Spaces:
Running
Running
File size: 21,068 Bytes
393d2d7 d5894b1 393d2d7 d5894b1 4412065 d5894b1 fdb4d5a fcde2f2 d5894b1 fcde2f2 393d2d7 d5894b1 fcde2f2 4412065 fcde2f2 d5894b1 fcde2f2 393d2d7 fcde2f2 d5894b1 393d2d7 fcde2f2 393d2d7 fcde2f2 393d2d7 d5894b1 393d2d7 fcde2f2 393d2d7 fcde2f2 393d2d7 fcde2f2 393d2d7 fcde2f2 d5894b1 393d2d7 d5894b1 fcde2f2 393d2d7 d5894b1 fcde2f2 393d2d7 6ba3022 fcde2f2 393d2d7 800b58e 393d2d7 fcde2f2 7c7be00 393d2d7 cf2d24e 7c7be00 1eb8a26 7c7be00 393d2d7 7c7be00 1eb8a26 7c7be00 393d2d7 cf2d24e 393d2d7 cf2d24e 7c7be00 393d2d7 da15f0e 7f24625 da15f0e 7f24625 c4ebff6 393d2d7 7f24625 393d2d7 da15f0e 393d2d7 c4ebff6 393d2d7 cf2d24e 7f24625 da15f0e 393d2d7 da15f0e 7f24625 da15f0e 7f24625 da15f0e 7f24625 da15f0e cf2d24e 393d2d7 7c7be00 7f24625 393d2d7 fcde2f2 d5894b1 393d2d7 cf2d24e 393d2d7 7c7be00 393d2d7 fcde2f2 1eb8a26 d5894b1 7c7be00 393d2d7 7c7be00 393d2d7 7f24625 393d2d7 7c7be00 7f24625 393d2d7 7f24625 393d2d7 7f24625 393d2d7 7f24625 393d2d7 cf2d24e 7c7be00 1eb8a26 7c7be00 393d2d7 800b58e 393d2d7 800b58e 393d2d7 7c7be00 393d2d7 7c7be00 393d2d7 7c7be00 393d2d7 800b58e 393d2d7 7c7be00 393d2d7 7c7be00 393d2d7 7c7be00 393d2d7 800b58e 393d2d7 7c7be00 393d2d7 800b58e 7c7be00 393d2d7 800b58e 7c7be00 393d2d7 7c7be00 393d2d7 7c7be00 800b58e 7c7be00 d5894b1 393d2d7 800b58e 393d2d7 800b58e 393d2d7 fcde2f2 393d2d7 800b58e 393d2d7 d5894b1 393d2d7 800b58e 393d2d7 fcde2f2 d5894b1 393d2d7 7c7be00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import os
import json
import gradio as gr
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
from PIL import Image
from huggingface_hub import login
from translator import translate_texts
# ------------------------------------------------------------------
# 模型配置
# ------------------------------------------------------------------
MODEL_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"
HF_TOKEN = os.environ.get("HF_TOKEN", "")
if HF_TOKEN:
login(token=HF_TOKEN)
else:
print("⚠️ 未检测到 HF_TOKEN,私有模型可能下载失败")
# ------------------------------------------------------------------
# Tagger 类 (全局实例化)
# ------------------------------------------------------------------
class Tagger:
def __init__(self):
self.hf_token = HF_TOKEN
self.tag_names = []
self.categories = {}
self.model = None
self.input_size = 0
self._load_model_and_labels()
def _load_model_and_labels(self):
try:
label_path = huggingface_hub.hf_hub_download(
MODEL_REPO, LABEL_FILENAME, token=self.hf_token, resume_download=True
)
model_path = huggingface_hub.hf_hub_download(
MODEL_REPO, MODEL_FILENAME, token=self.hf_token, resume_download=True
)
tags_df = pd.read_csv(label_path)
self.tag_names = tags_df["name"].tolist()
self.categories = {
"rating": np.where(tags_df["category"] == 9)[0],
"general": np.where(tags_df["category"] == 0)[0],
"character": np.where(tags_df["category"] == 4)[0],
}
self.model = rt.InferenceSession(model_path)
self.input_size = self.model.get_inputs()[0].shape[1]
print("✅ 模型和标签加载成功")
except Exception as e:
print(f"❌ 模型或标签加载失败: {e}")
raise RuntimeError(f"模型初始化失败: {e}")
# ------------------------- preprocess -------------------------
def _preprocess(self, img: Image.Image) -> np.ndarray:
if img is None:
raise ValueError("输入图像不能为空")
if img.mode != "RGB":
img = img.convert("RGB")
size = max(img.size)
canvas = Image.new("RGB", (size, size), (255, 255, 255))
