IdlecloudX commited on
Commit
393d2d7
·
verified ·
1 Parent(s): cf2d24e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +343 -220
app.py CHANGED
@@ -1,17 +1,29 @@
1
- import os, json
 
2
  import gradio as gr
3
- import huggingface_hub, numpy as np, onnxruntime as rt, pandas as pd
 
 
 
4
  from PIL import Image
5
  from huggingface_hub import login
6
 
7
- from translator import translate_texts
 
 
 
 
 
 
 
 
8
 
9
  # ------------------------------------------------------------------
10
  # 模型配置
11
  # ------------------------------------------------------------------
12
- MODEL_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
13
- MODEL_FILENAME = "model.onnx"
14
- LABEL_FILENAME = "selected_tags.csv"
15
 
16
  HF_TOKEN = os.environ.get("HF_TOKEN", "")
17
  if HF_TOKEN:
@@ -20,66 +32,106 @@ else:
20
  print("⚠️ 未检测到 HF_TOKEN,私有模型可能下载失败")
21
 
22
  # ------------------------------------------------------------------
23
- # Tagger 类
24
  # ------------------------------------------------------------------
25
  class Tagger:
26
  def __init__(self):
27
- self.hf_token = HF_TOKEN
 
 
 
 
28
  self._load_model_and_labels()
29
 
30
  def _load_model_and_labels(self):
31
- label_path = huggingface_hub.hf_hub_download(
32
- MODEL_REPO, LABEL_FILENAME, token=self.hf_token
33
- )
34
- model_path = huggingface_hub.hf_hub_download(
35
- MODEL_REPO, MODEL_FILENAME, token=self.hf_token
36
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- tags_df = pd.read_csv(label_path)
39
- self.tag_names = tags_df["name"].tolist()
40
- self.categories = {
41
- "rating": np.where(tags_df["category"] == 9)[0],
42
- "general": np.where(tags_df["category"] == 0)[0],
43
- "character": np.where(tags_df["category"] == 4)[0],
44
- }
45
- self.model = rt.InferenceSession(model_path)
46
- self.input_size = self.model.get_inputs()[0].shape[1]
47
 
48
  # ------------------------- preprocess -------------------------
49
  def _preprocess(self, img: Image.Image) -> np.ndarray:
 
 
50
  if img.mode != "RGB":
51
  img = img.convert("RGB")
52
- size = max(img.size)
53
  canvas = Image.new("RGB", (size, size), (255, 255, 255))
54
- canvas.paste(img, ((size - img.width)//2, (size - img.height)//2))
55
  if size != self.input_size:
56
  canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC)
57
  return np.array(canvas)[:, :, ::-1].astype(np.float32) # to BGR
58
 
59
  # --------------------------- predict --------------------------
60
- def predict(self, img: Image.Image,
61
- gen_th: float = 0.35,
62
- char_th: float = 0.85):
63
- inp_name = self.model.get_inputs()[0].name
64
- outputs = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0]
65
 
66
  res = {"ratings": {}, "general": {}, "characters": {}}
 
67
 
68
  for idx in self.categories["rating"]:
69
- res["ratings"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])
 
 
 
70
 
71
  for idx in self.categories["general"]:
72
  if outputs[idx] > gen_th:
73
- res["general"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])
 
 
 
74
 
75
  for idx in self.categories["character"]:
76
  if outputs[idx] > char_th:
77
- res["characters"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])
 
 
78
 
79
- res["general"] = dict(sorted(res["general"].items(),
80
- key=lambda kv: kv[1],
81
- reverse=True))
82
- return res
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
  # ------------------------------------------------------------------
85
  # Gradio UI
@@ -101,7 +153,7 @@ custom_css = """
101
  padding: 2px 5px;
102
  border-radius: 3px;
103
  background-color: #fff;
104
- cursor: pointer;
105
  }
106
  .tag-item:hover {
107
  background-color: #f0f0f0;
@@ -109,6 +161,7 @@ custom_css = """
109
  .tag-en {
110
  font-weight: bold;
111
  color: #333;
 
