Spaces:
Running
Running
File size: 9,423 Bytes
72e6273 862cb29 72e6273 dfe75a1 72e6273 dfe75a1 72e6273 dfe75a1 72e6273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# -*- encoding: utf-8 -*-
# File: app.py
# Description: None
from copy import deepcopy
from typing import Dict, List
from PIL import Image
import io
import subprocess
import requests
import json
import base64
import gradio as gr
import librosa
IMAGE_EXTENSIONS = (".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".webp")
VIDEO_EXTENSIONS = (".mp4", ".mkv", ".mov", ".avi", ".flv", ".wmv", ".webm", ".m4v")
AUDIO_EXTENSIONS = (".mp3", ".wav", "flac", ".m4a", ".wma")
DEFAULT_SAMPLING_PARAMS = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"num_beams": 1,
"repetition_penalty": 1.2,
}
MAX_NEW_TOKENS = 1024
def load_image_to_base64(image_path):
"""Load image and convert to base64 string"""
with Image.open(image_path) as img:
if img.mode != 'RGB':
img = img.convert('RGB')
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
return base64.b64encode(img_byte_arr).decode('utf-8')
def wav_to_bytes_with_ffmpeg(wav_file_path):
process = subprocess.Popen(
['ffmpeg', '-i', wav_file_path, '-f', 'wav', '-'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
out, _ = process.communicate()
return base64.b64encode(out).decode('utf-8')
def parse_sse_response(response):
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
data = line[6:] # Remove 'data: ' prefix
if data == '[DONE]':
break
try:
json_data = json.loads(data)
yield json_data['text']
except json.JSONDecodeError:
raise gr.Error(f"Failed to parse JSON: {data}")
def history2messages(history: List[Dict]) -> List[Dict]:
"""
Transform gradio history to chat messages.
"""
messages = []
cur_message = dict()
for item in history:
if item["role"] == "assistant":
if len(cur_message) > 0:
messages.append(deepcopy(cur_message))
cur_message = dict()
messages.append(deepcopy(item))
continue
if "role" not in cur_message:
cur_message["role"] = "user"
if "content" not in cur_message:
cur_message["content"] = dict()
if "metadata" not in item:
item["metadata"] = {"title": None}
if item["metadata"]["title"] is None:
cur_message["content"]["text"] = item["content"]
elif item["metadata"]["title"] == "image":
cur_message["content"]["image"] = load_image_to_base64(item["content"][0])
elif item["metadata"]["title"] == "audio":
cur_message["content"]["audio"] = wav_to_bytes_with_ffmpeg(item["content"][0])
if len(cur_message) > 0:
messages.append(cur_message)
return messages
def check_messages(history, message, audio):
has_text = message["text"] and message["text"].strip()
has_files = len(message["files"]) > 0
has_audio = audio is not None
if not (has_text or has_files or has_audio):
raise gr.Error("请输入文字或上传音频/图片后再发送。")
audios = []
images = []
for file_msg in message["files"]:
if file_msg.endswith(AUDIO_EXTENSIONS) or file_msg.endswith(VIDEO_EXTENSIONS):
duration = librosa.get_duration(filename=file_msg)
if duration > 30:
raise gr.Error("音频时长不能超过30秒。")
if duration == 0:
raise gr.Error("音频时长不能为0秒。")
audios.append(file_msg)
elif file_msg.endswith(IMAGE_EXTENSIONS):
images.append(file_msg)
else:
filename = file_msg.split("/")[-1]
raise gr.Error(f"Unsupported file type: {filename}. It should be an image or audio file.")
if len(audios) > 1:
raise gr.Error("Please upload only one audio file.")
if len(images) > 1:
raise gr.Error("Please upload only one image file.")
if audio is not None:
if len(audios) > 0:
raise gr.Error("Please upload only one audio file or record audio.")
audios.append(audio)
# Append the message to the history
for image in images:
history.append({"role": "user", "content": (image,), "metadata": {"title": "image"}})
for audio in audios:
history.append({"role": "user", "content": (audio,), "metadata": {"title": "audio"}})
if message["text"]:
history.append({"role": "user", "content": message["text"]})
return history, gr.MultimodalTextbox(value=None, interactive=False), None
def bot(
history: list,
top_p: float,
top_k: int,
temperature: float,
repetition_penalty: float,
max_new_tokens: int = MAX_NEW_TOKENS,
regenerate: bool = False,
):
if history and regenerate:
history = history[:-1]
if not history:
return history
msgs = history2messages(history)
API_URL = "http://8.152.0.142:8000/v1/chat"
payload = {
"messages": msgs,
"sampling_params": {
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"max_new_tokens": max_new_tokens,
"num_beams": 3,
}
}
response = requests.get(
API_URL,
json=payload,
headers={'Accept': 'text/event-stream'},
stream=True
)
response_text = ""
for text in parse_sse_response(response):
response_text += text
yield history + [{"role": "assistant", "content": response_text}]
return response_text
def change_state(state):
return gr.update(visible=not state), not state
def reset_user_input():
return gr.update(value="")
if __name__ == "__main__":
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
f"""
# 🪐 Chat with <a href="https://github.com/infinigence/Infini-Megrez-Omni">Megrez-3B-Omni</a>
"""
)
chatbot = gr.Chatbot(elem_id="chatbot", bubble_full_width=False, type="messages", height='48vh')
sampling_params_group_hidden_state = gr.State(False)
with gr.Row(equal_height=True):
chat_input = gr.MultimodalTextbox(
file_count="multiple",
placeholder="Enter your prompt or upload image/audio here, then press ENTER...",
show_label=False,
scale=8,
file_types=["image", "audio"],
interactive=True,
# stop_btn=True,
)
with gr.Row(equal_height=True):
audio_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
scale=1,
max_length=30
)
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=150):
with gr.Row(equal_height=True):
regenerate_btn = gr.Button("Regenerate", variant="primary")
clear_btn = gr.ClearButton(
[chat_input, audio_input, chatbot],
)
with gr.Row():
sampling_params_toggle_btn = gr.Button("Sampling Parameters")
with gr.Group(visible=False) as sampling_params_group:
with gr.Row():
temperature = gr.Slider(
minimum=0, maximum=1.2, value=DEFAULT_SAMPLING_PARAMS["temperature"], label="Temperature"
)
repetition_penalty = gr.Slider(
minimum=0,
maximum=2,
value=DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
label="Repetition Penalty",
)
with gr.Row():
top_p = gr.Slider(minimum=0, maximum=1, value=DEFAULT_SAMPLING_PARAMS["top_p"], label="Top-p")
top_k = gr.Slider(minimum=0, maximum=1000, value=DEFAULT_SAMPLING_PARAMS["top_k"], label="Top-k")
with gr.Row():
max_new_tokens = gr.Slider(
minimum=1,
maximum=MAX_NEW_TOKENS,
value=MAX_NEW_TOKENS,
label="Max New Tokens",
interactive=True,
)
sampling_params_toggle_btn.click(
change_state,
sampling_params_group_hidden_state,
[sampling_params_group, sampling_params_group_hidden_state],
)
chat_msg = chat_input.submit(
check_messages,
[chatbot, chat_input, audio_input],
[chatbot, chat_input, audio_input],
)
bot_msg = chat_msg.then(
bot,
inputs=[chatbot, top_p, top_k, temperature, repetition_penalty, max_new_tokens],
outputs=chatbot,
api_name="bot_response",
)
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
regenerate_btn.click(
bot,
inputs=[chatbot, top_p, top_k, temperature, repetition_penalty, max_new_tokens, gr.State(True)],
outputs=chatbot,
)
demo.launch() |