|
"""LangGraph: agent graph w/ tools""" |
|
import os |
|
from dotenv import load_dotenv |
|
from typing import List, Dict, Any, Optional |
|
import tempfile |
|
import re |
|
import json |
|
import requests |
|
from urllib.parse import urlparse |
|
import pytesseract |
|
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter |
|
import cmath |
|
import pandas as pd |
|
import uuid |
|
import numpy as np |
|
|
|
|
|
""" Langchain imports""" |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langgraph.prebuilt import ToolNode, tools_condition |
|
from langchain_core.tools import tool |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
|
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
import getpass |
|
import os |
|
|
|
if "GOOGLE_API_KEY" not in os.environ: |
|
os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter your Google AI API key: ") |
|
""" |
|
|
|
load_dotenv() |
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> int: |
|
"""Divide two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Get the modulus of two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a % b |
|
|
|
@tool |
|
def power(a: float, b: float) -> float: |
|
""" |
|
Get the power of two numbers. |
|
Args: |
|
a (float): the first number |
|
b (float): the second number |
|
""" |
|
return a**b |
|
|
|
@tool |
|
def square_root(a: float) -> float | complex: |
|
""" |
|
Get the square root of a number. |
|
Args: |
|
a (float): the number to get the square root of |
|
""" |
|
if a >= 0: |
|
return a**0.5 |
|
return cmath.sqrt(a) |
|
|
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
|
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
@tool |
|
def execute_code_multilang(code: str, language: str = "python") -> str: |
|
"""Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results. |
|
Args: |
|
code (str): The source code to execute. |
|
language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java". |
|
Returns: |
|
A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any). |
|
""" |
|
supported_languages = ["python", "bash", "sql", "c", "java"] |
|
language = language.lower() |
|
|
|
if language not in supported_languages: |
|
return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}" |
|
|
|
result = interpreter_instance.execute_code(code, language=language) |
|
|
|
response = [] |
|
|
|
if result["status"] == "success": |
|
response.append(f"✅ Code executed successfully in **{language.upper()}**") |
|
|
|
if result.get("stdout"): |
|
response.append( |
|
"\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```" |
|
) |
|
|
|
if result.get("stderr"): |
|
response.append( |
|
"\n**Standard Error (if any):**\n```\n" |
|
+ result["stderr"].strip() |
|
+ "\n```" |
|
) |
|
|
|
if result.get("result") is not None: |
|
response.append( |
|
"\n**Execution Result:**\n```\n" |
|
+ str(result["result"]).strip() |
|
+ "\n```" |
|
) |
|
|
|
if result.get("dataframes"): |
|
for df_info in result["dataframes"]: |
|
response.append( |
|
f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**" |
|
) |
|
df_preview = pd.DataFrame(df_info["head"]) |
|
response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```") |
|
|
|
if result.get("plots"): |
|
response.append( |
|
f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)" |
|
) |
|
|
|
else: |
|
response.append(f"❌ Code execution failed in **{language.upper()}**") |
|
if result.get("stderr"): |
|
response.append( |
|
"\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```" |
|
) |
|
|
|
return "\n".join(response) |
|
|
|
@tool |
|
def save_and_read_file(content: str, filename: Optional[str] = None) -> str: |
|
""" |
|
Save content to a file and return the path. |
|
Args: |
|
content (str): the content to save to the file |
|
filename (str, optional): the name of the file. If not provided, a random name file will be created. |
|
""" |
|
temp_dir = tempfile.gettempdir() |
|
if filename is None: |
|
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir) |
|
filepath = temp_file.name |
|
else: |
|
filepath = os.path.join(temp_dir, filename) |
|
|
|
with open(filepath, "w") as f: |
|
f.write(content) |
|
|
|
return f"File saved to {filepath}. You can read this file to process its contents." |
|
|
|
@tool |
|
def download_file_from_url(url: str, filename: Optional[str] = None) -> str: |
|
""" |
|
Download a file from a URL and save it to a temporary location. |
|
Args: |
|
url (str): the URL of the file to download. |
|
filename (str, optional): the name of the file. If not provided, a random name file will be created. |