112
  }
113
  .tag-zh {
114
  color: #666;
@@ -118,107 +171,72 @@ custom_css = """
118
  color: #999;
119
  font-size: 0.9em;
120
  }
121
- .btn-container {
122
- margin-top: 20px;
123
- }
124
- .copy-btn {
125
- margin-top: 10px;
126
- padding: 5px 10px;
127
- background-color: #f0f0f0;
128
- border: 1px solid #ddd;
129
- border-radius: 4px;
130
- cursor: pointer;
131
- display: inline-flex;
132
- align-items: center;
133
- font-size: 0.9em;
134
- }
135
- .copy-btn:hover {
136
- background-color: #e0e0e0;
137
- }
138
- .copy-icon {
139
- margin-right: 5px;
140
- width: 16px;
141
- height: 16px;
142
- }
143
- .copied-message {
144
- display: none;
145
- color: #4CAF50;
146
- margin-left: 10px;
147
- font-size: 0.9em;
148
- }
149
- .note-text {
150
- color: #ff6b6b;
151
- font-size: 0.9em;
152
- padding: 5px;
153
- border-left: 3px solid #ff6b6b;
154
  margin-top: 15px;
155
- background-color: #fff5f5;
156
  }
157
  """
158
 
159
- js_code = """
160
- function setupCopyFunctions() {
161
- // 为标签项设置点击复制
162
- document.querySelectorAll('.tag-item').forEach(item => {
163
- item.addEventListener('click', function() {
164
- const tagText = this.querySelector('.tag-en').textContent;
165
- navigator.clipboard.writeText(tagText).then(() => {
166
- // 显示临时复制成功提示
167
- const msg = document.createElement('span');
168
- msg.textContent = '已复制!';
169
- msg.style.color = '#4CAF50';
170
- msg.style.marginLeft = '5px';
171
- msg.style.fontSize = '0.8em';
172
- this.appendChild(msg);
173
- setTimeout(() => msg.remove(), 1000);
174
- });
175
- });
176
- });
177
-
178
- // 为汇总区域的复制按钮设置功能
179
- document.getElementById('copy-tags-btn').addEventListener('click', function() {
180
- const tagsText = document.getElementById('summary-text').value;
181
- navigator.clipboard.writeText(tagsText).then(() => {
182
- const copiedMsg = document.getElementById('copied-message');
183
- copiedMsg.style.display = 'inline';
184
  setTimeout(() => {
185
- copiedMsg.style.display = 'none';
186
- }, 2000);
187
- });
 
 
 
188
  });
189
  }
190
-
191
- // 在DOM加载完成或更新后调用设置函数
192
- function onUiUpdate() {
193
- setupCopyFunctions();
194
- }
195
-
196
- document.addEventListener('DOMContentLoaded', onUiUpdate);
197
  """
198
 
199
- with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=custom_css, js=js_code) as demo:
200
  gr.Markdown("# 🖼️ AI 图像标签分析器")
201
- gr.Markdown("上传图片自动识别标签,并可一键翻译成中文")
202
- gr.Markdown("<div class='note-text'>⚠️ 注意:角色识别仅支持推测2024年2月以前的角色</div>", elem_id="character-notice")
 
 
 
 
 
203
 
204
  with gr.Row():
205
  with gr.Column(scale=1):
206
- img_in = gr.Image(type="pil", label="上传图片")
 
 
 
207
  with gr.Accordion("⚙️ 高级设置", open=False):
208
- gen_slider = gr.Slider(0, 1, 0.35,
209
- label="通用标签阈值", info="越高→标签更少更准")
210
- char_slider = gr.Slider(0, 1, 0.85,
211
- label="角色标签阈值", info="推荐保持较高阈值")
212
- show_zh = gr.Checkbox(True, label="显示中文翻译")
213
-
214
- gr.Markdown("### 汇总设置")
215
  with gr.Row():
216
- sum_general = gr.Checkbox(True, label="通用标签")
217
- sum_char = gr.Checkbox(True, label="角色标签")
218
- sum_rating = gr.Checkbox(False, label="评分标签")
219
- sum_sep = gr.Dropdown(["逗号", "换行", "空格"], value="逗号", label="分隔符")
 
220
 
221
- btn = gr.Button("开始分析", variant="primary", elem_classes=["btn-container"])
222
  processing_info = gr.Markdown("", visible=False)
223
 
224
  with gr.Column(scale=2):
@@ -226,142 +244,247 @@ with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=cus
226
  with gr.TabItem("🏷️ 通用标签"):
227
  out_general = gr.HTML(label="General Tags")
228
  with gr.TabItem("👤 角色标签"):
 
229
  out_char = gr.HTML(label="Character Tags")
230
  with gr.TabItem("⭐ 评分标签"):
231
  out_rating = gr.HTML(label="Rating Tags")
232
 
