File size: 3,038 Bytes
079312c aa9c213 079312c aa9c213 4d96d8c aa9c213 079312c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import streamlit as st
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
import glob
import os
def vid_to_audio(url=None):
# importing packages
from pytube import YouTube
import os
# url input from user
yt = YouTube(url)
# extract only audio
video = yt.streams.filter(only_audio=True).first()
# check for destination to save file
destination = '.'
# download the file
out_file = video.download(output_path=destination)
# save the file
base, ext = os.path.splitext(out_file)
new_file = base + '.mp3'
os.rename(out_file, new_file)
# result of success
print(yt.title + " has been successfully downloaded.")
return "OK"
#vid_to_text(url='https://youtu.be/FE5tva_o7ew?si=ztkKeO7qwcpC36AS')
def audio_to_text():
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-tiny"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
#
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
)
#files = glob.glob('*.mp3')[0]
files = os.listdir()
# Get a list of all files in the current directory
files = os.listdir()
#st.write(files)
# Create an empty list to collect results
results = []
# Iterate through the files
for i in files:
if ".mp3" in i:
# Build the full path to the MP3 file
file_path = os.path.join(os.getcwd(), i)
# Display information (optional)
st.write("Current Directory:", os.getcwd())
st.write("File Path:", file_path)
result = pipe(file_path)
#print(result)
return result['text']
def summarize():
transcript = audio_to_text()
import requests
API_URL = "https://api-inference.huggingface.co/models/Azma-AI/bart-large-text-summarizer"
headers = {"Authorization": f"Bearer {API_TOKEN}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": transcript["text"],
})
return output
yt_link = st.text_input("Enter the YouTube URL: ")
if st.button("Start Summarization"):
with st.status("Downloading the video..."):
vid_to_audio(url=yt_link)
with st.status("Summarizing..."):
s = summarize()
st.write(s)
|