File size: 25,864 Bytes
24addaa
96fcc84
 
24addaa
 
 
 
 
 
 
 
 
 
 
 
f13fd6b
24addaa
 
96fcc84
24addaa
 
 
96fcc84
58972a2
96fcc84
 
9d5e618
5f41b31
9d5e618
 
a880879
be34ae7
f13fd6b
43173f2
167bbcb
 
 
 
 
 
 
 
96fcc84
 
 
 
 
 
 
 
 
 
 
 
03a3ecc
96fcc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24addaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96fcc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a09be
96fcc84
 
 
17a09be
96fcc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24addaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96fcc84
24addaa
 
96fcc84
 
 
 
 
f2ed73d
 
38836ea
96fcc84
 
 
 
f2ed73d
96fcc84
 
 
 
6c7a180
96fcc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c7a180
96fcc84
 
 
 
 
 
 
 
24addaa
 
96fcc84
17a09be
96fcc84
 
6fddcbb
 
 
 
 
 
 
 
 
 
 
 
96fcc84
 
 
 
 
6cef8a6
24addaa
af92f70
96fcc84
 
b189c98
f46b08a
 
08eb95e
0afb963
96fcc84
 
af92f70
6cef8a6
 
f30118e
98521b0
08eb95e
f30118e
 
58e696d
 
 
6cef8a6
 
58e696d
af92f70
5f41b31
 
 
f2ed73d
 
 
96fcc84
6cef8a6
 
96fcc84
 
 
 
 
2e8edbc
3dd09d5
38836ea
0251a1b
96fcc84
0251a1b
96fcc84
 
 
 
 
2e8edbc
0251a1b
825d2d1
0e31843
2e8edbc
 
96fcc84
 
3dd09d5
96fcc84
 
3dd09d5
78aec6e
3dd09d5
96fcc84
 
 
 
6fddcbb
 
96fcc84
 
 
 
 
 
 
 
6c7a180
96fcc84
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
"""LangGraph: agent graph w/ tools"""
import os
from dotenv import load_dotenv
from typing import List, Dict, Any, Optional
import tempfile
import re
import json
import requests
from urllib.parse import urlparse
import pytesseract
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
import cmath
import pandas as pd
import uuid
import numpy as np


""" Langchain imports"""
from langgraph.graph import START, StateGraph, MessagesState
from langchain_core.messages import SystemMessage, HumanMessage
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_core.tools import tool
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
#from langchain_community.vectorstores import SupabaseVectorStore
from langchain_google_genai import ChatGoogleGenerativeAI
#from langchain.tools.retriever import create_retriever_tool
#from supabase.client import Client, create_client
#from code_interpreter import CodeInterpreter
#interpreter_instance = CodeInterpreter()
#from image_processing import *

"""
import getpass
import os

if "GOOGLE_API_KEY" not in os.environ:
    os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter your Google AI API key: ")
"""

load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b

@tool
def power(a: float, b: float) -> float:
    """
    Get the power of two numbers.
    Args:
        a (float): the first number
        b (float): the second number
    """
    return a**b

@tool
def square_root(a: float) -> float | complex:
    """
    Get the square root of a number.
    Args:
        a (float): the number to get the square root of
    """
    if a >= 0:
        return a**0.5
    return cmath.sqrt(a)


@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""

    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}

@tool
def execute_code_multilang(code: str, language: str = "python") -> str:
    """Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
    Args:
        code (str): The source code to execute.
        language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
    Returns:
        A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
    """
    supported_languages = ["python", "bash", "sql", "c", "java"]
    language = language.lower()

    if language not in supported_languages:
        return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"

    result = interpreter_instance.execute_code(code, language=language)

    response = []

    if result["status"] == "success":
        response.append(f"✅ Code executed successfully in **{language.upper()}**")

        if result.get("stdout"):
            response.append(
                "\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
            )

        if result.get("stderr"):
            response.append(
                "\n**Standard Error (if any):**\n```\n"
                + result["stderr"].strip()
                + "\n```"
            )

        if result.get("result") is not None:
            response.append(
                "\n**Execution Result:**\n```\n"
                + str(result["result"]).strip()
                + "\n```"
            )

        if result.get("dataframes"):
            for df_info in result["dataframes"]:
                response.append(
                    f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
                )
                df_preview = pd.DataFrame(df_info["head"])
                response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")

        if result.get("plots"):
            response.append(
                f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
            )

    else:
        response.append(f"❌ Code execution failed in **{language.upper()}**")
        if result.get("stderr"):
            response.append(
                "\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
            )

    return "\n".join(response)

@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
    """
    Save content to a file and return the path.
    Args:
        content (str): the content to save to the file
        filename (str, optional): the name of the file. If not provided, a random name file will be created.
    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)

    with open(filepath, "w") as f:
        f.write(content)

    return f"File saved to {filepath}. You can read this file to process its contents."