233
- gr.Markdown("### 标签汇总")
234
- with gr.Row():
235
- out_summary = gr.Textbox(label="标签汇总",
236
- placeholder="选择需要汇总的标签类别...",
237
- lines=3,
238
- elem_id="summary-text")
239
-
240
- # 添加复制按钮的HTML
241
- copy_btn_html = gr.HTML("""
242
- <div style="display: flex; align-items: center;">
243
- <button id="copy-tags-btn" class="copy-btn">
244
- <svg class="copy-icon" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
245
- <rect x="9" y="9" width="13" height="13" rx="2" ry="2"></rect>
246
- <path d="M5 15H4a2 2 0 01-2-2V4a2 2 0 012-2h9a2 2 0 012 2v1"></path>
247
- </svg>
248
- 复制标签
249
- </button>
250
- <span id="copied-message" class="copied-message">已复制!</span>
251
- </div>
252
- """)
253
-
254
- # ----------------- 处理回调 -----------------
255
- def format_tags_html(tags_dict, translations, show_translation=True):
256
- """格式化标签为HTML格式,添加点击复制功能"""
257
  if not tags_dict:
258
  return "<p>暂无标签</p>"
259
 
260
  html = '<div class="label-container">'
261
- for i, (tag, score) in enumerate(tags_dict.items()):
262
- # 添加可点击复制的标签项
263
- html += f'<div class="tag-item" title="点击复制标签">'
264
- html += f'<div><span class="tag-en">{tag}</span>'
265
- if show_translation and i < len(translations):
266
- html += f'<span class="tag-zh">({translations[i]})</span>'
267
- html += '</div>'
268
- html += f'<span class="tag-score">{score:.3f}</span>'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  html += '</div>'
270
  html += '</div>'
271
  return html
272
 
273
- def process(img, g_th, c_th, show_zh, sum_gen, sum_char, sum_rat, sep_type):
274
- # 开始处理,返回更新
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275
  yield (
276
- gr.update(interactive=False, value="处理中..."),
277
- gr.update(visible=True, value="🔄 正在分析图像..."),
278
- "", "", "", ""
 
 
 
 
279
  )
280
 
281
  try:
282
- tagger = Tagger()
283
- res = tagger.predict(img, g_th, c_th)
284
-
285
- # 收集所有需要翻译的标签
286
- all_tags = []
287
- tag_categories = {
288
- "general": list(res["general"].keys()),
289
- "characters": list(res["characters"].keys()),
290
- "ratings": list(res["ratings"].keys())
291
- }
292
-
293
- if show_zh:
294
- for tags in tag_categories.values():
295
- all_tags.extend(tags)
296
-
297
- # 批量翻译
298
- if all_tags:
299
- translations = translate_texts(all_tags, src_lang="auto", tgt_lang="zh")
300
- else:
301
- translations = []
302
- else:
303
- translations = []
304
 
305
- # 分配翻译结果
306
- translations_dict = {}
 
 
 
 
 
 
 
 
 
 
 
 
307
  offset = 0
308
- for category, tags in tag_categories.items():
309
- if show_zh and tags:
310
- translations_dict[category] = translations[offset:offset+len(tags)]
311
- offset += len(tags)
 
 
312
  else:
313
- translations_dict[category] = []
314
 
315
- # 生成HTML输出
316
- general_html = format_tags_html(res["general"], translations_dict["general"], show_zh)
317
- char_html = format_tags_html(res["characters"], translations_dict["characters"], show_zh)
318
- rating_html = format_tags_html(res["ratings"], translations_dict["ratings"], show_zh)
319
 
320
- # 生成汇总文本 - 修改为仅显示英文标签,无注释
321
- summary_parts = []
322
- separators = {"逗号": ", ", "换行": "\n", "空格": " "}
323
- separator = separators[sep_type]
324
-
325
- all_tags = []
326
- if sum_gen and res["general"]:
327
- all_tags.extend(list(res["general"].keys()))
328
 
329
- if sum_char and res["characters"]:
330
- all_tags.extend(list(res["characters"].keys()))
331
-
332
- if sum_rat and res["ratings"]:
333
- all_tags.extend(list(res["ratings"].keys()))
334
-
335
- summary_text = separator.join(all_tags) if all_tags else "请选择要汇总的标签类别"
 
 
336
 
337
- # 完成处理,返回最终结果
338
  yield (
339
- gr.update(interactive=True, value="开始分析"),
340
- gr.update(visible=False),
341
  general_html,
342
  char_html,
343
  rating_html,
344
- summary_text
 
 
 
345
  )
346
 
347
  except Exception as e:
348
- # 出错时的处理
 
 
349
  yield (
350
- gr.update(interactive=True, value="开始分析"),
351
  gr.update(visible=True, value=f"❌ 处理失败: {str(e)}"),
352
- "", "", "", ""
 
 
353
  )
354
 
355
- # 绑定事件
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356
  btn.click(
357
- process,
358
- inputs=[img_in, gen_slider, char_slider, show_zh, sum_general, sum_char, sum_rating, sum_sep],
359
- outputs=[btn, processing_info, out_general, out_char, out_rating, out_summary],
360
- show_progress=True
 
