File size: 21,909 Bytes
895b027
c32f190
 
 
 
a13b293
c32f190
 
 
 
 
a13b293
 
2a8883a
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19761c7
cc4eb7e
c32f190
 
 
 
70528e9
c32f190
 
 
 
251c2ed
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13051b
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d5c2a
 
d80e0e6
2a8883a
a13051b
 
0c4a0e4
a13051b
 
 
0c4a0e4
 
 
 
a13051b
 
 
 
 
 
 
 
 
 
 
 
 
0c4a0e4
a13051b
0c4a0e4
a13051b
 
 
 
7cf6b76
a13051b
 
e8e67a1
a13051b
 
 
 
 
 
0c4a0e4
e8e67a1
 
625974f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8e67a1
 
625974f
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625974f
c32f190
 
d80e0e6
c32f190
 
 
 
625974f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os, json, re, sys, subprocess, gc, tqdm
import math
import time
import numpy
import random
import spaces
import threading
import gradio as gr
from PIL import Image, ImageOps
from moviepy import VideoFileClip
from datetime import datetime, timedelta
from huggingface_hub import hf_hub_download, snapshot_download, login
HF_TOKEN=os.environ.get('HF_TOKEN')
login(token=HF_TOKEN)
import insightface
from insightface.app import FaceAnalysis
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper

import torch
from diffusers import CogVideoXDPMScheduler
from diffusers.utils import load_image
from diffusers.image_processor import VaeImageProcessor
from diffusers.training_utils import free_memory

from util.utils import *
from util.rife_model import load_rife_model, rife_inference_with_latents
from models.utils import process_face_embeddings
from models.transformer_consisid import ConsisIDTransformer3DModel
from models.pipeline_consisid import ConsisIDPipeline
from models.eva_clip import create_model_and_transforms
from models.eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from models.eva_clip.utils_qformer import resize_numpy_image_long
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["ZERO_GPU_PATCH_TORCH_DEVICE"] = "True"
device = "cuda" if torch.cuda.is_available() else "cpu"

hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview")

model_path = "BestWishYsh/ConsisID-preview"
lora_path = None
lora_rank = 128
dtype = torch.bfloat16

if os.path.exists(os.path.join(model_path, "transformer_ema")):
    subfolder = "transformer_ema"
else:
    subfolder = "transformer"
        
transformer = ConsisIDTransformer3DModel.from_pretrained_cus(model_path, subfolder=subfolder)
scheduler = CogVideoXDPMScheduler.from_pretrained(model_path, subfolder="scheduler")

try:
    is_kps = transformer.config.is_kps
except:
    is_kps = False
    
# 1. load face helper models
face_helper = FaceRestoreHelper(
    upscale_factor=1,
    face_size=512,
    crop_ratio=(1, 1),
    det_model='retinaface_resnet50',
    save_ext='png',
    device=device,
    model_rootpath=os.path.join(model_path, "face_encoder")
)
face_helper.face_parse = None
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device, model_rootpath=os.path.join(model_path, "face_encoder"))
face_helper.face_det.eval()
face_helper.face_parse.eval()

model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"), force_custom_clip=True)
face_clip_model = model.visual
face_clip_model.eval()

eva_transform_mean = getattr(face_clip_model, 'image_mean', OPENAI_DATASET_MEAN)
eva_transform_std = getattr(face_clip_model, 'image_std', OPENAI_DATASET_STD)
if not isinstance(eva_transform_mean, (list, tuple)):
    eva_transform_mean = (eva_transform_mean,) * 3
if not isinstance(eva_transform_std, (list, tuple)):
    eva_transform_std = (eva_transform_std,) * 3
eva_transform_mean = eva_transform_mean
eva_transform_std = eva_transform_std

face_main_model = FaceAnalysis(name='antelopev2', root=os.path.join(model_path, "face_encoder"), providers=['CUDAExecutionProvider'])
handler_ante = insightface.model_zoo.get_model(f'{model_path}/face_encoder/models/antelopev2/glintr100.onnx', providers=['CUDAExecutionProvider'])
face_main_model.prepare(ctx_id=0, det_size=(640, 640))
handler_ante.prepare(ctx_id=0)
    
