Spaces:
Runtime error
Runtime error
File size: 5,500 Bytes
c02a60c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
from asyncio.windows_events import NULL
from configparser import ParsingError
from logging import raiseExceptions
from sympy import comp
import yfinance as yf
import requests
import pandas as pd
from bs4 import BeautifulSoup
class Stock_Data(object):
'''
This class contains 5 methods responsible for choosing a stock's ticker, then checking whether the
stock exchange it is listed in is open or not, and in case it is, it gets data for the last 6 months
from "yfinance" module of Yahoo Inc. which will be fed to the models.
'''
def Ticker(self, tick):
'''
This method will "carry" the company's ticker, and it will also be used as a placeholder.
'''
global ticker
ticker = tick
return ticker
def status_getter(self, Ticker):
'''
This method gets the company ticker the user chooses, creates a www.marketwatch.com
link, then scraps the HTML code of the corresponding company page in marketwatch website,
and gets the current market status of the exchange this stock is listed in. Possible values are:
After Hours, Open, and Market Closed.
'''
global company_ticker
company_ticker = Ticker
link_1 = 'https://www.marketwatch.com/investing/stock/'
link_2 = '?mod=search_symbol'
# Pasting the above 3 parts to create the URL
global final_link
final_link = link_1 + company_ticker + link_2
page = requests.get(final_link)
global soup
soup = BeautifulSoup(page.text, "lxml")
if soup is None:
raise ParsingError("HTML code of MarketWatch website was not scraped and current status can not be found")
else:
current_status = soup.find("div", class_="status").text # Finding the market status
return current_status
def current_price_getter(self, Ticker):
'''
This method will get the current price only if the market is open.
'''
current_price = NULL
if self.status_getter(Ticker) == "Open":
current_price = float(soup.find("bg-quote", class_="value").text.replace(',',''))
return current_price
else:
return "Market Closed"
def stock_data_getter(self, Ticker):
'''
This method will return a dataframe containing Stock data from the Yahoo's "yfinance"
library in case the market is open.
'''
if self.status_getter(Ticker) == "Open":
data = yf.download(tickers = str(Ticker), period = "6mo", interval = "1d")
df = pd.DataFrame(data)
return df
else:
return "Market Closed"
def LSTM_stock_data_getter(self, Ticker):
'''
This method will return a dataframe containing Stock data from the Yahoo's "yfinance"
library regardrless of whether the market is open or not, and will feed the LSTM model.
'''
data = yf.download(tickers = str(Ticker), period = "2y", interval = "1d")
df = pd.DataFrame(data)
# If the user wants to run the model to have a General Prediction of stocks with data of the last 2 years , uncomment the 2 lines below
# data = yf.download(tickers = str(Ticker),period = "2y", interval = "1d") #period = "2y", interval = "1d"
# df = pd.DataFrame(data)
return df
def article_parser(self, ticker):
'''
This method gets as input a stock ticker, creates the www.marketwatch.com link of this stock
and returns a dataframe with the last 17 articles' headers.
'''
company_ticker = self.Ticker(tick=ticker)
link_1 = 'https://www.marketwatch.com/investing/stock/'
link_2 = '?mod=search_symbol'
# Pasting the above 3 parts to create the URL
final_link = link_1 + company_ticker + link_2
page = requests.get(final_link)
soup = BeautifulSoup(page.content, "html.parser")
results = soup.find("div", class_="tab__pane is-active j-tabPane")
articles = results.find_all("a", class_="link")
headerList = ["ticker", "headline"]
rows = []
counter = 1
df_headers = pd.DataFrame()
for art in articles:
if counter <= 17:
ticker = company_ticker
title = art.text.strip()
if title is NULL:
break
rows.append([ticker, title])
counter = counter + 1
df_headers = pd.DataFrame(rows, columns=headerList)
return df_headers
|