 
 
 
 
 
 
 
361
  )
362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363
  # ------------------------------------------------------------------
364
  # 启动
365
  # ------------------------------------------------------------------
366
  if __name__ == "__main__":
 
 
367
  demo.launch(server_name="0.0.0.0", server_port=7860)
 
1
+ import os
2
+ import json
3
  import gradio as gr
4
+ import huggingface_hub
5
+ import numpy as np
6
+ import onnxruntime as rt
7
+ import pandas as pd
8
  from PIL import Image
9
  from huggingface_hub import login
10
 
11
+ # 假设 translator.py 中的 translate_texts 函数已正确定义
12
+ # from translator import translate_texts
13
+ # Mock translator for a standalone example if translator.py is not available
14
+ def translate_texts(texts, src_lang="auto", tgt_lang="zh"):
15
+ print(f"Mock translating: {texts} from {src_lang} to {tgt_lang}")
16
+ if not texts:
17
+ return []
18
+ # 返回一个简单的模拟翻译结果,实际使用时请确保 translator.py 可用且功能正确
19
+ return [f"{text}_译" for text in texts]
20
 
21
  # ------------------------------------------------------------------
22
  # 模型配置
23
  # ------------------------------------------------------------------
24
+ MODEL_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
25
+ MODEL_FILENAME = "model.onnx"
26
+ LABEL_FILENAME = "selected_tags.csv"
27
 
28
  HF_TOKEN = os.environ.get("HF_TOKEN", "")
29
  if HF_TOKEN:
 
32
  print("⚠️ 未检测到 HF_TOKEN,私有模型可能下载失败")
33
 
34
  # ------------------------------------------------------------------
35
+ # Tagger 类 (全局实例化)
36
  # ------------------------------------------------------------------
37
  class Tagger:
38
  def __init__(self):
39
+ self.hf_token = HF_TOKEN
40
+ self.tag_names = []
41
+ self.categories = {}
42
+ self.model = None
43
+ self.input_size = 0
44
  self._load_model_and_labels()
45
 
46
  def _load_model_and_labels(self):
47
+ try:
48
+ label_path = huggingface_hub.hf_hub_download(
49
+ MODEL_REPO, LABEL_FILENAME, token=self.hf_token, resume_download=True
50
+ )
51
+ model_path = huggingface_hub.hf_hub_download(
52
+ MODEL_REPO, MODEL_FILENAME, token=self.hf_token, resume_download=True
53
+ )
54
+
55
+ tags_df = pd.read_csv(label_path)
56
+ self.tag_names = tags_df["name"].tolist()
57
+ self.categories = {
58
+ "rating": np.where(tags_df["category"] == 9)[0],
59
+ "general": np.where(tags_df["category"] == 0)[0],
60
+ "character": np.where(tags_df["category"] == 4)[0],
61
+ }
62
+ self.model = rt.InferenceSession(model_path)
63
+ self.input_size = self.model.get_inputs()[0].shape[1]
64
+ print("✅ 模型和标签加载成功")
65
+ except Exception as e:
66
+ print(f"❌ 模型或标签加载失败: {e}")
67
+ # 可以选择抛出异常或设置一个标志,让应用知道模型未就绪
68
+ raise RuntimeError(f"模型初始化失败: {e}")
69
 
 
 
 
 
 
 
 
 
 
70
 
71
  # ------------------------- preprocess -------------------------
72
  def _preprocess(self, img: Image.Image) -> np.ndarray:
73
+ if img is None:
74
+ raise ValueError("输入图像不能为空")
75
  if img.mode != "RGB":
76
  img = img.convert("RGB")
77
+ size = max(img.size)
78
  canvas = Image.new("RGB", (size, size), (255, 255, 255))
79
+ canvas.paste(img, ((size - img.width) // 2, (size - img.height) // 2))
80
  if size != self.input_size:
81
  canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC)
82
  return np.array(canvas)[:, :, ::-1].astype(np.float32) # to BGR
83
 
84
  # --------------------------- predict --------------------------
85
+ def predict(self, img: Image.Image, gen_th: float = 0.35, char_th: float = 0.85):
86
+ if self.model is None:
87
+ raise RuntimeError("模型未成功加载,无法进行预测。")
88
+ inp_name = self.model.get_inputs()[0].name
89
+ outputs = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0]
90
 
91
  res = {"ratings": {}, "general": {}, "characters": {}}
92
+ tag_categories_for_translation = {"ratings": [], "general": [], "characters": []}
93
 
