Files changed (1) hide show
  1. app.py +639 -0
app.py ADDED
@@ -0,0 +1,639 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import shutil
4
+ import torch
5
+ import fire
6
+ import gradio as gr
7
+ import numpy as np
8
+ import cv2
9
+ from PIL import Image
10
+ import plotly.graph_objects as go
11
+ from functools import partial
12
+ import trimesh
13
+ import tempfile
14
+ from rembg import remove
15
+
16
+ code_dir = "../"
17
+ sys.path.append(code_dir)
18
+ from utils.zero123_utils import init_model, predict_stage1_gradio, zero123_infer
19
+ from utils.sam_utils import sam_init, sam_out_nosave
20
+ from utils.utils import image_preprocess_nosave, gen_poses
21
+ from elevation_estimate.estimate_wild_imgs import estimate_elev
22
+
23
+ _GPU_INDEX = 0
24
+ _HALF_PRECISION = True
25
+ _MESH_RESOLUTION = 256
26
+
27
+ _TITLE = '''One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization'''
28
+ _DESCRIPTION = '''
29
+ <div>
30
+ <a style="display:inline-block" href="http://one-2-3-45.com"><img src="https://img.shields.io/badge/Project_Homepage-f9f7f7?logo="></a>
31
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2306.16928"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a>
32
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/One-2-3-45/One-2-3-45'><img src='https://img.shields.io/github/stars/One-2-3-45/One-2-3-45?style=social' /></a>
33
+ </div>
34
+ We reconstruct a 3D textured mesh from a single image by initially predicting multi-view images and then lifting them to 3D.
35
+ '''
36
+ _USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Run Generation**."
37
+ _BBOX_1 = "Predicting bounding box for the input image..."
38
+ _BBOX_2 = "Bounding box adjusted. Continue adjusting or **Run Generation**."
39
+ _BBOX_3 = "Bounding box predicted. Adjust it using sliders or **Run Generation**."
40
+ _SAM = "Preprocessing the input image... (safety check, SAM segmentation, *etc*.)"
41
+ _GEN_1 = "Predicting multi-view images... (may take \~13 seconds) <br> Images will be shown in the bottom right blocks."
42
+ _GEN_2 = "Predicting nearby views and generating mesh... (may take \~33 seconds) <br> Mesh will be shown on the right."
43
+ _DONE = "Done! Mesh is shown on the right. <br> If it is not satisfactory, please select **Retry view** checkboxes for inaccurate views and click **Regenerate selected view(s)** at the bottom."
44
+ _REGEN_1 = "Selected view(s) are regenerated. You can click **Regenerate nearby views and mesh**. <br> Alternatively, if the regenerated view(s) are still not satisfactory, you can repeat the previous step (select the view and regenerate)."
45
+ _REGEN_2 = "Regeneration done. Mesh is shown on the right."
46
+
47
+
48
+ def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
49
+ '''
50
+ :param polar_deg (float).
51
+ :param azimuth_deg (float).
52
+ :param radius_m (float).
53
+ :param fov_deg (float).
54
+ :return (5, 3) array of float with (x, y, z).
55
+ '''
56
+ polar_rad = np.deg2rad(polar_deg)
57
+ azimuth_rad = np.deg2rad(azimuth_deg)
58
+ fov_rad = np.deg2rad(fov_deg)
59
+ polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
60
+
61
+ # Camera pose center:
62
+ cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
63
+ cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
64
+ cam_z = radius_m * np.sin(polar_rad)
65
+
66
+ # Obtain four corners of camera frustum, assuming it is looking at origin.
