Update app.py
Browse files
app.py
CHANGED
@@ -195,7 +195,48 @@ def delete_old_files():
|
|
195 |
time.sleep(600)
|
196 |
|
197 |
|
198 |
-
threading.Thread(target=delete_old_files, daemon=True).start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
examples_images = [
|
200 |
["asserts/example_images/1.png", "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon."],
|
201 |
["asserts/example_images/2.png", "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel."],
|
@@ -321,45 +362,7 @@ with gr.Blocks() as demo:
|
|
321 |
</tr>
|
322 |
</table>
|
323 |
""")
|
324 |
-
|
325 |
-
def generate(
|
326 |
-
prompt,
|
327 |
-
image_input,
|
328 |
-
seed_value,
|
329 |
-
scale_status,
|
330 |
-
rife_status,
|
331 |
-
progress=gr.Progress(track_tqdm=True)
|
332 |
-
):
|
333 |
-
latents, seed = infer(
|
334 |
-
prompt,
|
335 |
-
image_input,
|
336 |
-
num_inference_steps=5,
|
337 |
-
guidance_scale=7.0,
|
338 |
-
seed=seed_value,
|
339 |
-
progress=progress,
|
340 |
-
)
|
341 |
-
if scale_status:
|
342 |
-
latents = upscale_batch_and_concatenate(upscale_model, latents, device)
|
343 |
-
if rife_status:
|
344 |
-
latents = rife_inference_with_latents(frame_interpolation_model, latents)
|
345 |
-
|
346 |
-
batch_size = latents.shape[0]
|
347 |
-
batch_video_frames = []
|
348 |
-
for batch_idx in range(batch_size):
|
349 |
-
pt_image = latents[batch_idx]
|
350 |
-
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
|
351 |
-
|
352 |
-
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
|
353 |
-
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
|
354 |
-
batch_video_frames.append(image_pil)
|
355 |
-
|
356 |
-
video_path = save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
|
357 |
-
video_update = gr.update(visible=True, value=video_path)
|
358 |
-
gif_path = convert_to_gif(video_path)
|
359 |
-
gif_update = gr.update(visible=True, value=gif_path)
|
360 |
-
seed_update = gr.update(visible=True, value=seed)
|
361 |
-
|
362 |
-
return video_path, video_update, gif_update, seed_update
|
363 |
|
364 |
generate_button.click(
|
365 |
generate,
|
@@ -367,6 +370,5 @@ with gr.Blocks() as demo:
|
|
367 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
368 |
)
|
369 |
|
370 |
-
|
371 |
-
|
372 |
-
demo.launch(debug=True)
|
|
|
195 |
time.sleep(600)
|
196 |
|
197 |
|
198 |
+
##threading.Thread(target=delete_old_files, daemon=True).start()
|
199 |
+
@spaces.GPU
|
200 |
+
def generate(
|
201 |
+
prompt,
|
202 |
+
image_input,
|
203 |
+
seed_value,
|
204 |
+
scale_status,
|
205 |
+
rife_status,
|
206 |
+
progress=gr.Progress(track_tqdm=True)
|
207 |
+
):
|
208 |
+
latents, seed = infer(
|
209 |
+
prompt,
|
210 |
+
image_input,
|
211 |
+
num_inference_steps=5,
|
212 |
+
guidance_scale=7.0,
|
213 |
+
seed=seed_value,
|
214 |
+
progress=progress,
|
215 |
+
)
|
216 |
+
if scale_status:
|
217 |
+
latents = upscale_batch_and_concatenate(upscale_model, latents, device)
|
218 |
+
if rife_status:
|
219 |
+
latents = rife_inference_with_latents(frame_interpolation_model, latents)
|
220 |
+
|
221 |
+
batch_size = latents.shape[0]
|
222 |
+
batch_video_frames = []
|
223 |
+
for batch_idx in range(batch_size):
|
224 |
+
pt_image = latents[batch_idx]
|
225 |
+
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
|
226 |
+
|
227 |
+
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
|
228 |
+
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
|
229 |
+
batch_video_frames.append(image_pil)
|
230 |
+
|
231 |
+
video_path = save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
|
232 |
+
video_update = gr.update(visible=True, value=video_path)
|
233 |
+
gif_path = convert_to_gif(video_path)
|
234 |
+
gif_update = gr.update(visible=True, value=gif_path)
|
235 |
+
seed_update = gr.update(visible=True, value=seed)
|
236 |
+
|
237 |
+
return video_path, video_update, gif_update, seed_update
|
238 |
+
|
239 |
+
|
240 |
examples_images = [
|
241 |
["asserts/example_images/1.png", "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon."],
|
242 |
["asserts/example_images/2.png", "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel."],
|
|
|
362 |
</tr>
|
363 |
</table>
|
364 |
""")
|
365 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
generate_button.click(
|
368 |
generate,
|
|
|
370 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
371 |
)
|
372 |
|
373 |
+
demo.queue(max_size=15)
|
374 |
+
demo.launch(debug=True)
|
|