94
  for idx in self.categories["rating"]:
95
+ tag_name = self.tag_names[idx].replace("_", " ")
96
+ res["ratings"][tag_name] = float(outputs[idx])
97
+ tag_categories_for_translation["ratings"].append(tag_name)
98
+
99
 
100
  for idx in self.categories["general"]:
101
  if outputs[idx] > gen_th:
102
+ tag_name = self.tag_names[idx].replace("_", " ")
103
+ res["general"][tag_name] = float(outputs[idx])
104
+ tag_categories_for_translation["general"].append(tag_name)
105
+
106
 
107
  for idx in self.categories["character"]:
108
  if outputs[idx] > char_th:
109
+ tag_name = self.tag_names[idx].replace("_", " ")
110
+ res["characters"][tag_name] = float(outputs[idx])
111
+ tag_categories_for_translation["character"].append(tag_name)
112
 
113
+
114
+ # Sort general tags by score
115
+ res["general"] = dict(sorted(res["general"].items(), key=lambda kv: kv[1], reverse=True))
116
+ # Sort character tags by score (optional, but good for consistency)
117
+ res["characters"] = dict(sorted(res["characters"].items(), key=lambda kv: kv[1], reverse=True))
118
+ # Ratings are usually fixed, but sorting doesn't hurt if order matters for display
119
+ res["ratings"] = dict(sorted(res["ratings"].items(), key=lambda kv: kv[1], reverse=True))
120
+
121
+
122
+ # Re-populate tag_categories_for_translation based on sorted and filtered results
123
+ tag_categories_for_translation["general"] = list(res["general"].keys())
124
+ tag_categories_for_translation["characters"] = list(res["characters"].keys())
125
+ tag_categories_for_translation["ratings"] = list(res["ratings"].keys()) # Order from sorted res
126
+
127
+ return res, tag_categories_for_translation
128
+
129
+ # 全局 Tagger 实例
130
+ try:
131
+ tagger_instance = Tagger()
132
+ except RuntimeError as e:
133
+ print(f"应用启动时Tagger初始化失败: {e}")
134
+ tagger_instance = None # 允许应用启动,但在处理时会失败
135
 
136
  # ------------------------------------------------------------------
137
  # Gradio UI
 
153
  padding: 2px 5px;
154
  border-radius: 3px;
155
  background-color: #fff;
156
+ transition: background-color 0.2s;
157
  }
158
  .tag-item:hover {
159
  background-color: #f0f0f0;
 
161
  .tag-en {
162
  font-weight: bold;
163
  color: #333;
164
+ cursor: pointer; /* Indicates clickable */
165
  }
166
  .tag-zh {
167
  color: #666;
 
171
  color: #999;
172
  font-size: 0.9em;
173
  }
174
+ .btn-analyze-container { /* Custom class for analyze button container */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  margin-top: 15px;
176
+ margin-bottom: 15px;
177
  }
178
  """
179
 
180
+ _js_functions = """
181
+ function copyToClipboard(text) {
182
+ navigator.clipboard.writeText(text).then(() => {
183
+ // console.log('Tag copied to clipboard: ' + text);
184
+ const feedback = document.createElement('div');
185
+ feedback.textContent = '已复制: ' + text.substring(0,30) + (text.length > 30 ? '...' : ''); // Show part of copied text
186
+ feedback.style.position = 'fixed';
187
+ feedback.style.bottom = '20px';
188
+ feedback.style.left = '50%';
189
+ feedback.style.transform = 'translateX(-50%)';
190
+ feedback.style.backgroundColor = '#4CAF50';
191
+ feedback.style.color = 'white';
192
+ feedback.style.padding = '10px 20px';
193
+ feedback.style.borderRadius = '5px';
194
+ feedback.style.zIndex = '10000'; // Ensure it's on top
195
+ feedback.style.transition = 'opacity 0.5s ease-out';
196
+ document.body.appendChild(feedback);
197
+ setTimeout(() => {
198
+ feedback.style.opacity = '0';
 
 
 
 
 
 
199
  setTimeout(() => {
200
+ document.body.removeChild(feedback);
201
+ }, 500);
202
+ }, 1500);
203
+ }).catch(err => {
204
+ console.error('Failed to copy tag: ', err);
205
+ alert('复制失败: ' + err); // Fallback for browsers that might block it
206
  });
207
  }
 
 
 
 
 
 
 
208
  """
209
 
210
+ with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=custom_css, js=_js_functions) as demo:
211
  gr.Markdown("# 🖼️ AI 图像标签分析器")
212
+ gr.Markdown("上传图片自动识别标签,支持中英文显示和一键复制。")
213
+
214
+ # State variables to store results for re-processing summary without re-running model
215
+ state_res = gr.State({})
216
+ state_translations_dict = gr.State({})
217
+ state_tag_categories_for_translation = gr.State({})
218
+
219
 