67
+ # First, obtain camera extrinsics (rotation matrix only):
68
+ camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
69
+ -np.sin(azimuth_rad),
70
+ -np.cos(azimuth_rad) * np.sin(polar_rad)],
71
+ [np.sin(azimuth_rad) * np.cos(polar_rad),
72
+ np.cos(azimuth_rad),
73
+ -np.sin(azimuth_rad) * np.sin(polar_rad)],
74
+ [np.sin(polar_rad),
75
+ 0.0,
76
+ np.cos(polar_rad)]])
77
+
78
+ # Multiply by corners in camera space to obtain go to space:
79
+ corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
80
+ corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
81
+ corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
82
+ corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
83
+ corn1 = np.dot(camera_R, corn1)
84
+ corn2 = np.dot(camera_R, corn2)
85
+ corn3 = np.dot(camera_R, corn3)
86
+ corn4 = np.dot(camera_R, corn4)
87
+
88
+ # Now attach as offset to actual 3D camera position:
89
+ corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
90
+ corn_x1 = cam_x + corn1[0]
91
+ corn_y1 = cam_y + corn1[1]
92
+ corn_z1 = cam_z + corn1[2]
93
+ corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
94
+ corn_x2 = cam_x + corn2[0]
95
+ corn_y2 = cam_y + corn2[1]
96
+ corn_z2 = cam_z + corn2[2]
97
+ corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
98
+ corn_x3 = cam_x + corn3[0]
99
+ corn_y3 = cam_y + corn3[1]
100
+ corn_z3 = cam_z + corn3[2]
101
+ corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
102
+ corn_x4 = cam_x + corn4[0]
103
+ corn_y4 = cam_y + corn4[1]
104
+ corn_z4 = cam_z + corn4[2]
105
+
106
+ xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
107
+ ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
108
+ zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
109
+
110
+ return np.array([xs, ys, zs]).T
111
+
112
+ class CameraVisualizer:
113
+ def __init__(self, gradio_plot):
114
+ self._gradio_plot = gradio_plot
115
+ self._fig = None
116
+ self._polar = 0.0
117
+ self._azimuth = 0.0
118
+ self._radius = 0.0
119
+ self._raw_image = None
120
+ self._8bit_image = None
121
+ self._image_colorscale = None
122
+
123
+ def encode_image(self, raw_image, elev=90):
124
+ '''
125
+ :param raw_image (H, W, 3) array of uint8 in [0, 255].
126
+ '''
127
+ # https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
128
+
129
+ dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
130
+ idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
131
+
132
+ self._raw_image = raw_image
133
+ self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
134
+ # self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
135
+ # 'P', palette='WEB', dither=None)
136
+ self._image_colorscale = [
137
+ [i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
138
+ self._elev = elev
139
+ # return self.update_figure()
140
+
141
+ def update_figure(self):
142
+ fig = go.Figure()
143
+
144
+ if self._raw_image is not None:
145
+ (H, W, C) = self._raw_image.shape
146
+
147
+ x = np.zeros((H, W))
148
+ (y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
149
+
150
+ angle_deg = self._elev-90
151
+ angle = np.radians(90-self._elev)
152
+ rotation_matrix = np.array([
153
+ [np.cos(angle), 0, np.sin(angle)],
154
+ [0, 1, 0],
155
+ [-np.sin(angle), 0, np.cos(angle)]
156
+ ])
157
+ # Assuming x, y, z are the original 3D coordinates of the image
158
+ coordinates = np.stack((x, y, z), axis=-1) # Combine x, y, z into a single array
159
+ # Apply the rotation matrix
160
+ rotated_coordinates = np.matmul(coordinates, rotation_matrix)
161
+ # Extract the new x, y, z coordinates from the rotated coordinates
162
+ x, y, z = rotated_coordinates[..., 0], rotated_coordinates[..., 1], rotated_coordinates[..., 2]
163
+
164
+ fig.add_trace(go.Surface(
165
+ x=x, y=y, z=z,
166
+ surfacecolor=self._8bit_image,
167
+ cmin=0,
168
+ cmax=255,
169
+ colorscale=self._image_colorscale,
170
+ showscale=False,
171
+ lighting_diffuse=1.0,
172
+ lighting_ambient=1.0,
173
+ lighting_fresnel=1.0,
174
+ lighting_roughness=1.0,
175
+ lighting_specular=0.3))
176
+
177
+ scene_bounds = 3.5
178
+ base_radius = 2.5
179
+ zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
180
+ fov_deg = 50.0
181
+ edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
182
+
183
+ input_cone = calc_cam_cone_pts_3d(
184
+ angle_deg, 0.0, base_radius, fov_deg) # (5, 3).