@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
    """
    Download a file from a URL and save it to a temporary location.
    Args:
        url (str): the URL of the file to download.
        filename (str, optional): the name of the file. If not provided, a random name file will be created.
    """
    try:
        # Parse URL to get filename if not provided
        if not filename:
            path = urlparse(url).path
            filename = os.path.basename(path)
            if not filename:
                filename = f"downloaded_{uuid.uuid4().hex[:8]}"

        # Create temporary file
        temp_dir = tempfile.gettempdir()
        filepath = os.path.join(temp_dir, filename)

        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()

        # Save the file
        with open(filepath, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)

        return f"File downloaded to {filepath}. You can read this file to process its contents."
    except Exception as e:
        return f"Error downloading file: {str(e)}"

@tool
def extract_text_from_image(image_path: str) -> str:
    """
    Extract text from an image using OCR library pytesseract (if available).
    Args:
        image_path (str): the path to the image file.
    """
    try:
        # Open the image
        image = Image.open(image_path)

        # Extract text from the image
        text = pytesseract.image_to_string(image)

        return f"Extracted text from image:\n\n{text}"
    except Exception as e:
        return f"Error extracting text from image: {str(e)}"

@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """
    Analyze a CSV file using pandas and answer a question about it.
    Args:
        file_path (str): the path to the CSV file.
        query (str): Question about the data
    """
    try:
        # Read the CSV file
        df = pd.read_csv(file_path)

        # Run various analyses based on the query
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"

        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())

        return result

    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"

@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """
    Analyze an Excel file using pandas and answer a question about it.
    Args:
        file_path (str): the path to the Excel file.
        query (str): Question about the data
    """
    try:
        # Read the Excel file
        df = pd.read_excel(file_path)

        # Run various analyses based on the query
        result = (
            f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        )
        result += f"Columns: {', '.join(df.columns)}\n\n"

        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())

        return result

    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"

@tool
def analyze_image(image_base64: str) -> Dict[str, Any]:
    """
    Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
    Args:
        image_base64 (str): Base64 encoded image string
    Returns:
        Dictionary with analysis result
    """
    try:
        img = decode_image(image_base64)
        width, height = img.size
        mode = img.mode

        if mode in ("RGB", "RGBA"):
            arr = np.array(img)
            avg_colors = arr.mean(axis=(0, 1))
            dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
            brightness = avg_colors.mean()
            color_analysis = {
                "average_rgb": avg_colors.tolist(),
                "brightness": brightness,
                "dominant_color": dominant,
            }
        else:
            color_analysis = {"note": f"No color analysis for mode {mode}"}

        thumbnail = img.copy()
        thumbnail.thumbnail((100, 100))
        thumb_path = save_image(thumbnail, "thumbnails")
        thumbnail_base64 = encode_image(thumb_path)

        return {
            "dimensions": (width, height),
            "mode": mode,
            "color_analysis": color_analysis,
            "thumbnail": thumbnail_base64,
        }
    except Exception as e:
        return {"error": str(e)}

@tool
def transform_image(
    image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
    """
    Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
    Args:
        image_base64 (str): Base64 encoded input image
        operation (str): Transformation operation
        params (Dict[str, Any], optional): Parameters for the operation
    Returns:
        Dictionary with transformed image (base64)
    """
    try:
        img = decode_image(image_base64)
        params = params or {}

        if operation == "resize":
            img = img.resize(
                (
                    params.get("width", img.width // 2),
                    params.get("height", img.height // 2),
                )
            )
        elif operation == "rotate":
            img = img.rotate(params.get("angle", 90), expand=True)
        elif operation == "crop":
            img = img.crop(
                (
                    params.get("left", 0),
                    params.get("top", 0),
                    params.get("right", img.width),
                    params.get("bottom", img.height),
                )
            )
        elif operation == "flip":
            if params.get("direction", "horizontal") == "horizontal":
                img = img.transpose(Image.FLIP_LEFT_RIGHT)
            else:
                img = img.transpose(Image.FLIP_TOP_BOTTOM)
        elif operation == "adjust_brightness":
            img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
        elif operation == "adjust_contrast":
            img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
        elif operation == "blur":
            img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
        elif operation == "sharpen":
            img = img.filter(ImageFilter.SHARPEN)
        elif operation == "grayscale":
            img = img.convert("L")
        else:
            return {"error": f"Unknown operation: {operation}"}
            
        result_path = save_image(img)
        result_base64 = encode_image(result_path)
        return {"transformed_image": result_base64}

    except Exception as e:
        return {"error": str(e)}

@tool
def draw_on_image(
    image_base64: str, drawing_type: str, params: Dict[str, Any]
) -> Dict[str, Any]:
    """
    Draw shapes (rectangle, circle, line) or text onto an image.
    Args:
        image_base64 (str): Base64 encoded input image
        drawing_type (str): Drawing type
        params (Dict[str, Any]): Drawing parameters
    Returns:
        Dictionary with result image (base64)
    """
    try:
        img = decode_image(image_base64)
        draw = ImageDraw.Draw(img)
        color = params.get("color", "red")