220
  with gr.Row():
221
  with gr.Column(scale=1):
222
+ img_in = gr.Image(type="pil", label="上传图片", height=300)
223
+
224
+ btn = gr.Button("🚀 开始分析", variant="primary", elem_classes=["btn-analyze-container"])
225
+
226
  with gr.Accordion("⚙️ 高级设置", open=False):
227
+ gen_slider = gr.Slider(0, 1, value=0.35, step=0.01, label="通用标签阈值", info="越高 → 标签更少更准")
228
+ char_slider = gr.Slider(0, 1, value=0.85, step=0.01, label="角色标签阈值", info="推荐保持较高阈值")
229
+ show_tag_scores = gr.Checkbox(True, label="在列表中显示标签置信度")
230
+
231
+ with gr.Accordion("📊 标签汇总设置", open=True):
232
+ gr.Markdown("选择要包含在下方汇总文本框中的标签类别:")
 
233
  with gr.Row():
234
+ sum_general = gr.Checkbox(True, label="通用标签", min_width=50)
235
+ sum_char = gr.Checkbox(True, label="角色标签", min_width=50)
236
+ sum_rating = gr.Checkbox(False, label="评分标签", min_width=50)
237
+ sum_sep = gr.Dropdown(["逗号", "换行", "空格"], value="逗号", label="标签之间的分隔符")
238
+ sum_show_zh = gr.Checkbox(False, label="在汇总中显示中文翻译")
239
 
 
240
  processing_info = gr.Markdown("", visible=False)
241
 
242
  with gr.Column(scale=2):
 
244
  with gr.TabItem("🏷️ 通用标签"):
245
  out_general = gr.HTML(label="General Tags")
246
  with gr.TabItem("👤 角色标签"):
247
+ gr.Markdown("<p style='color:gray; font-size:small;'>提示:角色标签推测基于截至2024年2月的数据。</p>")
248
  out_char = gr.HTML(label="Character Tags")
249
  with gr.TabItem("⭐ 评分标签"):
250
  out_rating = gr.HTML(label="Rating Tags")
251
 
252
+ gr.Markdown("### 标签汇总结果")
253
+ out_summary = gr.Textbox(
254
+ label="标签汇总(仅英文,可通过上方设置添加中文)",
255
+ placeholder="分析完成后,此处将显示汇总的英文标签...",
256
+ lines=5,
257
+ show_copy_button=True
258
+ )
259
+
260
+ # ----------------- 辅助函数 -----------------
261
+ def format_tags_html(tags_dict, translations_list, category_name, show_scores=True, show_translation_in_list=True):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262
  if not tags_dict:
263
  return "<p>暂无标签</p>"
264
 
265
  html = '<div class="label-container">'
266
+ # Ensure translations_list is a list and matches length, or provide empty strings if not.
267
+ # This assumes translations_list corresponds to the order in tags_dict.keys()
268
+ # For dictionaries, keys() order is insertion order from Python 3.7+
269
+
270
+ if not isinstance(translations_list, list): # defensive check
271
+ translations_list = []
272
+
273
+ tag_keys = list(tags_dict.keys())
274
+
275
+ for i, tag in enumerate(tag_keys):
276
+ score = tags_dict[tag]
277
+ escaped_tag = tag.replace("'", "\\'") # Escape for JS
278
+
279
+ html += '<div class="tag-item">'
280
+ tag_display_html = f'<span class="tag-en" onclick="copyToClipboard(\'{escaped_tag}\')">{tag}</span>'
281
+
282
+ if show_translation_in_list and i < len(translations_list) and translations_list[i]:
283
+ tag_display_html += f'<span class="tag-zh">({translations_list[i]})</span>'
284
+
285
+ html += f'<div>{tag_display_html}</div>'
286
+ if show_scores:
287
+ html += f'<span class="tag-score">{score:.3f}</span>'
288
  html += '</div>'
289
  html += '</div>'
290
  return html
291
 