|
""" |
|
try: |
|
|
|
if not filename: |
|
path = urlparse(url).path |
|
filename = os.path.basename(path) |
|
if not filename: |
|
filename = f"downloaded_{uuid.uuid4().hex[:8]}" |
|
|
|
|
|
temp_dir = tempfile.gettempdir() |
|
filepath = os.path.join(temp_dir, filename) |
|
|
|
|
|
response = requests.get(url, stream=True) |
|
response.raise_for_status() |
|
|
|
|
|
with open(filepath, "wb") as f: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
|
|
return f"File downloaded to {filepath}. You can read this file to process its contents." |
|
except Exception as e: |
|
return f"Error downloading file: {str(e)}" |
|
|
|
@tool |
|
def extract_text_from_image(image_path: str) -> str: |
|
""" |
|
Extract text from an image using OCR library pytesseract (if available). |
|
Args: |
|
image_path (str): the path to the image file. |
|
""" |
|
try: |
|
|
|
image = Image.open(image_path) |
|
|
|
|
|
text = pytesseract.image_to_string(image) |
|
|
|
return f"Extracted text from image:\n\n{text}" |
|
except Exception as e: |
|
return f"Error extracting text from image: {str(e)}" |
|
|
|
@tool |
|
def analyze_csv_file(file_path: str, query: str) -> str: |
|
""" |
|
Analyze a CSV file using pandas and answer a question about it. |
|
Args: |
|
file_path (str): the path to the CSV file. |
|
query (str): Question about the data |
|
""" |
|
try: |
|
|
|
df = pd.read_csv(file_path) |
|
|
|
|
|
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n" |
|
result += f"Columns: {', '.join(df.columns)}\n\n" |
|
|
|
|
|
result += "Summary statistics:\n" |
|
result += str(df.describe()) |
|
|
|
return result |
|
|
|
except Exception as e: |
|
return f"Error analyzing CSV file: {str(e)}" |
|
|
|
@tool |
|
def analyze_excel_file(file_path: str, query: str) -> str: |
|
""" |
|
Analyze an Excel file using pandas and answer a question about it. |
|
Args: |
|
file_path (str): the path to the Excel file. |
|
query (str): Question about the data |
|
""" |
|
try: |
|
|
|
df = pd.read_excel(file_path) |
|
|
|
|
|
result = ( |
|
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n" |
|
) |
|
result += f"Columns: {', '.join(df.columns)}\n\n" |
|
|
|
|
|
result += "Summary statistics:\n" |
|
result += str(df.describe()) |
|
|
|
return result |
|
|
|
except Exception as e: |
|
return f"Error analyzing Excel file: {str(e)}" |
|
|
|
@tool |
|
def analyze_image(image_base64: str) -> Dict[str, Any]: |
|
""" |
|
Analyze basic properties of an image (size, mode, color analysis, thumbnail preview). |
|
Args: |
|
image_base64 (str): Base64 encoded image string |
|
Returns: |
|
Dictionary with analysis result |
|
""" |
|
try: |
|
img = decode_image(image_base64) |
|
width, height = img.size |
|
mode = img.mode |
|
|
|
if mode in ("RGB", "RGBA"): |
|
arr = np.array(img) |
|
avg_colors = arr.mean(axis=(0, 1)) |
|
dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])] |
|
brightness = avg_colors.mean() |
|
color_analysis = { |
|
"average_rgb": avg_colors.tolist(), |
|
"brightness": brightness, |
|
"dominant_color": dominant, |
|
} |
|
else: |
|
color_analysis = {"note": f"No color analysis for mode {mode}"} |
|
|
|
thumbnail = img.copy() |
|
thumbnail.thumbnail((100, 100)) |
|
thumb_path = save_image(thumbnail, "thumbnails") |
|
thumbnail_base64 = encode_image(thumb_path) |
|
|
|
return { |
|
"dimensions": (width, height), |
|
"mode": mode, |
|
"color_analysis": color_analysis, |
|
"thumbnail": thumbnail_base64, |
|
} |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
@tool |
|
def transform_image( |
|
image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None |
|
) -> Dict[str, Any]: |
|
""" |
|
Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale. |
|
Args: |
|
image_base64 (str): Base64 encoded input image |
|
operation (str): Transformation operation |
|
params (Dict[str, Any], optional): Parameters for the operation |
|
Returns: |
|
Dictionary with transformed image (base64) |
|
""" |
|
try: |
|
img = decode_image(image_base64) |
|
params = params or {} |
|
|
|
if operation == "resize": |
|
img = img.resize( |
|
( |
|
params.get("width", img.width // 2), |
|
params.get("height", img.height // 2), |
|
) |
|
) |
|
elif operation == "rotate": |
|
img = img.rotate(params.get("angle", 90), expand=True) |
|
elif operation == "crop": |
|
img = img.crop( |
|
( |
|
params.get("left", 0), |
|
params.get("top", 0), |
|
params.get("right", img.width), |
|
params.get("bottom", img.height), |
|
) |
|
) |
|
elif operation == "flip": |
|
if params.get("direction", "horizontal") == "horizontal": |
