Update app.py
Browse files
app.py
CHANGED
@@ -54,32 +54,31 @@ def process_csv(file):
|
|
54 |
|
55 |
return homorepeats, sequence_data
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
58 |
def create_excel(sequences_data, homorepeats, filenames):
|
59 |
output = BytesIO()
|
60 |
workbook = xlsxwriter.Workbook(output, {'in_memory': True})
|
61 |
-
worksheet = workbook.add_worksheet()
|
62 |
-
|
63 |
-
row = 0
|
64 |
|
65 |
-
# Iterate through sequences data grouped by filenames
|
66 |
for file_index, file_data in enumerate(sequences_data):
|
67 |
filename = filenames[file_index]
|
68 |
-
|
69 |
-
# Write filename as a separator row
|
70 |
-
worksheet.write(row, 0, f"File: {filename}")
|
71 |
-
row += 1
|
72 |
|
73 |
# Write the header for the current file
|
74 |
-
worksheet.write(
|
75 |
-
worksheet.write(
|
76 |
col = 2
|
77 |
for repeat in sorted(homorepeats):
|
78 |
-
worksheet.write(
|
79 |
col += 1
|
80 |
-
row += 1
|
81 |
|
82 |
# Write data for each sequence in the current file
|
|
|
83 |
for entry_id, protein_name, freq in file_data:
|
84 |
worksheet.write(row, 0, entry_id)
|
85 |
worksheet.write(row, 1, protein_name)
|
@@ -89,9 +88,6 @@ def create_excel(sequences_data, homorepeats, filenames):
|
|
89 |
col += 1
|
90 |
row += 1
|
91 |
|
92 |
-
# Add an empty row as a separator between files
|
93 |
-
row += 1
|
94 |
-
|
95 |
workbook.close()
|
96 |
output.seek(0)
|
97 |
return output
|
@@ -99,8 +95,8 @@ def create_excel(sequences_data, homorepeats, filenames):
|
|
99 |
# Streamlit UI components
|
100 |
st.title("Protein Homorepeat Analysis")
|
101 |
|
102 |
-
# Step 1: Upload
|
103 |
-
uploaded_files = st.file_uploader("Upload
|
104 |
|
105 |
# Step 2: Process files and display results
|
106 |
if uploaded_files:
|
@@ -109,7 +105,8 @@ if uploaded_files:
|
|
109 |
filenames = []
|
110 |
|
111 |
for file in uploaded_files:
|
112 |
-
|
|
|
113 |
if homorepeats is not None:
|
114 |
all_homorepeats.update(homorepeats)
|
115 |
all_sequences_data.append(sequence_data)
|
@@ -141,4 +138,21 @@ if uploaded_files:
|
|
141 |
rows.append(row)
|
142 |
|
143 |
result_df = pd.DataFrame(rows)
|
144 |
-
st.dataframe(result_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
return homorepeats, sequence_data
|
56 |
|
57 |
+
import pandas as pd
|
58 |
+
import streamlit as st
|
59 |
+
from io import BytesIO
|
60 |
+
import xlsxwriter
|
61 |
+
|
62 |
+
# Function to generate and download Excel workbook with separate sheets for each input file
|
63 |
def create_excel(sequences_data, homorepeats, filenames):
|
64 |
output = BytesIO()
|
65 |
workbook = xlsxwriter.Workbook(output, {'in_memory': True})
|
|
|
|
|
|
|
66 |
|
67 |
+
# Iterate through sequences data grouped by filenames and create separate sheets
|
68 |
for file_index, file_data in enumerate(sequences_data):
|
69 |
filename = filenames[file_index]
|
70 |
+
worksheet = workbook.add_worksheet(filename[:31]) # Limit sheet name to 31 characters
|
|
|
|
|
|
|
71 |
|
72 |
# Write the header for the current file
|
73 |
+
worksheet.write(0, 0, "Entry ID")
|
74 |
+
worksheet.write(0, 1, "Protein Name")
|
75 |
col = 2
|
76 |
for repeat in sorted(homorepeats):
|
77 |
+
worksheet.write(0, col, repeat)
|
78 |
col += 1
|
|
|
79 |
|
80 |
# Write data for each sequence in the current file
|
81 |
+
row = 1
|
82 |
for entry_id, protein_name, freq in file_data:
|
83 |
worksheet.write(row, 0, entry_id)
|
84 |
worksheet.write(row, 1, protein_name)
|
|
|
88 |
col += 1
|
89 |
row += 1
|
90 |
|
|
|
|
|
|
|
91 |
workbook.close()
|
92 |
output.seek(0)
|
93 |
return output
|
|
|
95 |
# Streamlit UI components
|
96 |
st.title("Protein Homorepeat Analysis")
|
97 |
|
98 |
+
# Step 1: Upload Excel Files
|
99 |
+
uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])
|
100 |
|
101 |
# Step 2: Process files and display results
|
102 |
if uploaded_files:
|
|
|
105 |
filenames = []
|
106 |
|
107 |
for file in uploaded_files:
|
108 |
+
excel_data = pd.ExcelFile(file)
|
109 |
+
homorepeats, sequence_data = process_excel(excel_data) # Modify your process_csv function to process_excel
|
110 |
if homorepeats is not None:
|
111 |
all_homorepeats.update(homorepeats)
|
112 |
all_sequences_data.append(sequence_data)
|
|
|
138 |
rows.append(row)
|
139 |
|
140 |
result_df = pd.DataFrame(rows)
|
141 |
+
st.dataframe(result_df)
|
142 |
+
|
143 |
+
# Function to process the Excel file
|
144 |
+
def process_excel(excel_data):
|
145 |
+
# Custom logic to process each sheet within the Excel file
|
146 |
+
homorepeats = set()
|
147 |
+
sequence_data = []
|
148 |
+
|
149 |
+
for sheet_name in excel_data.sheet_names:
|
150 |
+
df = excel_data.parse(sheet_name)
|
151 |
+
for index, row in df.iterrows():
|
152 |
+
entry_id = row['Entry ID']
|
153 |
+
protein_name = row['Protein Name']
|
154 |
+
freq = {repeat: row[repeat] for repeat in df.columns[2:]} # Assuming repeats start from 3rd column
|
155 |
+
sequence_data.append((entry_id, protein_name, freq))
|
156 |
+
homorepeats.update(freq.keys())
|
157 |
+
|
158 |
+
return homorepeats, sequence_data
|