292
+ def generate_summary_text_content(
293
+ current_res, current_translations_dict,
294
+ s_gen, s_char, s_rat, s_sep_type, s_show_zh
295
+ ):
296
+ if not current_res:
297
+ return "请先分析图像或选择要汇总的标签类别。"
298
+
299
+ summary_parts = []
300
+ separators = {"逗号": ", ", "换行": "\n", "空格": " "}
301
+ separator = separators.get(s_sep_type, ", ")
302
+
303
+ categories_to_summarize = []
304
+ if s_gen: categories_to_summarize.append("general")
305
+ if s_char: categories_to_summarize.append("characters")
306
+ if s_rat: categories_to_summarize.append("ratings")
307
+
308
+ if not categories_to_summarize:
309
+ return "请至少选择一个标签类别进行汇总。"
310
+
311
+ for cat_key in categories_to_summarize:
312
+ if current_res.get(cat_key):
313
+ tags_to_join = []
314
+ cat_tags_en = list(current_res[cat_key].keys())
315
+ cat_translations = current_translations_dict.get(cat_key, [])
316
+
317
+ for i, en_tag in enumerate(cat_tags_en):
318
+ if s_show_zh and i < len(cat_translations) and cat_translations[i]:
319
+ tags_to_join.append(f"{en_tag}({cat_translations[i]})")
320
+ else:
321
+ tags_to_join.append(en_tag)
322
+ if tags_to_join: # only add if there are tags for this category
323
+ summary_parts.append(separator.join(tags_to_join))
324
+
325
+ # Join parts with double newline for readability if multiple categories present and separator is not newline
326
+ joiner = "\n\n" if separator != "\n" and len(summary_parts) > 1 else separator if separator == "\n" else " "
327
+
328
+ final_summary = joiner.join(summary_parts)
329
+ return final_summary if final_summary else "选定的类别中没有找到标签。"
330
+
331
+
332
+ # ----------------- 主要处理回调 -----------------
333
+ def process_image_and_generate_outputs(
334
+ img, g_th, c_th, s_scores, # Main inputs
335
+ s_gen, s_char, s_rat, s_sep, s_zh_in_sum # Summary controls from UI
336
+ ):
337
+ if img is None:
338
+ yield (
339
+ gr.update(interactive=True, value="🚀 开始分析"),
340
+ gr.update(visible=True, value="❌ 请先上传图片。"),
341
+ "", "", "", "", # HTML outputs
342
+ gr.update(placeholder="请先上传图片并开始分析..."), # Summary text
343
+ {}, {}, {} # States
344
+ )
345
+ return
346
+
347
+ if tagger_instance is None:
348
+ yield (
349
+ gr.update(interactive=True, value="🚀 开始分析"),
350
+ gr.update(visible=True, value="❌ 分析器未成功初始化,请检查控制台错误。"),
351
+ "", "", "", "",
352
+ gr.update(placeholder="分析器初始化失败..."),
353
+ {}, {}, {}
354
+ )
355
+ return
356
+
357
  yield (
358
+ gr.update(interactive=False, value="🔄 处理中..."),
359
+ gr.update(visible=True, value="🔄 正在分析图像,请稍候..."),
360
+ gr.HTML(value="<p>分析中...</p>"), # General
361
+ gr.HTML(value="<p>分析中...</p>"), # Character
362
+ gr.HTML(value="<p>分析中...</p>"), # Rating
363
+ gr.update(value="分析中,请稍候..."), # Summary
364
+ {}, {}, {} # Clear states initially
365
  )
366
 
367
  try:
368
+ # 1. Predict tags
369
+ # The predict method now returns res and tag_categories_for_translation
370
+ res, tag_categories_original_order = tagger_instance.predict(img, g_th, c_th)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371
 
372
+ # 2. Translate all tags that will be displayed in lists
373
+ # The `show_zh_in_list_checkbox` now controls if we translate for lists.
374
+ # For summary, translation is controlled by `s_zh_in_sum`.
375
+ # We should always translate all potential tags to have them ready.
376
+
377
+ all_tags_to_translate = []
378
+ for cat_key in ["general", "characters", "ratings"]:
379
+ all_tags_to_translate.extend(tag_categories_original_order.get(cat_key, []))
380
+
381
+ all_translations_flat = []
382
+ if all_tags_to_translate: # Only call translate if there's something to translate
383
+ all_translations_flat = translate_texts(all_tags_to_translate, src_lang="auto", tgt_lang="zh")
384
+
385
+ current_translations_dict = {}
386
  offset = 0
387
+ for cat_key in ["general", "characters", "ratings"]:
388
+ cat_original_tags = tag_categories_original_order.get(cat_key, [])
389
+ num_tags_in_cat = len(cat_original_tags)
390
+ if num_tags_in_cat > 0:
391
+ current_translations_dict[cat_key] = all_translations_flat[offset : offset + num_tags_in_cat]
392
+ offset += num_tags_in_cat
393
  else:
394
+ current_translations_dict[cat_key] = []
395
 
 
 
 
 
396
 
397
+ # 3. Format HTML outputs (always show English, translations if available and `show_zh_in_list` is true)
398
+ # Let's assume `show_zh_in_list` is a new checkbox or fixed to true for list display.
399
+ # For simplicity, let's assume list translations are always prepared if `current_translations_dict` has them.
 