canvas.paste(img, ((size - img.width) // 2, (size - img.height) // 2))
if size != self.input_size:
canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC)
return np.array(canvas)[:, :, ::-1].astype(np.float32) # to BGR
# --------------------------- predict --------------------------
def predict(self, img: Image.Image, gen_th: float = 0.35, char_th: float = 0.85):
if self.model is None:
raise RuntimeError("模型未成功加载,无法进行预测。")
inp_name = self.model.get_inputs()[0].name
outputs = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0]
res = {"ratings": {}, "general": {}, "characters": {}}
tag_categories_for_translation = {"ratings": [], "general": [], "characters": []}
for idx in self.categories["rating"]:
tag_name = self.tag_names[idx].replace("_", " ")
res["ratings"][tag_name] = float(outputs[idx])
tag_categories_for_translation["ratings"].append(tag_name)
for idx in self.categories["general"]:
if outputs[idx] > gen_th:
tag_name = self.tag_names[idx].replace("_", " ")
res["general"][tag_name] = float(outputs[idx])
tag_categories_for_translation["general"].append(tag_name)
for idx in self.categories["character"]:
if outputs[idx] > char_th:
tag_name = self.tag_names[idx].replace("_", " ")
res["characters"][tag_name] = float(outputs[idx])
tag_categories_for_translation["characters"].append(tag_name)
res["general"] = dict(sorted(res["general"].items(), key=lambda kv: kv[1], reverse=True))
res["characters"] = dict(sorted(res["characters"].items(), key=lambda kv: kv[1], reverse=True))
res["ratings"] = dict(sorted(res["ratings"].items(), key=lambda kv: kv[1], reverse=True))
tag_categories_for_translation["general"] = list(res["general"].keys())
tag_categories_for_translation["characters"] = list(res["characters"].keys())
tag_categories_for_translation["ratings"] = list(res["ratings"].keys())
return res, tag_categories_for_translation
# 全局 Tagger 实例
try:
tagger_instance = Tagger()
except RuntimeError as e:
print(f"应用启动时Tagger初始化失败: {e}")
tagger_instance = None # 允许应用启动,但在处理时会失败
# ------------------------------------------------------------------
# Gradio UI
# ------------------------------------------------------------------
custom_css = """
.label-container {
max-height: 300px;
overflow-y: auto;
border: 1px solid #ddd;
padding: 10px;
border-radius: 5px;
background-color: #f9f9f9;
}
.tag-item {
display: flex;
justify-content: space-between;
align-items: center;
margin: 2px 0;
padding: 2px 5px;
border-radius: 3px;
background-color: #fff;
transition: background-color 0.2s;
}
.tag-item:hover {
background-color: #f0f0f0;
}
.tag-en {
font-weight: bold;
color: #333;
cursor: pointer; /* Indicates clickable */
}
.tag-zh {
color: #666;
margin-left: 10px;
}
.tag-score {
color: #999;
font-size: 0.9em;
}
.btn-analyze-container { /* Custom class for analyze button container */
margin-top: 15px;
margin-bottom: 15px;
}
"""
_js_functions = """
function copyToClipboard(text) {
// --- 调试信息 ---
console.log('copyToClipboard function was called.');
console.log('Received text:', text);
// console.trace(); // 如果需要更详细的调用栈信息,可以取消这行注释
// --- 保护性检查 ---
// 如果 text 未定义或为 null,则不执行后续操作,并打印警告
if (typeof text === 'undefined' || text === null) {
console.warn('copyToClipboard was called with undefined or null text. Aborting this specific copy operation.');
// 在这种情况下,我们不应该尝试复制,也不应该显示“已复制”的提示
return;
}
navigator.clipboard.writeText(text).then(() => {