185
+ output_cone = calc_cam_cone_pts_3d(
186
+ self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
187
+ output_cones = []
188
+ for i in range(1,4):
189
+ output_cones.append(calc_cam_cone_pts_3d(
190
+ angle_deg, i*90, base_radius + self._radius * zoom_scale, fov_deg))
191
+ delta_deg = 30 if angle_deg <= -15 else -30
192
+ for i in range(4):
193
+ output_cones.append(calc_cam_cone_pts_3d(
194
+ angle_deg+delta_deg, 30+i*90, base_radius + self._radius * zoom_scale, fov_deg))
195
+
196
+ cones = [(input_cone, 'rgb(174, 54, 75)', 'Input view (Predicted view 1)')]
197
+ for i in range(len(output_cones)):
198
+ cones.append((output_cones[i], 'rgb(32, 77, 125)', f'Predicted view {i+2}'))
199
+
200
+ for idx, (cone, clr, legend) in enumerate(cones):
201
+
202
+ for (i, edge) in enumerate(edges):
203
+ (x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
204
+ (y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
205
+ (z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
206
+ fig.add_trace(go.Scatter3d(
207
+ x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
208
+ line=dict(color=clr, width=3),
209
+ name=legend, showlegend=(i == 1) and (idx <= 1)))
210
+
211
+ # Add label.
212
+ if cone[0, 2] <= base_radius / 2.0:
213
+ fig.add_trace(go.Scatter3d(
214
+ x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
215
+ mode='text', text=legend, textposition='bottom center'))
216
+ else:
217
+ fig.add_trace(go.Scatter3d(
218
+ x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
219
+ mode='text', text=legend, textposition='top center'))
220
+
221
+ # look at center of scene
222
+ fig.update_layout(
223
+ # width=640,
224
+ # height=480,
225
+ # height=400,
226
+ height=450,
227
+ autosize=True,
228
+ hovermode=False,
229
+ margin=go.layout.Margin(l=0, r=0, b=0, t=0),
230
+ showlegend=False,
231
+ legend=dict(
232
+ yanchor='bottom',
233
+ y=0.01,
234
+ xanchor='right',
235
+ x=0.99,
236
+ ),
237
+ scene=dict(
238
+ aspectmode='manual',
239
+ aspectratio=dict(x=1, y=1, z=1.0),
240
+ camera=dict(
241
+ eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
242
+ center=dict(x=0.0, y=0.0, z=0.0),
243
+ up=dict(x=0.0, y=0.0, z=1.0)),
244
+ xaxis_title='',
245
+ yaxis_title='',
246
+ zaxis_title='',
247
+ xaxis=dict(
248
+ range=[-scene_bounds, scene_bounds],
249
+ showticklabels=False,
250
+ showgrid=True,
251
+ zeroline=False,
252
+ showbackground=True,
253
+ showspikes=False,
254
+ showline=False,
255
+ ticks=''),
256
+ yaxis=dict(
257
+ range=[-scene_bounds, scene_bounds],
258
+ showticklabels=False,
259
+ showgrid=True,
260
+ zeroline=False,
261
+ showbackground=True,
262
+ showspikes=False,
263
+ showline=False,
264
+ ticks=''),
265
+ zaxis=dict(
266
+ range=[-scene_bounds, scene_bounds],
267
+ showticklabels=False,
268
+ showgrid=True,
269
+ zeroline=False,
270
+ showbackground=True,
271
+ showspikes=False,
272
+ showline=False,
273
+ ticks='')))
274
+
275
+ self._fig = fig
276
+ return fig
277
+
278
+
279
+ def stage1_run(models, device, cam_vis, tmp_dir,
280
+ input_im, scale, ddim_steps, elev=None, rerun_all=[],
281
+ *btn_retrys):
282
+ is_rerun = True if cam_vis is None else False
283
+ model = models['turncam']
284
+
285
+ stage1_dir = os.path.join(tmp_dir, "stage1_8")
286
+ if not is_rerun:
287