 
 
 
 
400
 
401
+ general_html = format_tags_html(res.get("general", {}), current_translations_dict.get("general", []), "general", s_scores, True)
402
+ char_html = format_tags_html(res.get("characters", {}), current_translations_dict.get("characters", []), "characters", s_scores, True)
403
+ rating_html = format_tags_html(res.get("ratings", {}), current_translations_dict.get("ratings", []), "ratings", s_scores, True)
404
+
405
+ # 4. Generate initial summary text (based on current summary settings from UI)
406
+ summary_text = generate_summary_text_content(
407
+ res, current_translations_dict,
408
+ s_gen, s_char, s_rat, s_sep, s_zh_in_sum # Use summary specific checkbox for zh
409
+ )
410
 
 
411
  yield (
412
+ gr.update(interactive=True, value="🚀 开始分析"),
413
+ gr.update(visible=True, value="✅ 分析完成!"), # Success message
414
  general_html,
415
  char_html,
416
  rating_html,
417
+ gr.update(value=summary_text),
418
+ res, # Store full results in state
419
+ current_translations_dict, # Store translations in state
420
+ tag_categories_original_order # Store original order for consistency if needed
421
  )
422
 
423
  except Exception as e:
424
+ import traceback
425
+ tb_str = traceback.format_exc()
426
+ print(f"处理时发生错误: {e}\n{tb_str}")
427
  yield (
428
+ gr.update(interactive=True, value="🚀 开始分析"),
429
  gr.update(visible=True, value=f"❌ 处理失败: {str(e)}"),
430
+ "<p>处理出错</p>", "<p>处理出错</p>", "<p>处理出错</p>", # Clear HTML
431
+ gr.update(value=f"错误: {str(e)}", placeholder="分析失败..."), # Update summary
432
+ {}, {}, {} # Clear states
433
  )
434
 
435
+ # ----------------- 更新汇总文本的回调 -----------------
436
+ def update_summary_display(
437
+ s_gen, s_char, s_rat, s_sep, s_zh_in_sum, # UI controls for summary
438
+ current_res_from_state, current_translations_from_state # Data from state
439
+ ):
440
+ if not current_res_from_state: # No analysis done yet
441
+ return gr.update(placeholder="请先完成一次图像分析以生成汇总。", value="")
442
+
443
+ new_summary_text = generate_summary_text_content(
444
+ current_res_from_state, current_translations_from_state,
445
+ s_gen, s_char, s_rat, s_sep, s_zh_in_sum
446
+ )
447
+ return gr.update(value=new_summary_text)
448
+
449
+ # ----------------- 绑定事件 -----------------
450
  btn.click(
451
+ process_image_and_generate_outputs,
452
+ inputs=[
453
+ img_in, gen_slider, char_slider, show_tag_scores,
454
+ sum_general, sum_char, sum_rating, sum_sep, sum_show_zh # Pass summary controls directly
455
+ ],
456
+ outputs=[
457
+ btn, processing_info,
458
+ out_general, out_char, out_rating,
459
+ out_summary,
460
+ state_res, state_translations_dict, state_tag_categories_for_translation
461
+ ],
462
+ # show_progress="full" # Gradio's built-in progress
463
  )
464
 
465
+ # Bind summary update controls to the update_summary_display function
466
+ summary_controls = [sum_general, sum_char, sum_rating, sum_sep, sum_show_zh]
467
+ for ctrl in summary_controls:
468
+ ctrl.change(
469
+ fn=update_summary_display,
470
+ inputs=summary_controls + [state_res, state_translations_dict], # All controls + state data
471
+ outputs=[out_summary],
472
+ # show_progress=False # Typically fast, no need for progress indicator
473
+ )
474
+
475
+ # If tag score display in lists is changed, re-render HTMLs
476
+ # This requires storing the raw data or re-processing parts of it.
477
+ # For simplicity, we can make the list HTML generation also dependent on state if needed,
478
+ # or re-trigger a lighter version of 'process' that only updates HTML.
479
+ # Current implementation: score display is set at 'analyze' time.
480
+ # To make 'show_tag_scores' dynamic for lists *after* analysis without re-analyzing:
481
+ # We would need a new callback that re-runs `format_tags_html` for each category
482
+ # using data from `state_res` and `state_translations_dict`.
483
+
484
  # ------------------------------------------------------------------
485
  # 启动
486
  # ------------------------------------------------------------------
487
  if __name__ == "__main__":
488
+ if tagger_instance is None:
489
+ print("CRITICAL: Tagger 未能初始化,应用功能将受限。请检查之前的错误信息。")
490
  demo.launch(server_name="0.0.0.0", server_port=7860)