face_clip_model.to(device, dtype=dtype)
face_helper.face_det.to(device)
face_helper.face_parse.to(device)
transformer.to(device, dtype=dtype)
##free_memory()

pipe = ConsisIDPipeline.from_pretrained(model_path, transformer=transformer, scheduler=scheduler, torch_dtype=dtype)
# If you're using with lora, add this code
if lora_path:
    pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
    pipe.fuse_lora(lora_scale=1 / lora_rank)

scheduler_args = {}
if "variance_type" in pipe.scheduler.config:
    variance_type = pipe.scheduler.config.variance_type
    if variance_type in ["learned", "learned_range"]:
        variance_type = "fixed_small"
    scheduler_args["variance_type"] = variance_type

pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args)
pipe.to(device)

os.makedirs("./output", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)

upscale_model = load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
frame_interpolation_model = load_rife_model("model_rife")


def convert_to_gif(video_path):
    clip = VideoFileClip(video_path)
    gif_path = video_path.replace(".mp4", ".gif")
    clip.write_gif(gif_path, fps=8)
    return gif_path


def delete_old_files():
    while True:
        now = datetime.now()
        cutoff = now - timedelta(minutes=10)
        directories = ["./output", "./gradio_tmp"]

        for directory in directories:
            for filename in os.listdir(directory):
                file_path = os.path.join(directory, filename)
                if os.path.isfile(file_path):
                    file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
                    if file_mtime < cutoff:
                        os.remove(file_path)
        time.sleep(600)

@spaces.GPU(duration=180)
def plex(prompt,image_input,seed_value,scale_status,rife_status,progress=gr.Progress(track_tqdm=True)):
    seed = seed_value
    if seed == -1:
        seed = random.randint(0, 2**8 - 1)

    id_image = np.array(ImageOps.exif_transpose(Image.fromarray(image_input)).convert("RGB"))
    id_image = resize_numpy_image_long(id_image, 1024)
    id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper, face_clip_model, handler_ante, 
                                                                            eva_transform_mean, eva_transform_std, 
                                                                            face_main_model, device, dtype, id_image, 
                                                                            original_id_image=id_image, is_align_face=True, 
                                                                            cal_uncond=False)
    if is_kps:
        kps_cond = face_kps
    else:
        kps_cond = None

    tensor = align_crop_face_image.cpu().detach()
    tensor = tensor.squeeze()
    tensor = tensor.permute(1, 2, 0)
    tensor = tensor.numpy() * 255
    tensor = tensor.astype(np.uint8)
    image  = ImageOps.exif_transpose(Image.fromarray(tensor))

    prompt = prompt.strip('"')
    
    generator = torch.Generator(device).manual_seed(seed) if seed else None
    
    video_pt = pipe(
        prompt=prompt,
        image=image,
        num_videos_per_prompt=1,
        num_inference_steps=10,
        num_frames=49,
        use_dynamic_cfg=False,
        guidance_scale=7.0,
        generator=generator,
        id_vit_hidden=id_vit_hidden,
        id_cond=id_cond,
        kps_cond=kps_cond,
        output_type="pt",
    ).frames

    latents = video_pt
    ##free_memory()
    if scale_status:
        latents = upscale_batch_and_concatenate(upscale_model, latents, device)
    if rife_status:
        latents = rife_inference_with_latents(frame_interpolation_model, latents)

    batch_size = latents.shape[0]
    batch_video_frames = []
    for batch_idx in range(batch_size):
        pt_image = latents[batch_idx]
        pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])

        image_np = VaeImageProcessor.pt_to_numpy(pt_image)
        image_pil = VaeImageProcessor.numpy_to_pil(image_np)
        batch_video_frames.append(image_pil)

    video_path = save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
    video_update = gr.update(visible=True, value=video_path)
    gif_path = convert_to_gif(video_path)
    gif_update = gr.update(visible=True, value=gif_path)
    seed_update = gr.update(visible=True, value=seed)

    return video_path, video_update, gif_update, seed_update

    ##return video_pt, seed
##threading.Thread(target=delete_old_files, daemon=True).start()