// console.log('Tag copied to clipboard: ' + text); // 成功复制的日志(可选)
const feedback = document.createElement('div');
// 确保 text 是字符串类型,再进行 substring 操作
let displayText = String(text); // 将 text 转换为字符串以防万一
displayText = displayText.substring(0, 30) + (displayText.length > 30 ? '...' : '');
feedback.textContent = '已复制: ' + displayText;
feedback.style.position = 'fixed';
feedback.style.bottom = '20px';
feedback.style.left = '50%';
feedback.style.transform = 'translateX(-50%)';
feedback.style.backgroundColor = '#4CAF50';
feedback.style.color = 'white';
feedback.style.padding = '10px 20px';
feedback.style.borderRadius = '5px';
feedback.style.zIndex = '10000';
feedback.style.transition = 'opacity 0.5s ease-out';
document.body.appendChild(feedback);
setTimeout(() => {
feedback.style.opacity = '0';
setTimeout(() => {
if (document.body.contains(feedback)) { // 确保元素还在DOM中
document.body.removeChild(feedback);
}
}, 500);
}, 1500);
}).catch(err => {
console.error('Failed to copy tag. Error:', err, 'Attempted to copy text:', text);
// 可以考虑也给用户一个错误提示,但原版 alert 可能体验不佳
// alert('复制失败: ' + err);
const errorFeedback = document.createElement('div');
errorFeedback.textContent = '复制操作失败!'; // 更友好的错误提示
errorFeedback.style.position = 'fixed';
errorFeedback.style.bottom = '20px';
errorFeedback.style.left = '50%';
errorFeedback.style.transform = 'translateX(-50%)';
errorFeedback.style.backgroundColor = '#D32F2F'; // 红色背景表示错误
errorFeedback.style.color = 'white';
errorFeedback.style.padding = '10px 20px';
errorFeedback.style.borderRadius = '5px';
errorFeedback.style.zIndex = '10000';
errorFeedback.style.transition = 'opacity 0.5s ease-out';
document.body.appendChild(errorFeedback);
setTimeout(() => {
errorFeedback.style.opacity = '0';
setTimeout(() => {
if (document.body.contains(errorFeedback)) {
document.body.removeChild(errorFeedback);
}
}, 500);
}, 2500);
});
}
"""
with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=custom_css, js=_js_functions) as demo:
gr.Markdown("# 🖼️ AI 图像标签分析器")
gr.Markdown("上传图片自动识别标签,支持中英文显示和一键复制。[NovelAI在线绘画](https://nai.idlecloud.cc/)")
state_res = gr.State({})
state_translations_dict = gr.State({})
state_tag_categories_for_translation = gr.State({})
with gr.Row():
with gr.Column(scale=1):
img_in = gr.Image(type="pil", label="上传图片", height=300)
btn = gr.Button("🚀 开始分析", variant="primary", elem_classes=["btn-analyze-container"])
with gr.Accordion("⚙️ 高级设置", open=False):
gen_slider = gr.Slider(0, 1, value=0.35, step=0.01, label="通用标签阈值", info="越高 → 标签更少更准")
char_slider = gr.Slider(0, 1, value=0.85, step=0.01, label="角色标签阈值", info="推荐保持较高阈值")
show_tag_scores = gr.Checkbox(True, label="在列表中显示标签置信度")
with gr.Accordion("📊 标签汇总设置", open=True):
gr.Markdown("选择要包含在下方汇总文本框中的标签类别:")
with gr.Row():
sum_general = gr.Checkbox(True, label="通用标签", min_width=50)
sum_char = gr.Checkbox(True, label="角色标签", min_width=50)
sum_rating = gr.Checkbox(False, label="评分标签", min_width=50)
sum_sep = gr.Dropdown(["逗号", "换行", "空格"], value="逗号", label="标签之间的分隔符")
sum_show_zh = gr.Checkbox(False, label="在汇总中显示中文翻译")
processing_info = gr.Markdown("", visible=False)
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("🏷️ 通用标签"):
out_general = gr.HTML(label="General Tags")
with gr.TabItem("👤 角色标签"):
gr.Markdown("<p style='color:gray; font-size:small;'>提示:角色标签推测基于截至2024年2月的数据。</p>")
out_char = gr.HTML(label="Character Tags")
