Spaces:
Runtime error
Runtime error
Commit
·
80e7256
1
Parent(s):
5f7fa96
Upload lowlight_train.py
Browse files- lowlight_train.py +124 -0
lowlight_train.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision
|
4 |
+
import torch.backends.cudnn as cudnn
|
5 |
+
import torch.optim
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import argparse
|
9 |
+
import time
|
10 |
+
import dataloader
|
11 |
+
import model
|
12 |
+
import Myloss
|
13 |
+
import numpy as np
|
14 |
+
from torchvision import transforms
|
15 |
+
|
16 |
+
|
17 |
+
def weights_init(m):
|
18 |
+
classname = m.__class__.__name__
|
19 |
+
if classname.find('Conv') != -1:
|
20 |
+
m.weight.data.normal_(0.0, 0.02)
|
21 |
+
elif classname.find('BatchNorm') != -1:
|
22 |
+
m.weight.data.normal_(1.0, 0.02)
|
23 |
+
m.bias.data.fill_(0)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
def train(config):
|
30 |
+
|
31 |
+
os.environ['CUDA_VISIBLE_DEVICES']='0'
|
32 |
+
|
33 |
+
DCE_net = model.enhance_net_nopool().cuda()
|
34 |
+
|
35 |
+
DCE_net.apply(weights_init)
|
36 |
+
if config.load_pretrain == True:
|
37 |
+
DCE_net.load_state_dict(torch.load(config.pretrain_dir))
|
38 |
+
train_dataset = dataloader.lowlight_loader(config.lowlight_images_path)
|
39 |
+
|
40 |
+
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=config.train_batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=True)
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
L_color = Myloss.L_color()
|
45 |
+
L_spa = Myloss.L_spa()
|
46 |
+
|
47 |
+
L_exp = Myloss.L_exp(16,0.6)
|
48 |
+
L_TV = Myloss.L_TV()
|
49 |
+
|
50 |
+
|
51 |
+
optimizer = torch.optim.Adam(DCE_net.parameters(), lr=config.lr, weight_decay=config.weight_decay)
|
52 |
+
|
53 |
+
DCE_net.train()
|
54 |
+
|
55 |
+
for epoch in range(config.num_epochs):
|
56 |
+
for iteration, img_lowlight in enumerate(train_loader):
|
57 |
+
|
58 |
+
img_lowlight = img_lowlight.cuda()
|
59 |
+
|
60 |
+
enhanced_image_1,enhanced_image,A = DCE_net(img_lowlight)
|
61 |
+
|
62 |
+
Loss_TV = 200*L_TV(A)
|
63 |
+
|
64 |
+
loss_spa = torch.mean(L_spa(enhanced_image, img_lowlight))
|
65 |
+
|
66 |
+
loss_col = 5*torch.mean(L_color(enhanced_image))
|
67 |
+
|
68 |
+
loss_exp = 10*torch.mean(L_exp(enhanced_image))
|
69 |
+
|
70 |
+
|
71 |
+
# best_loss
|
72 |
+
loss = Loss_TV + loss_spa + loss_col + loss_exp
|
73 |
+
#
|
74 |
+
|
75 |
+
|
76 |
+
optimizer.zero_grad()
|
77 |
+
loss.backward()
|
78 |
+
torch.nn.utils.clip_grad_norm(DCE_net.parameters(),config.grad_clip_norm)
|
79 |
+
optimizer.step()
|
80 |
+
|
81 |
+
if ((iteration+1) % config.display_iter) == 0:
|
82 |
+
print("Loss at iteration", iteration+1, ":", loss.item())
|
83 |
+
if ((iteration+1) % config.snapshot_iter) == 0:
|
84 |
+
|
85 |
+
torch.save(DCE_net.state_dict(), config.snapshots_folder + "Epoch" + str(epoch) + '.pth')
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
|
92 |
+
parser = argparse.ArgumentParser()
|
93 |
+
|
94 |
+
# Input Parameters
|
95 |
+
parser.add_argument('--lowlight_images_path', type=str, default="data/train_data/")
|
96 |
+
parser.add_argument('--lr', type=float, default=0.0001)
|
97 |
+
parser.add_argument('--weight_decay', type=float, default=0.0001)
|
98 |
+
parser.add_argument('--grad_clip_norm', type=float, default=0.1)
|
99 |
+
parser.add_argument('--num_epochs', type=int, default=200)
|
100 |
+
parser.add_argument('--train_batch_size', type=int, default=8)
|
101 |
+
parser.add_argument('--val_batch_size', type=int, default=4)
|
102 |
+
parser.add_argument('--num_workers', type=int, default=4)
|
103 |
+
parser.add_argument('--display_iter', type=int, default=10)
|
104 |
+
parser.add_argument('--snapshot_iter', type=int, default=10)
|
105 |
+
parser.add_argument('--snapshots_folder', type=str, default="snapshots/")
|
106 |
+
parser.add_argument('--load_pretrain', type=bool, default= False)
|
107 |
+
parser.add_argument('--pretrain_dir', type=str, default= "snapshots/Epoch99.pth")
|
108 |
+
|
109 |
+
config = parser.parse_args()
|
110 |
+
|
111 |
+
if not os.path.exists(config.snapshots_folder):
|
112 |
+
os.mkdir(config.snapshots_folder)
|
113 |
+
|
114 |
+
|
115 |
+
train(config)
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|