+ os.makedirs(stage1_dir, exist_ok=True)
288
+ output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4)), device=device, ddim_steps=ddim_steps, scale=scale)
289
+ stage2_steps = 50 # ddim_steps
290
+ zero123_infer(model, tmp_dir, indices=[0], device=device, ddim_steps=stage2_steps, scale=scale)
291
+ try:
292
+ elev_output = estimate_elev(tmp_dir)
293
+ except:
294
+ print("Failed to estimate polar angle")
295
+ elev_output = 90
296
+ print("Estimated polar angle:", elev_output)
297
+ gen_poses(tmp_dir, elev_output)
298
+ show_in_im1 = np.asarray(input_im, dtype=np.uint8)
299
+ cam_vis.encode_image(show_in_im1, elev=elev_output)
300
+ new_fig = cam_vis.update_figure()
301
+
302
+ flag_lower_cam = elev_output <= 75
303
+ if flag_lower_cam:
304
+ output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4,8)), device=device, ddim_steps=ddim_steps, scale=scale)
305
+ else:
306
+ output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(8,12)), device=device, ddim_steps=ddim_steps, scale=scale)
307
+ torch.cuda.empty_cache()
308
+ return (90-elev_output, new_fig, *output_ims, *output_ims_2)
309
+ else:
310
+ rerun_idx = [i for i in range(len(btn_retrys)) if btn_retrys[i]]
311
+ if 90-int(elev["label"]) > 75:
312
+ rerun_idx_in = [i if i < 4 else i+4 for i in rerun_idx]
313
+ else:
314
+ rerun_idx_in = rerun_idx
315
+ for idx in rerun_idx_in:
316
+ if idx not in rerun_all:
317
+ rerun_all.append(idx)
318
+ print("rerun_idx", rerun_all)
319
+ output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=rerun_idx_in, device=device, ddim_steps=ddim_steps, scale=scale)
320
+ outputs = [gr.update(visible=True)] * 8
321
+ for idx, view_idx in enumerate(rerun_idx):
322
+ outputs[view_idx] = output_ims[idx]
323
+ reset = [gr.update(value=False)] * 8
324
+ torch.cuda.empty_cache()
325
+ return (rerun_all, *reset, *outputs)
326
+
327
+ def stage2_run(models, device, tmp_dir,
328
+ elev, scale, is_glb=False, rerun_all=[], stage2_steps=50):
329
+ flag_lower_cam = 90-int(elev["label"]) <= 75
330
+ is_rerun = True if rerun_all else False
331
+ model = models['turncam']
332
+ if not is_rerun:
333
+ if flag_lower_cam:
334
+ zero123_infer(model, tmp_dir, indices=list(range(1,8)), device=device, ddim_steps=stage2_steps, scale=scale)
335
+ else:
336
+ zero123_infer(model, tmp_dir, indices=list(range(1,4))+list(range(8,12)), device=device, ddim_steps=stage2_steps, scale=scale)
337
+ else:
338
+ print("rerun_idx", rerun_all)
339
+ zero123_infer(model, tmp_dir, indices=rerun_all, device=device, ddim_steps=stage2_steps, scale=scale)
340
+
341
+ dataset = tmp_dir
342
+ main_dir_path = os.path.dirname(__file__)
343
+ torch.cuda.empty_cache()
344
+ os.chdir(os.path.join(code_dir, 'reconstruction/'))
345
+
346
+ bash_script = f'CUDA_VISIBLE_DEVICES={_GPU_INDEX} python exp_runner_generic_blender_val.py \
347
+ --specific_dataset_name {dataset} \
348
+ --mode export_mesh \
349
+ --conf confs/one2345_lod0_val_demo.conf \
350
+ --resolution {_MESH_RESOLUTION}'
351
+ print(bash_script)
352
+ os.system(bash_script)
353
+ os.chdir(main_dir_path)
354
+
355
+ ply_path = os.path.join(tmp_dir, f"mesh.ply")
356
+ mesh_ext = ".glb" if is_glb else ".obj"
357
+ mesh_path = os.path.join(tmp_dir, f"mesh{mesh_ext}")
358
+ # Read the textured mesh from .ply file
359