with gr.TabItem("⭐ 评分标签"):
out_rating = gr.HTML(label="Rating Tags")
gr.Markdown("### 标签汇总结果")
out_summary = gr.Textbox(
label="标签汇总",
placeholder="分析完成后,此处将显示汇总的英文标签...",
lines=5,
show_copy_button=True
)
# ----------------- 辅助函数 -----------------
def format_tags_html(tags_dict, translations_list, category_name, show_scores=True, show_translation_in_list=True):
if not tags_dict:
return "<p>暂无标签</p>"
html = '<div class="label-container">'
if not isinstance(translations_list, list):
translations_list = []
tag_keys = list(tags_dict.keys())
for i, tag in enumerate(tag_keys):
score = tags_dict[tag]
escaped_tag = tag.replace("'", "\\'") # Escape for JS
html += '<div class="tag-item">'
tag_display_html = f'<span class="tag-en" onclick="copyToClipboard(\'{escaped_tag}\')">{tag}</span>'
if show_translation_in_list and i < len(translations_list) and translations_list[i]:
tag_display_html += f'<span class="tag-zh">({translations_list[i]})</span>'
html += f'<div>{tag_display_html}</div>'
if show_scores:
html += f'<span class="tag-score">{score:.3f}</span>'
html += '</div>'
html += '</div>'
return html
def generate_summary_text_content(
current_res, current_translations_dict,
s_gen, s_char, s_rat, s_sep_type, s_show_zh
):
if not current_res:
return "请先分析图像或选择要汇总的标签类别。"
summary_parts = []
separators = {"逗号": ", ", "换行": "\n", "空格": " "}
separator = separators.get(s_sep_type, ", ")
categories_to_summarize = []
if s_gen: categories_to_summarize.append("general")
if s_char: categories_to_summarize.append("characters")
if s_rat: categories_to_summarize.append("ratings")
if not categories_to_summarize:
return "请至少选择一个标签类别进行汇总。"
for cat_key in categories_to_summarize:
if current_res.get(cat_key):
tags_to_join = []
cat_tags_en = list(current_res[cat_key].keys())
cat_translations = current_translations_dict.get(cat_key, [])
for i, en_tag in enumerate(cat_tags_en):
if s_show_zh and i < len(cat_translations) and cat_translations[i]:
tags_to_join.append(f"{en_tag}({cat_translations[i]})")
else:
tags_to_join.append(en_tag)
if tags_to_join: # only add if there are tags for this category
summary_parts.append(separator.join(tags_to_join))
# Join parts with double newline for readability if multiple categories present and separator is not newline
joiner = "\n\n" if separator != "\n" and len(summary_parts) > 1 else separator if separator == "\n" else " "
final_summary = joiner.join(summary_parts)
return final_summary if final_summary else "选定的类别中没有找到标签。"
# ----------------- 主要处理回调 -----------------
def process_image_and_generate_outputs(
img, g_th, c_th, s_scores, # Main inputs
s_gen, s_char, s_rat, s_sep, s_zh_in_sum
):
if img is None:
yield (
gr.update(interactive=True, value="🚀 开始分析"),
gr.update(visible=True, value="❌ 请先上传图片。"),
"", "", "", "",
gr.update(placeholder="请先上传图片并开始分析..."),
{}, {}, {}
)
return
if tagger_instance is None:
yield (
gr.update(interactive=True, value="🚀 开始分析"),
gr.update(visible=True, value="❌ 分析器未成功初始化,请检查控制台错误。"),
"", "", "", "",
gr.update(placeholder="分析器初始化失败..."),
{}, {}, {}
)
return
yield (
gr.update(interactive=False, value="🔄 处理中..."),
gr.update(visible=True, value="🔄 正在分析图像,请稍候..."),
gr.HTML(value="<p>分析中...</p>"), # General
gr.HTML(value="<p>分析中...</p>"), # Character
gr.HTML(value="<p>分析中...</p>"), # Rating
gr.update(value="分析中,请稍候..."), # Summary
{}, {}, {} # Clear states initially