|
img = img.transpose(Image.FLIP_LEFT_RIGHT) |
|
else: |
|
img = img.transpose(Image.FLIP_TOP_BOTTOM) |
|
elif operation == "adjust_brightness": |
|
img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5)) |
|
elif operation == "adjust_contrast": |
|
img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5)) |
|
elif operation == "blur": |
|
img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2))) |
|
elif operation == "sharpen": |
|
img = img.filter(ImageFilter.SHARPEN) |
|
elif operation == "grayscale": |
|
img = img.convert("L") |
|
else: |
|
return {"error": f"Unknown operation: {operation}"} |
|
|
|
result_path = save_image(img) |
|
result_base64 = encode_image(result_path) |
|
return {"transformed_image": result_base64} |
|
|
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
@tool |
|
def draw_on_image( |
|
image_base64: str, drawing_type: str, params: Dict[str, Any] |
|
) -> Dict[str, Any]: |
|
""" |
|
Draw shapes (rectangle, circle, line) or text onto an image. |
|
Args: |
|
image_base64 (str): Base64 encoded input image |
|
drawing_type (str): Drawing type |
|
params (Dict[str, Any]): Drawing parameters |
|
Returns: |
|
Dictionary with result image (base64) |
|
""" |
|
try: |
|
img = decode_image(image_base64) |
|
draw = ImageDraw.Draw(img) |
|
color = params.get("color", "red") |
|
|
|
if drawing_type == "rectangle": |
|
draw.rectangle( |
|
[params["left"], params["top"], params["right"], params["bottom"]], |
|
outline=color, |
|
width=params.get("width", 2), |
|
) |
|
elif drawing_type == "circle": |
|
x, y, r = params["x"], params["y"], params["radius"] |
|
draw.ellipse( |
|
(x - r, y - r, x + r, y + r), |
|
outline=color, |
|
width=params.get("width", 2), |
|
) |
|
elif drawing_type == "line": |
|
draw.line( |
|
( |
|
params["start_x"], |
|
params["start_y"], |
|
params["end_x"], |
|
params["end_y"], |
|
), |
|
fill=color, |
|
width=params.get("width", 2), |
|
) |
|
elif drawing_type == "text": |
|
font_size = params.get("font_size", 20) |
|
try: |
|
font = ImageFont.truetype("arial.ttf", font_size) |
|
except IOError: |
|
font = ImageFont.load_default() |
|
draw.text( |
|
(params["x"], params["y"]), |
|
params.get("text", "Text"), |
|
fill=color, |
|
font=font, |
|
) |
|
else: |
|
return {"error": f"Unknown drawing type: {drawing_type}"} |
|
|
|
result_path = save_image(img) |
|
result_base64 = encode_image(result_path) |
|
return {"result_image": result_base64} |
|
|
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
@tool |
|
def generate_simple_image( |
|
image_type: str, |
|
width: int = 500, |
|
height: int = 500, |
|
params: Optional[Dict[str, Any]] = None, |
|
) -> Dict[str, Any]: |
|
""" |
|
Generate a simple image (gradient, noise, pattern, chart). |
|
Args: |
|
image_type (str): Type of image |
|
width (int), height (int) |
|
params (Dict[str, Any], optional): Specific parameters |
|
Returns: |
|
Dictionary with generated image (base64) |
|
""" |
|
try: |
|
params = params or {} |
|
|
|
if image_type == "gradient": |
|
direction = params.get("direction", "horizontal") |
|
start_color = params.get("start_color", (255, 0, 0)) |
|
end_color = params.get("end_color", (0, 0, 255)) |
|
|
|
img = Image.new("RGB", (width, height)) |
|
draw = ImageDraw.Draw(img) |
|
|
|
if direction == "horizontal": |
|
for x in range(width): |
|
r = int( |
|
start_color[0] + (end_color[0] - start_color[0]) * x / width |
|
) |
|
g = int( |
|
start_color[1] + (end_color[1] - start_color[1]) * x / width |
|
) |
|
b = int( |
|
start_color[2] + (end_color[2] - start_color[2]) * x / width |
|
) |
|
draw.line([(x, 0), (x, height)], fill=(r, g, b)) |
|
else: |
|
for y in range(height): |
|
r = int( |
|
start_color[0] + (end_color[0] - start_color[0]) * y / height |
|
) |
|
g = int( |
|
start_color[1] + (end_color[1] - start_color[1]) * y / height |
|
) |
|
b = int( |
|
start_color[2] + (end_color[2] - start_color[2]) * y / height |
|
) |
|
draw.line([(0, y), (width, y)], fill=(r, g, b)) |
|
|
|
elif image_type == "noise": |
|
noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8) |
|
img = Image.fromarray(noise_array, "RGB") |
|
|
|
else: |
|
return {"error": f"Unsupported image_type {image_type}"} |
|
|
|
result_path = save_image(img) |
|
result_base64 = encode_image(result_path) |
|
return {"generated_image": result_base64} |
|
|
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
@tool |
|
def combine_images( |
|
images_base64: List[str], operation: str, params: Optional[Dict[str, Any]] = None |
|
) -> Dict[str, Any]: |
|
""" |
|
