"""LangGraph: agent graph w/ tools""" import os from dotenv import load_dotenv from typing import List, Dict, Any, Optional import tempfile import re import json import requests from urllib.parse import urlparse import pytesseract from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter import cmath import pandas as pd import uuid import numpy as np """ Langchain imports""" from langgraph.graph import START, StateGraph, MessagesState from langchain_core.messages import SystemMessage, HumanMessage from langgraph.prebuilt import ToolNode, tools_condition from langchain_core.tools import tool from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader #from langchain_community.vectorstores import SupabaseVectorStore from langchain_google_genai import ChatGoogleGenerativeAI #from langchain.tools.retriever import create_retriever_tool #from supabase.client import Client, create_client #from code_interpreter import CodeInterpreter #interpreter_instance = CodeInterpreter() #from image_processing import * """ import getpass import os if "GOOGLE_API_KEY" not in os.environ: os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter your Google AI API key: ") """ load_dotenv() @tool def multiply(a: int, b: int) -> int: """Multiply two numbers. Args: a: first int b: second int """ return a * b @tool def add(a: int, b: int) -> int: """Add two numbers. Args: a: first int b: second int """ return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers. Args: a: first int b: second int """ return a - b @tool def divide(a: int, b: int) -> int: """Divide two numbers. Args: a: first int b: second int """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a: first int b: second int """ return a % b @tool def power(a: float, b: float) -> float: """ Get the power of two numbers. Args: a (float): the first number b (float): the second number """ return a**b @tool def square_root(a: float) -> float | complex: """ Get the square root of a number. Args: a (float): the number to get the square root of """ if a >= 0: return a**0.5 return cmath.sqrt(a) @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results. Args: query: The search query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"wiki_results": formatted_search_docs} @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"web_results": formatted_search_docs} # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) tools = [ multiply, add, subtract, divide, modulus, power, square_root, wiki_search, web_search, ] # Build graph function def build_graph(provider: str = "huggingface"): """Build the graph""" # Load environment variables from .env file if provider == "huggingface": # Huggingface endpoint """ llm = ChatHuggingFace( llm=HuggingFaceEndpoint( #endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", #endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-30B-A3B", endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B.Instruct", #endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-4B", temperature=0, ), ) """ llm = ChatHuggingFace( llm=HuggingFaceEndpoint( repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0", #endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", #endpoint_url="https://api-inference.huggingface.co/models/microsoft/phi-4", #endpoint_url="https://api-inference.huggingface.co/models/TinyLlama/TinyLlama-1.1B-Chat-v1.0", task="text-generation", # for chat‐style use “text-generation” #max_new_tokens=1024, #do_sample=False, #repetition_penalty=1.03, temperature=0, ), #verbose=True, ) elif provider == "google": # Google Gemini llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) #llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=0) else: raise ValueError("Invalid provider. Choose 'huggingface'.") # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Node def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]} #def retriever(state: MessagesState): # """Retriever node""" # return {"messages": [sys_msg] + state["messages"]} builder = StateGraph(MessagesState) #builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) #builder.add_edge(START, "retriever") builder.add_edge(START, "assistant") #builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) #builder.add_edge("tools", "retriever") builder.add_edge("tools", "assistant") # Compile graph return builder.compile() # test if __name__ == "__main__": question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" # Build the graph graph = build_graph(provider="huggingface") # Run the graph messages = [HumanMessage(content=question)] messages = graph.invoke({"messages": messages}) for m in messages["messages"]: m.pretty_print()