+ mesh = trimesh.load_mesh(ply_path)
360
+ rotation_matrix = trimesh.transformations.rotation_matrix(np.pi/2, [1, 0, 0])
361
+ mesh.apply_transform(rotation_matrix)
362
+ rotation_matrix = trimesh.transformations.rotation_matrix(np.pi, [0, 0, 1])
363
+ mesh.apply_transform(rotation_matrix)
364
+ # flip x
365
+ mesh.vertices[:, 0] = -mesh.vertices[:, 0]
366
+ mesh.faces = np.fliplr(mesh.faces)
367
+ # Export the mesh as .obj file with colors
368
+ if not is_glb:
369
+ mesh.export(mesh_path, file_type='obj', include_color=True)
370
+ else:
371
+ mesh.export(mesh_path, file_type='glb')
372
+ torch.cuda.empty_cache()
373
+
374
+ if not is_rerun:
375
+ return (mesh_path)
376
+ else:
377
+ return (mesh_path, gr.update(value=[]), gr.update(visible=False), gr.update(visible=False))
378
+
379
+ def nsfw_check(models, raw_im, device='cuda'):
380
+ safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
381
+ (_, has_nsfw_concept) = models['nsfw'](
382
+ images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
383
+ del safety_checker_input
384
+ if np.any(has_nsfw_concept):
385
+ print('NSFW content detected.')
386
+ return Image.open("unsafe.png")
387
+ else:
388
+ print('Safety check passed.')
389
+ return False
390
+
391
+ def preprocess_run(predictor, models, raw_im, lower_contrast, *bbox_sliders):
392
+ raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
393
+ check_results = nsfw_check(models, raw_im, device=predictor.device)
394
+ if check_results:
395
+ return check_results
396
+ image_sam = sam_out_nosave(predictor, raw_im.convert("RGB"), *bbox_sliders)
397
+ input_256 = image_preprocess_nosave(image_sam, lower_contrast=lower_contrast, rescale=True)
398
+ torch.cuda.empty_cache()
399
+ return input_256
400
+
401
+ def on_coords_slider(image, x_min, y_min, x_max, y_max, color=(88, 191, 131, 255)):
402
+ """Draw a bounding box annotation for an image."""
403
+ print("Slider adjusted, drawing bbox...")
404
+ image.thumbnail([512, 512], Image.Resampling.LANCZOS)
405
+ image_size = image.size
406
+ if max(image_size) > 224:
407
+ image.thumbnail([224, 224], Image.Resampling.LANCZOS)
408
+ shrink_ratio = max(image.size) / max(image_size)
409
+ x_min = int(x_min * shrink_ratio)
410
+ y_min = int(y_min * shrink_ratio)
411
+ x_max = int(x_max * shrink_ratio)
412
+ y_max = int(y_max * shrink_ratio)
413
+ image = cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2BGRA)
414
+ image = cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, int(max(max(image.shape) / 400*2, 2)))
415
+ return cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) # image[:, :, ::-1]
416
+
417
+ def init_bbox(image):
418
+ image.thumbnail([512, 512], Image.Resampling.LANCZOS)
419
+ width, height = image.size
420
+ image_rem = image.convert('RGBA')
421
+ image_nobg = remove(image_rem, alpha_matting=True)
422
+ arr = np.asarray(image_nobg)[:,:,-1]
423
+ x_nonzero = np.nonzero(arr.sum(axis=0))
424
+ y_nonzero = np.nonzero(arr.sum(axis=1))
425
+ x_min = int(x_nonzero[0].min())
426
+ y_min = int(y_nonzero[0].min())
427
+ x_max = int(x_nonzero[0].max())
428
+ y_max = int(y_nonzero[0].max())
429
+ image_mini = image.copy()
430
+ image_mini.thumbnail([224, 224], Image.Resampling.LANCZOS)
431
+ shrink_ratio = max(image_mini.size) / max(width, height)
432
