File size: 9,423 Bytes
72e6273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
862cb29
72e6273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe75a1
 
72e6273
 
 
dfe75a1
72e6273
 
 
 
 
 
dfe75a1
72e6273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# -*- encoding: utf-8 -*-
# File: app.py
# Description: None


from copy import deepcopy
from typing import Dict, List
from PIL import Image
import io
import subprocess
import requests
import json
import base64
import gradio as gr
import librosa


IMAGE_EXTENSIONS = (".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".webp")
VIDEO_EXTENSIONS = (".mp4", ".mkv", ".mov", ".avi", ".flv", ".wmv", ".webm", ".m4v")
AUDIO_EXTENSIONS = (".mp3", ".wav", "flac", ".m4a", ".wma")

DEFAULT_SAMPLING_PARAMS = {
    "top_p": 0.8,
    "top_k": 100,
    "temperature": 0.7,
    "do_sample": True,
    "num_beams": 1,
    "repetition_penalty": 1.2,
}
MAX_NEW_TOKENS = 1024



def load_image_to_base64(image_path):
    """Load image and convert to base64 string"""
    with Image.open(image_path) as img:
        if img.mode != 'RGB':
            img = img.convert('RGB')
        img_byte_arr = io.BytesIO()
        img.save(img_byte_arr, format='PNG')
        img_byte_arr = img_byte_arr.getvalue()
        return base64.b64encode(img_byte_arr).decode('utf-8')

def wav_to_bytes_with_ffmpeg(wav_file_path):
    process = subprocess.Popen(
        ['ffmpeg', '-i', wav_file_path, '-f', 'wav', '-'],
        stdout=subprocess.PIPE,
        stderr=subprocess.PIPE
    )
    out, _ = process.communicate()
    return base64.b64encode(out).decode('utf-8')

def parse_sse_response(response):
    for line in response.iter_lines():
        if line:
            line = line.decode('utf-8')
            if line.startswith('data: '):
                data = line[6:]  # Remove 'data: ' prefix
                if data == '[DONE]':
                    break
                try:
                    json_data = json.loads(data)
                    yield json_data['text']
                except json.JSONDecodeError:
                    raise gr.Error(f"Failed to parse JSON: {data}")

def history2messages(history: List[Dict]) -> List[Dict]:
    """
    Transform gradio history to chat messages.
    """
    messages = []
    cur_message = dict()
    for item in history:
        if item["role"] == "assistant":
            if len(cur_message) > 0:
                messages.append(deepcopy(cur_message))
                cur_message = dict()
            messages.append(deepcopy(item))
            continue

        if "role" not in cur_message:
            cur_message["role"] = "user"
        if "content" not in cur_message:
            cur_message["content"] = dict()

        if "metadata" not in item:
            item["metadata"] = {"title": None}
        if item["metadata"]["title"] is None:
            cur_message["content"]["text"] = item["content"]
        elif item["metadata"]["title"] == "image":
            cur_message["content"]["image"] = load_image_to_base64(item["content"][0])
        elif item["metadata"]["title"] == "audio":
            cur_message["content"]["audio"] = wav_to_bytes_with_ffmpeg(item["content"][0])
    if len(cur_message) > 0:
        messages.append(cur_message)
    return messages

def check_messages(history, message, audio):
    has_text = message["text"] and message["text"].strip()
    has_files = len(message["files"]) > 0
    has_audio = audio is not None

    if not (has_text or has_files or has_audio):
        raise gr.Error("请输入文字或上传音频/图片后再发送。")
        
    audios = []
    images = []

    for file_msg in message["files"]:
        if file_msg.endswith(AUDIO_EXTENSIONS) or file_msg.endswith(VIDEO_EXTENSIONS):
            duration = librosa.get_duration(filename=file_msg)
            if duration > 30:
                raise gr.Error("音频时长不能超过30秒。")
            if duration == 0:
                raise gr.Error("音频时长不能为0秒。")
            audios.append(file_msg)
        elif file_msg.endswith(IMAGE_EXTENSIONS):
            images.append(file_msg)
        else:
            filename = file_msg.split("/")[-1]
            raise gr.Error(f"Unsupported file type: {filename}. It should be an image or audio file.")

    if len(audios) > 1:
        raise gr.Error("Please upload only one audio file.")

    if len(images) > 1:
        raise gr.Error("Please upload only one image file.")

    if audio is not None:
        if len(audios) > 0:
            raise gr.Error("Please upload only one audio file or record audio.")
        audios.append(audio)

