """Update the camera parameters after cropping an image."""
        left_top = self._data.new_tensor(left_top)
        size = self._data.new_tensor(size)
        data = torch.cat([size, self.f, self.c - left_top, self.dist], -1)
        return self.__class__(data)

    def flip(self):
        """Update the camera parameters after flipping an image."""
        data = self._data.clone()
        data[..., 4] = self.size[..., 0] - self.c[..., 0] - 1
        return self.__class__(data)

    @autocast
    def in_image(self, p2d: torch.Tensor):
        """Check if 2D points are within the image boundaries."""
        assert p2d.shape[-1] == 2
        # assert p2d.shape[:-2] == self.shape  # allow broadcasting
        size = self.size.unsqueeze(-2)
        valid = torch.all((p2d >= 0) & (p2d <= (size - 1)), -1)
        return valid

    @autocast
    def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
        """Project 3D points into the camera plane and check for visibility."""
        z = p3d[..., -1]
        valid = z > self.eps
        z = z.clamp(min=self.eps)
        p2d = p3d[..., :-1] / z.unsqueeze(-1)
        return p2d, valid

    def J_project(self, p3d: torch.Tensor):
        x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2]
        zero = torch.zeros_like(z)
        J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1)
        J = J.reshape(p3d.shape[:-1] + (2, 3))
        return J  # N x 2 x 3

    @autocast
    def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
        """Undistort normalized 2D coordinates
        and check for validity of the distortion model.
        """
        assert pts.shape[-1] == 2
        # assert pts.shape[:-2] == self.shape  # allow broadcasting
        return undistort_points(pts, self.dist)

    @autocast
    def denormalize(self, p2d: torch.Tensor) -> torch.Tensor:
        """Convert normalized 2D coordinates into pixel coordinates."""
        return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2)

    @autocast
    def normalize(self, p2d: torch.Tensor) -> torch.Tensor:
        """Convert pixel coordinates into normalized 2D coordinates."""
        return (p2d - self.c.unsqueeze(-2)) / self.f.unsqueeze(-2)

    def J_denormalize(self):
        return torch.diag_embed(self.f).unsqueeze(-3)  # 1 x 2 x 2

    @autocast
    def world2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
        """Transform 3D points into 2D pixel coordinates."""
        p2d, visible = self.project(p3d)
        p2d, mask = self.undistort(p2d)
        p2d = self.denormalize(p2d)
        valid = visible & mask & self.in_image(p2d)
        return p2d, valid

    def J_world2image(self, p3d: torch.Tensor):
        p2d_dist, valid = self.project(p3d)
        J = self.J_denormalize() @ self.J_undistort(p2d_dist) @ self.J_project(p3d)
        return J, valid

    def __repr__(self):
        return f"Camera {self.shape} {self.dtype} {self.device}"