+ x_min_shrink = int(x_min * shrink_ratio)
433
+ y_min_shrink = int(y_min * shrink_ratio)
434
+ x_max_shrink = int(x_max * shrink_ratio)
435
+ y_max_shrink = int(y_max * shrink_ratio)
436
+
437
+ return [on_coords_slider(image_mini, x_min_shrink, y_min_shrink, x_max_shrink, y_max_shrink),
438
+ gr.update(value=x_min, maximum=width),
439
+ gr.update(value=y_min, maximum=height),
440
+ gr.update(value=x_max, maximum=width),
441
+ gr.update(value=y_max, maximum=height)]
442
+
443
+
444
+ def run_demo(
445
+ device_idx=_GPU_INDEX,
446
+ ckpt='zero123-xl.ckpt'):
447
+
448
+ device = f"cuda:{device_idx}" if torch.cuda.is_available() else "cpu"
449
+ models = init_model(device, os.path.join(code_dir, 'zero123-xl.ckpt'), half_precision=_HALF_PRECISION)
450
+
451
+ # init sam model
452
+ predictor = sam_init(device_idx)
453
+
454
+ with open('instructions_12345.md', 'r') as f:
455
+ article = f.read()
456
+
457
+ # NOTE: Examples must match inputs
458
+ example_folder = os.path.join(os.path.dirname(__file__), 'demo_examples')
459
+ example_fns = os.listdir(example_folder)
460
+ example_fns.sort()
461
+ examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
462
+
463
+ # Compose demo layout & data flow.
464
+ with gr.Blocks(title=_TITLE, css="style.css") as demo:
465
+ with gr.Row():
466
+ with gr.Column(scale=1):
467
+ gr.Markdown('# ' + _TITLE)
468
+ with gr.Column(scale=0):
469
+ gr.DuplicateButton(value='Duplicate Space for private use',
470
+ elem_id='duplicate-button')
471
+ gr.Markdown(_DESCRIPTION)
472
+
473
+ with gr.Row(variant='panel'):
474
+ with gr.Column(scale=1.2):
475
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)
476
+
477
+ gr.Examples(
478
+ examples=examples_full, # NOTE: elements must match inputs list!
479
+ inputs=[image_block],
480
+ outputs=[image_block],
481
+ cache_examples=False,
482
+ label='Examples (click one of the images below to start)',
483
+ examples_per_page=40
484
+ )
485
+ preprocess_chk = gr.Checkbox(
486
+ False, label='Reduce image contrast (mitigate shadows on the backside)')
487
+ with gr.Accordion('Advanced options', open=False):
488
+ scale_slider = gr.Slider(0, 30, value=3, step=1,
489
+ label='Diffusion guidance scale')
490
+ steps_slider = gr.Slider(5, 200, value=75, step=5,
491
+ label='Number of diffusion inference steps')
492
+ glb_chk = gr.Checkbox(
493
+ False, label='Export the mesh in .glb format')
494
+
495
+ run_btn = gr.Button('Run Generation', variant='primary', interactive=False)
496
+ guide_text = gr.Markdown(_USER_GUIDE, visible=True)
497
+
498
+ with gr.Column(scale=.8):
499
+ with gr.Row():
500
+ bbox_block = gr.Image(type='pil', label="Bounding box", height=290, interactive=False)
501
+ sam_block = gr.Image(type='pil', label="SAM output", interactive=False)
502
+ max_width = max_height = 256
503
+ with gr.Row():
504
+ x_min_slider = gr.Slider(label="X min", interactive=True, value=0, minimum=0, maximum=max_width, step=1)
505
+ y_min_slider = gr.Slider(label="Y min", interactive=True, value=0, minimum=0, maximum=max_height, step=1)
506
+ with gr.Row():
507
+ x_max_slider = gr.Slider(label="X max", interactive=True, value=max_width, minimum=0, maximum=max_width, step=1)
508
+ y_max_slider = gr.Slider(label="Y max", interactive=True, value=max_height, minimum=0, maximum=max_height, step=1)