    # Append the message to the history
    for image in images:
        history.append({"role": "user", "content": (image,), "metadata": {"title": "image"}})

    for audio in audios:
        history.append({"role": "user", "content": (audio,), "metadata": {"title": "audio"}})

    if message["text"]:
        history.append({"role": "user", "content": message["text"]})
        
    return history, gr.MultimodalTextbox(value=None, interactive=False), None

def bot(
    history: list,
    top_p: float,
    top_k: int,
    temperature: float,
    repetition_penalty: float,
    max_new_tokens: int = MAX_NEW_TOKENS,
    regenerate: bool = False,
):

    if history and regenerate:
        history = history[:-1]

    if not history:
        return history
    
    msgs = history2messages(history)

    API_URL = "http://8.152.0.142:8000/v1/chat"

    payload = {
        "messages": msgs,
        "sampling_params": {
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "repetition_penalty": repetition_penalty,
            "max_new_tokens": max_new_tokens,
            "num_beams": 3,
        }
    }

    response = requests.get(
        API_URL,
        json=payload,
        headers={'Accept': 'text/event-stream'},
        stream=True
    )
    response_text = ""
    
    for text in parse_sse_response(response):
        response_text += text
        yield history + [{"role": "assistant", "content": response_text}]

    return response_text

def change_state(state):
    return gr.update(visible=not state), not state

def reset_user_input():
    return gr.update(value="")

if __name__ == "__main__":
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown(
            f"""
# 🪐 Chat with <a href="https://github.com/infinigence/Infini-Megrez-Omni">Megrez-3B-Omni</a>
"""
        )
        chatbot = gr.Chatbot(elem_id="chatbot", bubble_full_width=False, type="messages", height='48vh')

        sampling_params_group_hidden_state = gr.State(False)


        with gr.Row(equal_height=True):
            chat_input = gr.MultimodalTextbox(
                file_count="multiple",
                placeholder="Enter your prompt or upload image/audio here, then press ENTER...",
                show_label=False,
                scale=8,
                file_types=["image", "audio"],
                interactive=True,
                # stop_btn=True,
            )
        with gr.Row(equal_height=True):
            audio_input = gr.Audio(
                sources=["microphone", "upload"],
                type="filepath",
                scale=1,
                max_length=30
            )
        with gr.Row(equal_height=True):
            with gr.Column(scale=1, min_width=150):
                with gr.Row(equal_height=True):
                    regenerate_btn = gr.Button("Regenerate", variant="primary")
                    clear_btn = gr.ClearButton(
                        [chat_input, audio_input, chatbot],
                    )

        with gr.Row():
            sampling_params_toggle_btn = gr.Button("Sampling Parameters")

        with gr.Group(visible=False) as sampling_params_group:
            with gr.Row():
                temperature = gr.Slider(
                    minimum=0, maximum=1.2, value=DEFAULT_SAMPLING_PARAMS["temperature"], label="Temperature"
                )
                repetition_penalty = gr.Slider(
                    minimum=0,
                    maximum=2,
                    value=DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
                    label="Repetition Penalty",
                )

            with gr.Row():
                top_p = gr.Slider(minimum=0, maximum=1, value=DEFAULT_SAMPLING_PARAMS["top_p"], label="Top-p")
                top_k = gr.Slider(minimum=0, maximum=1000, value=DEFAULT_SAMPLING_PARAMS["top_k"], label="Top-k")

            with gr.Row():
                max_new_tokens = gr.Slider(
                    minimum=1,
                    maximum=MAX_NEW_TOKENS,
                    value=MAX_NEW_TOKENS,
                    label="Max New Tokens",
                    interactive=True,
                )

        sampling_params_toggle_btn.click(
            change_state,
            sampling_params_group_hidden_state,
            [sampling_params_group, sampling_params_group_hidden_state],
        )

        chat_msg = chat_input.submit(
            check_messages,
            [chatbot, chat_input, audio_input],
            [chatbot, chat_input, audio_input],
        )

        bot_msg = chat_msg.then(
            bot,
            inputs=[chatbot, top_p, top_k, temperature, repetition_penalty, max_new_tokens],
            outputs=chatbot,
            api_name="bot_response",
        )

        bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])

        regenerate_btn.click(
            bot,
            inputs=[chatbot, top_p, top_k, temperature, repetition_penalty, max_new_tokens, gr.State(True)],
            outputs=chatbot,
        )

    demo.launch()