File size: 4,602 Bytes
c7c7b6a
5a1e198
ca19f3a
c7c7b6a
5e885f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bea84
 
5e885f1
 
 
82bea84
 
 
 
 
 
 
 
 
 
 
 
 
5e885f1
82bea84
9870495
7d03065
ef8ec9c
5e885f1
 
ef8ec9c
7d03065
ef8ec9c
 
7d03065
ef8ec9c
 
7d03065
 
5e885f1
 
7d03065
5e885f1
 
ef8ec9c
7d03065
ef8ec9c
 
 
 
 
 
 
 
 
5e885f1
 
 
 
 
 
 
7d03065
 
5e885f1
 
 
 
 
ef8ec9c
5e885f1
 
7d03065
82bea84
5e885f1
 
ef8ec9c
 
5e885f1
 
 
 
 
ef8ec9c
5e885f1
 
 
 
 
 
 
 
 
 
 
 
 
ef8ec9c
 
 
 
 
 
5e885f1
 
7d03065
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Install required dependencies if not present
import os
os.system("pip install streamlit pandas xlsxwriter openpyxl")

import streamlit as st
import pandas as pd
import xlsxwriter
from io import BytesIO
from collections import defaultdict

# Function to find repeated amino acids in the protein sequence
def find_homorepeats(protein):
    n = len(protein)
    freq = defaultdict(int)
    i = 0

    while i < n:
        curr = protein[i]
        repeat = ""
        while i < n and curr == protein[i]:
            repeat += protein[i]
            i += 1

        # Only consider repeats of length > 1
        if len(repeat) > 1:
            freq[repeat] += 1

    return freq

# Function to process a single Excel sheet and return its analysis
def process_excel(excel_data):
    homorepeats = set()
    sequence_data = []

    for sheet_name in excel_data.sheet_names:
        df = excel_data.parse(sheet_name)
        if len(df.columns) < 3:
            st.error(f"Error: The sheet '{sheet_name}' must have at least three columns: ID, Protein Name, Sequence")
            return None, None

        for _, row in df.iterrows():
            entry_id = str(row[0])
            protein_name = str(row[1])
            sequence = str(row[2]).replace('"', '').replace(' ', '')
            freq = find_homorepeats(sequence)
            sequence_data.append((entry_id, protein_name, freq))
            homorepeats.update(freq.keys())  # Collect unique homorepeats

    return homorepeats, sequence_data

# Function to generate and download Excel workbook with separate sheets for each input file
def create_excel(sequences_data, homorepeats, filenames):
    output = BytesIO()
    workbook = xlsxwriter.Workbook(output, {'in_memory': True})

    # Iterate through sequences data grouped by filenames and create separate sheets
    for file_index, file_data in enumerate(sequences_data):
        filename = filenames[file_index]
        worksheet = workbook.add_worksheet(filename[:31])  # Limit sheet name to 31 characters

        # Write the header for the current file
        worksheet.write(0, 0, "Entry ID")
        worksheet.write(0, 1, "Protein Name")
        col = 2
        for repeat in sorted(homorepeats):
            worksheet.write(0, col, repeat)
            col += 1

        # Write data for each sequence in the current file
        row = 1
        for entry_id, protein_name, freq in file_data:
            worksheet.write(row, 0, entry_id)
            worksheet.write(row, 1, protein_name)
            col = 2
            for repeat in sorted(homorepeats):
                worksheet.write(row, col, freq.get(repeat, 0))
                col += 1
            row += 1

    workbook.close()
    output.seek(0)
    return output

# Streamlit UI components
st.title("Protein Homorepeat Analysis")

# Step 1: Upload Excel Files
uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])

# Step 2: Process files and display results
if uploaded_files:
    all_homorepeats = set()
    all_sequences_data = []
    filenames = []

    for file in uploaded_files:
        excel_data = pd.ExcelFile(file)
        homorepeats, sequence_data = process_excel(excel_data)
        if homorepeats is not None:
            all_homorepeats.update(homorepeats)
            all_sequences_data.append(sequence_data)
            filenames.append(file.name)

    if all_sequences_data:
        st.success(f"Processed {len(uploaded_files)} files successfully!")

        # Step 3: Generate and download the Excel report
        excel_file = create_excel(all_sequences_data, all_homorepeats, filenames)

        # Download the Excel file
        st.download_button(
            label="Download Excel file",
            data=excel_file,
            file_name="protein_homorepeat_results.xlsx",
            mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        )

        # Step 4: Display summary table
        if st.checkbox("Show Results Table"):
            # Convert the sequences data into a DataFrame for easy display
            rows = []
            for file_index, file_data in enumerate(all_sequences_data):
                filename = filenames[file_index]
                for entry_id, protein_name, freq in file_data:
                    row = {"Filename": filename, "Entry ID": entry_id, "Protein Name": protein_name}
                    row.update({repeat: freq.get(repeat, 0) for repeat in sorted(all_homorepeats)})
                    rows.append(row)

            result_df = pd.DataFrame(rows)
            st.dataframe(result_df)