examples_images = [
    ["asserts/example_images/1.png", "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon."],
    ["asserts/example_images/2.png", "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel."],
    ["asserts/example_images/3.png", "The video depicts a man sitting at an office desk, engaged in his work. He is dressed in a formal suit and appears to be focused on his computer screen. The office environment is well-organized, with shelves filled with binders and other office supplies neatly arranged. The man is holding a red cup, possibly containing a beverage, which he drinks from before setting it down on the desk. He then proceeds to type on the keyboard, indicating that he is working on something on his computer. The overall atmosphere of the video suggests a professional setting where the man is diligently working on his tasks."]
]

with gr.Blocks() as demo:
    gr.Markdown("""
           <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
               ConsisID Space🤗
           </div>
           <div style="text-align: center;">
               <a href="https://huggingface.co/BestWishYsh/ConsisID">🤗 Model Hub</a> |
               <a href="https://huggingface.co/datasets/BestWishYsh/ConsisID-preview-Data">📚 Dataset</a> |
               <a href="https://github.com/PKU-YuanGroup/ConsisID">🌐 Github</a> |
               <a href="https://pku-yuangroup.github.io/ConsisID">📝 Page</a> |
               <a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
           </div>
           <div style="text-align: center;display: flex;justify-content: center;align-items: center;margin-top: 1em;margin-bottom: .5em;">
              <span>If the Space is too busy, duplicate it to use privately</span>
              <a href="https://huggingface.co/spaces/BestWishYsh/ConsisID-Space?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" width="160" style="
                margin-left: .75em;
            "></a>
           </div>
           <div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
            ⚠️ This demo is for academic research and experiential use only. 
            </div>
           """)
    with gr.Row():
        with gr.Column():
            with gr.Accordion("IPT2V: Face Input", open=True):
                image_input = gr.Image(label="Input Image (should contain clear face)")
                prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
            with gr.Accordion("Examples", open=False):
                examples_component_images = gr.Examples(
                    examples_images,
                    inputs=[image_input, prompt],
                    cache_examples=False,
                )

            with gr.Group():
                with gr.Column():
                    with gr.Row():
                        seed_param = gr.Number(
                            label="Inference Seed (Enter a positive number, -1 for random)", value=42
                        )
                    with gr.Row():
                        enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
                        enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
                    gr.Markdown(
                        "✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution)."
                    )

            generate_button = gr.Button("🎬 Generate Video")

        with gr.Column():
            video_output = gr.Video(label="ConsisID Generate Video", width=720, height=480)
            with gr.Row():
                download_video_button = gr.File(label="📥 Download Video", visible=False)
                download_gif_button = gr.File(label="📥 Download GIF", visible=False)
                seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)