Combine multiple images (collage, stack, blend). |
|
Args: |
|
images_base64 (List[str]): List of base64 images |
|
operation (str): Combination type |
|
params (Dict[str, Any], optional) |
|
Returns: |
|
Dictionary with combined image (base64) |
|
""" |
|
try: |
|
images = [decode_image(b64) for b64 in images_base64] |
|
params = params or {} |
|
|
|
if operation == "stack": |
|
direction = params.get("direction", "horizontal") |
|
if direction == "horizontal": |
|
total_width = sum(img.width for img in images) |
|
max_height = max(img.height for img in images) |
|
new_img = Image.new("RGB", (total_width, max_height)) |
|
x = 0 |
|
for img in images: |
|
new_img.paste(img, (x, 0)) |
|
x += img.width |
|
else: |
|
max_width = max(img.width for img in images) |
|
total_height = sum(img.height for img in images) |
|
new_img = Image.new("RGB", (max_width, total_height)) |
|
y = 0 |
|
for img in images: |
|
new_img.paste(img, (0, y)) |
|
y += img.height |
|
else: |
|
return {"error": f"Unsupported combination operation {operation}"} |
|
|
|
result_path = save_image(new_img) |
|
result_base64 = encode_image(result_path) |
|
return {"combined_image": result_base64} |
|
|
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
|
|
|
|
|
|
system_prompt = """ |
|
You are a helpful assistant tasked with answering questions using a set of tools. |
|
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. |
|
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. |
|
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. |
|
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. |
|
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. |
|
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.""".strip() |
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
""" |
|
# build a retriever |
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 |
|
supabase: Client = create_client( |
|
os.environ.get("SUPABASE_URL"), |
|
os.environ.get("SUPABASE_SERVICE_KEY")) |
|
vector_store = SupabaseVectorStore( |
|
client=supabase, |
|
embedding= embeddings, |
|
table_name="documents", |
|
query_name="match_documents_langchain", |
|
) |
|
create_retriever_tool = create_retriever_tool( |
|
retriever=vector_store.as_retriever(), |
|
name="Question Search", |
|
description="A tool to retrieve similar questions from a vector store.", |
|
) |
|
""" |
|
|
|
|
|
tools = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
power, |
|
square_root, |
|
wiki_search, |
|
web_search, |
|
arvix_search, |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_graph(provider: str = "huggingface"): |
|
"""Build the graph""" |
|
|
|
if provider == "huggingface": |
|
|
|
""" |
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
#endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
#endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-30B-A3B", |
|
endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B.Instruct", |
|
#endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-4B", |
|
temperature=0, |
|
), |
|
) |
|
""" |
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0", |
|
|
|
|
|
|
|
task="text-generation", |
|
|
|
|
|
|
|
temperature=0, |
|
), |
|
|
|
) |
|
|
|
elif provider == "google": |
|
|
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=0) |
|
|
|
else: |
|
raise ValueError("Invalid provider. Choose 'huggingface'.") |
|
|
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node""" |
|
return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]} |
|
|
|
""" |
|
def retriever(state: MessagesState): |
|
#Retriever node |
|
similar_question = vector_store.similarity_search(state["messages"][0].content) |
|
example_msg = HumanMessage( |
|
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", |
|
) |
|
return {"messages": [sys_msg] + state["messages"] + [example_msg]} |
|
|
|
""" |
|
def retriever(state: MessagesState): |
|
"""Retriever node""" |
|
return {"messages": [sys_msg] + state["messages"]} |
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
|
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
|
|
builder.add_edge(START, "assistant") |
|
|
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
) |
|
|
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
return builder.compile() |
|
|
|
|
|
if __name__ == "__main__": |
|
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" |
|
|
|
graph = build_graph(provider="huggingface") |
|
|
|
messages = [HumanMessage(content=question)] |
|
messages = graph.invoke({"messages": messages}) |
|
for m in messages["messages"]: |
|
m.pretty_print() |
|
|