)
try:
# 1. Predict tags
res, tag_categories_original_order = tagger_instance.predict(img, g_th, c_th)
all_tags_to_translate = []
for cat_key in ["general", "characters", "ratings"]:
all_tags_to_translate.extend(tag_categories_original_order.get(cat_key, []))
all_translations_flat = []
if all_tags_to_translate:
all_translations_flat = translate_texts(all_tags_to_translate, src_lang="auto", tgt_lang="zh")
current_translations_dict = {}
offset = 0
for cat_key in ["general", "characters", "ratings"]:
cat_original_tags = tag_categories_original_order.get(cat_key, [])
num_tags_in_cat = len(cat_original_tags)
if num_tags_in_cat > 0:
current_translations_dict[cat_key] = all_translations_flat[offset : offset + num_tags_in_cat]
offset += num_tags_in_cat
else:
current_translations_dict[cat_key] = []
general_html = format_tags_html(res.get("general", {}), current_translations_dict.get("general", []), "general", s_scores, True)
char_html = format_tags_html(res.get("characters", {}), current_translations_dict.get("characters", []), "characters", s_scores, True)
rating_html = format_tags_html(res.get("ratings", {}), current_translations_dict.get("ratings", []), "ratings", s_scores, True)
summary_text = generate_summary_text_content(
res, current_translations_dict,
s_gen, s_char, s_rat, s_sep, s_zh_in_sum
)
yield (
gr.update(interactive=True, value="🚀 开始分析"),
gr.update(visible=True, value="✅ 分析完成!"),
general_html,
char_html,
rating_html,
gr.update(value=summary_text),
res,
current_translations_dict,
tag_categories_original_order
)
except Exception as e:
import traceback
tb_str = traceback.format_exc()
print(f"处理时发生错误: {e}\n{tb_str}")
yield (
gr.update(interactive=True, value="🚀 开始分析"),
gr.update(visible=True, value=f"❌ 处理失败: {str(e)}"),
"<p>处理出错</p>", "<p>处理出错</p>", "<p>处理出错</p>",
gr.update(value=f"错误: {str(e)}", placeholder="分析失败..."),
{}, {}, {}
)
# ----------------- 更新汇总文本的回调 -----------------
def update_summary_display(
s_gen, s_char, s_rat, s_sep, s_zh_in_sum,
current_res_from_state, current_translations_from_state
):
if not current_res_from_state:
return gr.update(placeholder="请先完成一次图像分析以生成汇总。", value="")
new_summary_text = generate_summary_text_content(
current_res_from_state, current_translations_from_state,
s_gen, s_char, s_rat, s_sep, s_zh_in_sum
)
return gr.update(value=new_summary_text)
# ----------------- 绑定事件 -----------------
btn.click(
process_image_and_generate_outputs,
inputs=[
img_in, gen_slider, char_slider, show_tag_scores,
sum_general, sum_char, sum_rating, sum_sep, sum_show_zh
],
outputs=[
btn, processing_info,
out_general, out_char, out_rating,
out_summary,
state_res, state_translations_dict, state_tag_categories_for_translation
],
# show_progress="full" # Gradio's built-in progress
)
summary_controls = [sum_general, sum_char, sum_rating, sum_sep, sum_show_zh]
for ctrl in summary_controls:
ctrl.change(
fn=update_summary_display,
inputs=summary_controls + [state_res, state_translations_dict],
outputs=[out_summary],
# show_progress=False # Typically fast, no need for progress indicator
)
# ------------------------------------------------------------------
# 启动
# ------------------------------------------------------------------
if __name__ == "__main__":
if tagger_instance is None:
print("CRITICAL: Tagger 未能初始化,应用功能将受限。请检查之前的错误信息。")
demo.launch(server_name="0.0.0.0", server_port=7860) |