    gr.Markdown("""
    <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
        <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
            🎥 Video Gallery
        </div>
        <tr>
            <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
                <p>The video features a woman in exquisite hybrid armor adorned with iridescent gemstones, standing amidst gently falling cherry blossoms. Her piercing yet serene gaze hints at quiet determination, as a breeze catches a loose strand of her hair. She stands in a tranquil courtyard framed by moss-covered stone walls and wooden arches, with blossoms casting soft shadows on the ground. The petals swirl around her, adding a dreamlike quality, while the blurred backdrop emphasizes her poised figure. The scene conveys elegance, strength, and tranquil readiness, capturing a moment of peace before an upcoming challenge.</p>
            </td>
            <td style="width: 25%; vertical-align: top;">
                <video src="https://github.com/user-attachments/assets/97fa0710-4f14-4a6d-b6f7-f3a2e9f7486e" width="100%" controls autoplay loop></video>
            </td>
            <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
                <p>The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge. The setting appears playful, with colorful toys scattered around and a soft rug underfoot, while sunlight streams through a nearby window, highlighting the fluttering cape and adding to the impression of heroism. The overall atmosphere is lighthearted and fun, with the baby's expressions capturing a mix of innocence and an adorable attempt at bravery, as if truly ready to save the day.</p>
            </td>
            <td style="width: 25%; vertical-align: top;">
                <video src="https://github.com/user-attachments/assets/90b547a3-247c-4bb0-abae-ba53483b7b6e" width="100%" controls autoplay loop></video>
            </td>
        </tr>
        <tr>
            <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
                <p>The video features a man standing next to an airplane, engaged in a conversation on his cell phone. he is wearing sunglasses and a black top, and he appears to be talking seriously. The airplane has a green stripe running along its side, and there is a large engine visible behind his. The man seems to be standing near the entrance of the airplane, possibly preparing to board or just having disembarked. The setting suggests that he might be at an airport or a private airfield. The overall atmosphere of the video is professional and focused, with the man's attire and the presence of the airplane indicating a business or travel context.</p>
            </td>
            <td style="width: 25%; vertical-align: top;">
                <video src="https://github.com/user-attachments/assets/55680c58-de86-48b4-8d86-e9906a3185c3" width="100%" controls autoplay loop></video>
            </td>
            <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
                <p>The video features a woman with blonde hair standing on a beach near the water's edge. She is wearing a black swimsuit and appears to be enjoying her time by the sea. The sky above is clear with some clouds, and the ocean waves gently lap against the shore. The woman seems to be holding something white in her hand, possibly a piece of driftwood or a small object found on the beach. The overall atmosphere of the video is serene and relaxing, capturing the beauty of nature and the simple pleasure of being by the ocean.</p>
            </td>
            <td style="width: 25%; vertical-align: top;">
                <video src="https://github.com/user-attachments/assets/8d06e702-f80e-4cb2-abc2-b0f519ec3f11" width="100%" controls autoplay loop></video>
            </td>
        </tr>
        <tr>
            <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
                <p>The video features a man sitting in a red armchair, enjoying a cup of coffee or tea. he is dressed in a light-colored outfit and has long dark-haired hair. The setting appears to be indoors, with large windows providing a view of a misty or foggy coastal landscape outside. The room has a modern design with geometric structures visible in the background. There is a small round table next to the armchair, also holding a cup. The overall atmosphere suggests a calm and serene moment, possibly during a cold or rainy day by the sea.</p>
            </td>
            <td style="width: 25%; vertical-align: top;">
                <video src="https://github.com/user-attachments/assets/ab9c655e-84c2-47ed-85d9-039a7f64adfe" width="100%" controls autoplay loop></video>
            </td>
            <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
                <p>The video shows a young boy sitting at a table, eating a piece of food. He appears to be enjoying his meal, as he takes a bite and chews it. The boy is wearing a blue shirt and has short hair. The background is dark, with some light coming from the left side of the frame. There is a straw visible on the right side of the frame, suggesting that there may be a drink next to the boy's plate. The overall atmosphere of the video seems casual and relaxed, with the focus on the boy's enjoyment of his food.</p>
            </td>
            <td style="width: 25%; vertical-align: top;">
                <video src="https://github.com/user-attachments/assets/8014b02e-e1c4-4df7-b7f3-cebfb01fa373" width="100%" controls autoplay loop></video>
            </td>
        </tr>
        <tr>
            <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
                <p>The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel.</p>
            </td>
            <td style="width: 25%; vertical-align: top;">
                <video src="https://github.com/user-attachments/assets/e4bc3169-d3d4-46e2-a667-8b456ead9465" width="100%" controls autoplay loop></video>
            </td>
            <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
                <p>The video features a young man standing outdoors in a snowy park. he is wearing a colorful winter jacket with a floral pattern and a white knit hat. The background shows a snowy landscape with trees, benches, and a metal fence. The ground is covered in snow, and there is a light snowfall in the air. The man appears to be enjoying the winter weather, as he smiles and gives a thumbs-up gesture towards the camera. The overall atmosphere of the video is cheerful and festive, capturing the beauty of a snowy day in a park.</p>
            </td>
            <td style="width: 25%; vertical-align: top;">
                <video src="https://github.com/user-attachments/assets/e4e3e519-95d4-44e0-afa7-9a833f99e090" width="100%" controls autoplay loop></video>
            </td>
        </tr>
    </table>
        """)
    

    generate_button.click(
        fn=plex,
        inputs=[prompt, image_input, seed_param, enable_scale, enable_rife],
        outputs=[video_output, download_video_button, download_gif_button, seed_text],
    )

demo.queue(max_size=15)
demo.launch(debug=True)