509
+ bbox_sliders = [x_min_slider, y_min_slider, x_max_slider, y_max_slider]
510
+
511
+ mesh_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="One-2-3-45's Textured Mesh", elem_id="model-3d-out")
512
+
513
+ with gr.Row(variant='panel'):
514
+ with gr.Column(scale=0.85):
515
+ elev_output = gr.Label(label='Estimated elevation (degree, w.r.t. the horizontal plane)')
516
+ vis_output = gr.Plot(label='Camera poses of the input view (red) and predicted views (blue)', elem_id="plot-out")
517
+
518
+ with gr.Column(scale=1.15):
519
+ gr.Markdown('Predicted multi-view images')
520
+ with gr.Row():
521
+ view_1 = gr.Image(interactive=False, height=200, show_label=False)
522
+ view_2 = gr.Image(interactive=False, height=200, show_label=False)
523
+ view_3 = gr.Image(interactive=False, height=200, show_label=False)
524
+ view_4 = gr.Image(interactive=False, height=200, show_label=False)
525
+ with gr.Row():
526
+ btn_retry_1 = gr.Checkbox(label='Retry view 1')
527
+ btn_retry_2 = gr.Checkbox(label='Retry view 2')
528
+ btn_retry_3 = gr.Checkbox(label='Retry view 3')
529
+ btn_retry_4 = gr.Checkbox(label='Retry view 4')
530
+ with gr.Row():
531
+ view_5 = gr.Image(interactive=False, height=200, show_label=False)
532
+ view_6 = gr.Image(interactive=False, height=200, show_label=False)
533
+ view_7 = gr.Image(interactive=False, height=200, show_label=False)
534
+ view_8 = gr.Image(interactive=False, height=200, show_label=False)
535
+ with gr.Row():
536
+ btn_retry_5 = gr.Checkbox(label='Retry view 5')
537
+ btn_retry_6 = gr.Checkbox(label='Retry view 6')
538
+ btn_retry_7 = gr.Checkbox(label='Retry view 7')
539
+ btn_retry_8 = gr.Checkbox(label='Retry view 8')
540
+ with gr.Row():
541
+ regen_view_btn = gr.Button('1. Regenerate selected view(s)', variant='secondary', visible=False)
542
+ regen_mesh_btn = gr.Button('2. Regenerate nearby views and mesh', variant='secondary', visible=False)
543
+
544
+ gr.Markdown(article)
545
+ gr.HTML("""
546
+ <div class="footer">
547
+ <p>
548
+ One-2-3-45 Demo by <a style="text-decoration:none" href="https://chaoxu.xyz" target="_blank">Chao Xu</a>
549
+ </p>
550
+ </div>
551
+ """)
552
+
553
+ update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
554
+
555
+ views = [view_1, view_2, view_3, view_4, view_5, view_6, view_7, view_8]
556
+ btn_retrys = [btn_retry_1, btn_retry_2, btn_retry_3, btn_retry_4, btn_retry_5, btn_retry_6, btn_retry_7, btn_retry_8]
557
+
558
+ rerun_idx = gr.State([])
559
+ tmp_dir = gr.State('./demo_tmp/tmp_dir')
560
+
561
+ def refresh(tmp_dir):
562
+ if os.path.exists(tmp_dir):
563
+ shutil.rmtree(tmp_dir)
564
+ tmp_dir = tempfile.TemporaryDirectory(dir=os.path.join(os.path.dirname(__file__), 'demo_tmp'))
565
+ print("create tmp_dir", tmp_dir.name)
566
+ clear = [gr.update(value=[])] + [None] * 5 + [gr.update(visible=False)] * 2 + [None] * 8 + [gr.update(value=False)] * 8
567
+ return (tmp_dir.name, *clear)
568
+
569
+ placeholder = gr.Image(visible=False)
570
+ tmp_func = lambda x: False if not x else gr.update(visible=False)
571
+ disable_func = lambda x: gr.update(interactive=False)
572
+ enable_func = lambda x: gr.update(interactive=True)
573
+ image_block.change(disable_func, inputs=run_btn, outputs=run_btn, queue=False
574
+ ).success(fn=refresh,
