Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import ssl
|
3 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
4 |
+
import glob
|
5 |
+
import os
|
6 |
+
|
7 |
+
def vid_to_audio(url=None):
|
8 |
+
# importing packages
|
9 |
+
from pytube import YouTube
|
10 |
+
import os
|
11 |
+
|
12 |
+
# url input from user
|
13 |
+
yt = YouTube(url)
|
14 |
+
|
15 |
+
# extract only audio
|
16 |
+
video = yt.streams.filter(only_audio=True).first()
|
17 |
+
|
18 |
+
# check for destination to save file
|
19 |
+
destination = '.'
|
20 |
+
|
21 |
+
# download the file
|
22 |
+
out_file = video.download(output_path=destination)
|
23 |
+
|
24 |
+
# save the file
|
25 |
+
base, ext = os.path.splitext(out_file)
|
26 |
+
new_file = base + '.mp3'
|
27 |
+
os.rename(out_file, new_file)
|
28 |
+
|
29 |
+
# result of success
|
30 |
+
print(yt.title + " has been successfully downloaded.")
|
31 |
+
|
32 |
+
return "OK"
|
33 |
+
|
34 |
+
#vid_to_text(url='https://youtu.be/FE5tva_o7ew?si=ztkKeO7qwcpC36AS')
|
35 |
+
|
36 |
+
def audio_to_text():
|
37 |
+
import torch
|
38 |
+
|
39 |
+
|
40 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
45 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
46 |
+
|
47 |
+
model_id = "openai/whisper-tiny"
|
48 |
+
|
49 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
50 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
51 |
+
)
|
52 |
+
model.to(device)
|
53 |
+
|
54 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
55 |
+
#
|
56 |
+
pipe = pipeline(
|
57 |
+
"automatic-speech-recognition",
|
58 |
+
model=model,
|
59 |
+
tokenizer=processor.tokenizer,
|
60 |
+
feature_extractor=processor.feature_extractor,
|
61 |
+
max_new_tokens=128,
|
62 |
+
chunk_length_s=30,
|
63 |
+
batch_size=16,
|
64 |
+
|
65 |
+
torch_dtype=torch_dtype,
|
66 |
+
device=device,
|
67 |
+
)
|
68 |
+
|
69 |
+
#files = glob.glob('*.mp3')[0]
|
70 |
+
files = os.listdir()
|
71 |
+
# Get a list of all files in the current directory
|
72 |
+
files = os.listdir()
|
73 |
+
#st.write(files)
|
74 |
+
|
75 |
+
# Create an empty list to collect results
|
76 |
+
results = []
|
77 |
+
|
78 |
+
# Iterate through the files
|
79 |
+
for i in files:
|
80 |
+
if ".mp3" in i:
|
81 |
+
# Build the full path to the MP3 file
|
82 |
+
file_path = os.path.join(os.getcwd(), i)
|
83 |
+
|
84 |
+
# Display information (optional)
|
85 |
+
st.write("Current Directory:", os.getcwd())
|
86 |
+
st.write("File Path:", file_path)
|
87 |
+
|
88 |
+
|
89 |
+
result = pipe(file_path)
|
90 |
+
#print(result)
|
91 |
+
return result['text']
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def summarize():
|
96 |
+
transcript = audio_to_text()
|
97 |
+
len_trans = len(transcript)
|
98 |
+
|
99 |
+
chunks = int(len_trans/512)
|
100 |
+
from transformers import pipeline
|
101 |
+
|
102 |
+
summarizer = pipeline("summarization", model="snrspeaks/t5-one-line-summary")
|
103 |
+
|
104 |
+
|
105 |
+
#print(summarizer(transcript, do_sample=False))
|
106 |
+
cutoff = 512
|
107 |
+
final_output = ''
|
108 |
+
"""
|
109 |
+
for i in range(chunks):
|
110 |
+
print(i)
|
111 |
+
if i == 0:
|
112 |
+
tran_text = transcript[:512]
|
113 |
+
inter_output = summarizer(tran_text, do_sample=False)[0]['summary_text']
|
114 |
+
final_output += inter_output
|
115 |
+
final_output += ' '
|
116 |
+
|
117 |
+
else:
|
118 |
+
#end_slice = cutoff + cutoff
|
119 |
+
tran_text = transcript[cutoff:cutoff + 2]
|
120 |
+
inter_output = summarizer(tran_text, do_sample=False)[0]['summary_text']
|
121 |
+
final_output += inter_output
|
122 |
+
final_output += ' '
|
123 |
+
cutoff += cutoff
|
124 |
+
"""
|
125 |
+
final_output = summarizer(tran_text, do_sample=False)
|
126 |
+
return final_output
|
127 |
+
|
128 |
+
yt_link = st.text_input("Enter the YouTube URL: ")
|
129 |
+
|
130 |
+
if st.button("Start Summarization"):
|
131 |
+
|
132 |
+
with st.status("Downloading the video..."):
|
133 |
+
vid_to_audio(url=yt_link)
|
134 |
+
with st.status("Summarizing..."):
|
135 |
+
s = summarize()
|
136 |
+
st.write(s)
|
137 |
+
|