Spaces:
Runtime error
Runtime error
File size: 3,326 Bytes
80e7256 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import torch
import torch.nn as nn
import torchvision
import torch.backends.cudnn as cudnn
import torch.optim
import os
import sys
import argparse
import time
import dataloader
import model
import Myloss
import numpy as np
from torchvision import transforms
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def train(config):
os.environ['CUDA_VISIBLE_DEVICES']='0'
DCE_net = model.enhance_net_nopool().cuda()
DCE_net.apply(weights_init)
if config.load_pretrain == True:
DCE_net.load_state_dict(torch.load(config.pretrain_dir))
train_dataset = dataloader.lowlight_loader(config.lowlight_images_path)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=config.train_batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=True)
L_color = Myloss.L_color()
L_spa = Myloss.L_spa()
L_exp = Myloss.L_exp(16,0.6)
L_TV = Myloss.L_TV()
optimizer = torch.optim.Adam(DCE_net.parameters(), lr=config.lr, weight_decay=config.weight_decay)
DCE_net.train()
for epoch in range(config.num_epochs):
for iteration, img_lowlight in enumerate(train_loader):
img_lowlight = img_lowlight.cuda()
enhanced_image_1,enhanced_image,A = DCE_net(img_lowlight)
Loss_TV = 200*L_TV(A)
loss_spa = torch.mean(L_spa(enhanced_image, img_lowlight))
loss_col = 5*torch.mean(L_color(enhanced_image))
loss_exp = 10*torch.mean(L_exp(enhanced_image))
# best_loss
loss = Loss_TV + loss_spa + loss_col + loss_exp
#
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm(DCE_net.parameters(),config.grad_clip_norm)
optimizer.step()
if ((iteration+1) % config.display_iter) == 0:
print("Loss at iteration", iteration+1, ":", loss.item())
if ((iteration+1) % config.snapshot_iter) == 0:
torch.save(DCE_net.state_dict(), config.snapshots_folder + "Epoch" + str(epoch) + '.pth')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Input Parameters
parser.add_argument('--lowlight_images_path', type=str, default="data/train_data/")
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument('--grad_clip_norm', type=float, default=0.1)
parser.add_argument('--num_epochs', type=int, default=200)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--val_batch_size', type=int, default=4)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--display_iter', type=int, default=10)
parser.add_argument('--snapshot_iter', type=int, default=10)
parser.add_argument('--snapshots_folder', type=str, default="snapshots/")
parser.add_argument('--load_pretrain', type=bool, default= False)
parser.add_argument('--pretrain_dir', type=str, default= "snapshots/Epoch99.pth")
config = parser.parse_args()
if not os.path.exists(config.snapshots_folder):
os.mkdir(config.snapshots_folder)
train(config)
|