575
+ inputs=[tmp_dir],
576
+ outputs=[tmp_dir, rerun_idx, bbox_block, sam_block, elev_output, vis_output, mesh_output, regen_view_btn, regen_mesh_btn, *views, *btn_retrys],
577
+ queue=False
578
+ ).success(fn=tmp_func, inputs=[image_block], outputs=[placeholder], queue=False
579
+ ).success(fn=partial(update_guide, _BBOX_1), outputs=[guide_text], queue=False
580
+ ).success(fn=init_bbox,
581
+ inputs=[image_block],
582
+ outputs=[bbox_block, *bbox_sliders], queue=False
583
+ ).success(fn=partial(update_guide, _BBOX_3), outputs=[guide_text], queue=False
584
+ ).success(enable_func, inputs=run_btn, outputs=run_btn, queue=False)
585
+
586
+
587
+ for bbox_slider in bbox_sliders:
588
+ bbox_slider.release(fn=on_coords_slider,
589
+ inputs=[image_block, *bbox_sliders],
590
+ outputs=[bbox_block],
591
+ queue=False
592
+ ).success(fn=partial(update_guide, _BBOX_2), outputs=[guide_text], queue=False)
593
+
594
+ cam_vis = CameraVisualizer(vis_output)
595
+
596
+ # Define the function to be called when any of the btn_retry buttons are clicked
597
+ def on_retry_button_click(*btn_retrys):
598
+ any_checked = any([btn_retry for btn_retry in btn_retrys])
599
+ print('any_checked:', any_checked, [btn_retry for btn_retry in btn_retrys])
600
+ if any_checked:
601
+ return (gr.update(visible=True), gr.update(visible=True))
602
+ else:
603
+ return (gr.update(), gr.update())
604
+ # make regen_btn visible when any of the btn_retry is checked
605
+ for btn_retry in btn_retrys:
606
+ # Add the event handlers to the btn_retry buttons
607
+ btn_retry.change(fn=on_retry_button_click, inputs=[*btn_retrys], outputs=[regen_view_btn, regen_mesh_btn], queue=False)
608
+
609
+
610
+ run_btn.click(fn=partial(update_guide, _SAM), outputs=[guide_text], queue=False
611
+ ).success(fn=partial(preprocess_run, predictor, models),
612
+ inputs=[image_block, preprocess_chk, *bbox_sliders],
613
+ outputs=[sam_block]
614
+ ).success(fn=partial(update_guide, _GEN_1), outputs=[guide_text], queue=False
615
+ ).success(fn=partial(stage1_run, models, device, cam_vis),
616
+ inputs=[tmp_dir, sam_block, scale_slider, steps_slider],
617
+ outputs=[elev_output, vis_output, *views]
618
+ ).success(fn=partial(update_guide, _GEN_2), outputs=[guide_text], queue=False
619
+ ).success(fn=partial(stage2_run, models, device),
620
+ inputs=[tmp_dir, elev_output, scale_slider, glb_chk],
621
+ outputs=[mesh_output]
622
+ ).success(fn=partial(update_guide, _DONE), outputs=[guide_text], queue=False)
623
+
624
+
625
+ regen_view_btn.click(fn=partial(stage1_run, models, device, None),
626
+ inputs=[tmp_dir, sam_block, scale_slider, steps_slider, elev_output, rerun_idx, *btn_retrys],
627
+ outputs=[rerun_idx, *btn_retrys, *views]
628
+ ).success(fn=partial(update_guide, _REGEN_1), outputs=[guide_text], queue=False)
629
+ regen_mesh_btn.click(fn=partial(stage2_run, models, device),
630
+ inputs=[tmp_dir, elev_output, scale_slider, glb_chk, rerun_idx],
631
+ outputs=[mesh_output, rerun_idx, regen_view_btn, regen_mesh_btn]
632
+ ).success(fn=partial(update_guide, _REGEN_2), outputs=[guide_text], queue=False)
633
+
634
+
635
+ demo.queue().launch(share=True, max_threads=80) # auth=("admin", os.environ['PASSWD'])
636
+
637
+
638
+ if __name__ == '__main__':
639
+ fire.Fire(run_demo)