File size: 3,326 Bytes
80e7256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
import torchvision
import torch.backends.cudnn as cudnn
import torch.optim
import os
import sys
import argparse
import time
import dataloader
import model
import Myloss
import numpy as np
from torchvision import transforms


def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        m.weight.data.normal_(0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)





def train(config):

	os.environ['CUDA_VISIBLE_DEVICES']='0'

	DCE_net = model.enhance_net_nopool().cuda()

	DCE_net.apply(weights_init)
	if config.load_pretrain == True:
	    DCE_net.load_state_dict(torch.load(config.pretrain_dir))
	train_dataset = dataloader.lowlight_loader(config.lowlight_images_path)		
	
	train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=config.train_batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=True)



	L_color = Myloss.L_color()
	L_spa = Myloss.L_spa()

	L_exp = Myloss.L_exp(16,0.6)
	L_TV = Myloss.L_TV()


	optimizer = torch.optim.Adam(DCE_net.parameters(), lr=config.lr, weight_decay=config.weight_decay)
	
	DCE_net.train()

	for epoch in range(config.num_epochs):
		for iteration, img_lowlight in enumerate(train_loader):

			img_lowlight = img_lowlight.cuda()

			enhanced_image_1,enhanced_image,A  = DCE_net(img_lowlight)

			Loss_TV = 200*L_TV(A)
			
			loss_spa = torch.mean(L_spa(enhanced_image, img_lowlight))

			loss_col = 5*torch.mean(L_color(enhanced_image))

			loss_exp = 10*torch.mean(L_exp(enhanced_image))
			
			
			# best_loss
			loss =  Loss_TV + loss_spa + loss_col + loss_exp
			#

			
			optimizer.zero_grad()
			loss.backward()
			torch.nn.utils.clip_grad_norm(DCE_net.parameters(),config.grad_clip_norm)
			optimizer.step()

			if ((iteration+1) % config.display_iter) == 0:
				print("Loss at iteration", iteration+1, ":", loss.item())
			if ((iteration+1) % config.snapshot_iter) == 0:
				
				torch.save(DCE_net.state_dict(), config.snapshots_folder + "Epoch" + str(epoch) + '.pth') 		




if __name__ == "__main__":

	parser = argparse.ArgumentParser()

	# Input Parameters
	parser.add_argument('--lowlight_images_path', type=str, default="data/train_data/")
	parser.add_argument('--lr', type=float, default=0.0001)
	parser.add_argument('--weight_decay', type=float, default=0.0001)
	parser.add_argument('--grad_clip_norm', type=float, default=0.1)
	parser.add_argument('--num_epochs', type=int, default=200)
	parser.add_argument('--train_batch_size', type=int, default=8)
	parser.add_argument('--val_batch_size', type=int, default=4)
	parser.add_argument('--num_workers', type=int, default=4)
	parser.add_argument('--display_iter', type=int, default=10)
	parser.add_argument('--snapshot_iter', type=int, default=10)
	parser.add_argument('--snapshots_folder', type=str, default="snapshots/")
	parser.add_argument('--load_pretrain', type=bool, default= False)
	parser.add_argument('--pretrain_dir', type=str, default= "snapshots/Epoch99.pth")

	config = parser.parse_args()

	if not os.path.exists(config.snapshots_folder):
		os.mkdir(config.snapshots_folder)


	train(config)