        if drawing_type == "rectangle":
            draw.rectangle(
                [params["left"], params["top"], params["right"], params["bottom"]],
                outline=color,
                width=params.get("width", 2),
            )
        elif drawing_type == "circle":
            x, y, r = params["x"], params["y"], params["radius"]
            draw.ellipse(
                (x - r, y - r, x + r, y + r),
                outline=color,
                width=params.get("width", 2),
            )
        elif drawing_type == "line":
            draw.line(
                (
                    params["start_x"],
                    params["start_y"],
                    params["end_x"],
                    params["end_y"],
                ),
                fill=color,
                width=params.get("width", 2),
            )
        elif drawing_type == "text":
            font_size = params.get("font_size", 20)
            try:
                font = ImageFont.truetype("arial.ttf", font_size)
            except IOError:
                font = ImageFont.load_default()
            draw.text(
                (params["x"], params["y"]),
                params.get("text", "Text"),
                fill=color,
                font=font,
            )
        else:
            return {"error": f"Unknown drawing type: {drawing_type}"}

        result_path = save_image(img)
        result_base64 = encode_image(result_path)
        return {"result_image": result_base64}

    except Exception as e:
        return {"error": str(e)}

@tool
def generate_simple_image(
    image_type: str,
    width: int = 500,
    height: int = 500,
    params: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
    """
    Generate a simple image (gradient, noise, pattern, chart).
    Args:
        image_type (str): Type of image
        width (int), height (int)
        params (Dict[str, Any], optional): Specific parameters
    Returns:
        Dictionary with generated image (base64)
    """
    try:
        params = params or {}

        if image_type == "gradient":
            direction = params.get("direction", "horizontal")
            start_color = params.get("start_color", (255, 0, 0))
            end_color = params.get("end_color", (0, 0, 255))

            img = Image.new("RGB", (width, height))
            draw = ImageDraw.Draw(img)

            if direction == "horizontal":
                for x in range(width):
                    r = int(
                        start_color[0] + (end_color[0] - start_color[0]) * x / width
                    )
                    g = int(
                        start_color[1] + (end_color[1] - start_color[1]) * x / width
                    )
                    b = int(
                        start_color[2] + (end_color[2] - start_color[2]) * x / width
                    )
                    draw.line([(x, 0), (x, height)], fill=(r, g, b))
            else:
                for y in range(height):
                    r = int(
                        start_color[0] + (end_color[0] - start_color[0]) * y / height
                    )
                    g = int(
                        start_color[1] + (end_color[1] - start_color[1]) * y / height
                    )
                    b = int(
                        start_color[2] + (end_color[2] - start_color[2]) * y / height
                    )
                    draw.line([(0, y), (width, y)], fill=(r, g, b))

        elif image_type == "noise":
            noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
            img = Image.fromarray(noise_array, "RGB")

        else:
            return {"error": f"Unsupported image_type {image_type}"}

        result_path = save_image(img)
        result_base64 = encode_image(result_path)
        return {"generated_image": result_base64}

    except Exception as e:
        return {"error": str(e)}

@tool
def combine_images(
    images_base64: List[str], operation: str, params: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
    """
    Combine multiple images (collage, stack, blend).
    Args:
        images_base64 (List[str]): List of base64 images
        operation (str): Combination type
        params (Dict[str, Any], optional)
    Returns:
        Dictionary with combined image (base64)
    """
    try:
        images = [decode_image(b64) for b64 in images_base64]
        params = params or {}

        if operation == "stack":
            direction = params.get("direction", "horizontal")
            if direction == "horizontal":
                total_width = sum(img.width for img in images)
                max_height = max(img.height for img in images)
                new_img = Image.new("RGB", (total_width, max_height))
                x = 0
                for img in images:
                    new_img.paste(img, (x, 0))
                    x += img.width
            else:
                max_width = max(img.width for img in images)
                total_height = sum(img.height for img in images)
                new_img = Image.new("RGB", (max_width, total_height))
                y = 0
                for img in images:
                    new_img.paste(img, (0, y))
                    y += img.height
        else:
            return {"error": f"Unsupported combination operation {operation}"}

        result_path = save_image(new_img)
        result_base64 = encode_image(result_path)
        return {"combined_image": result_base64}

    except Exception as e:
        return {"error": str(e)}

# load the system prompt from the file
#with open("system_prompt.txt", "r", encoding="utf-8") as f:
#   system_prompt = f.read()

system_prompt = """
You are a helpful assistant tasked with answering questions using a set of tools. 
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. 
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. 
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. 
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.""".strip()
    
# System message
sys_msg = SystemMessage(content=system_prompt)

"""
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") #  dim=768
supabase: Client = create_client(
    os.environ.get("SUPABASE_URL"), 
    os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding= embeddings,
    table_name="documents",
    query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)
"""


tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    power,
    square_root,
    wiki_search,
    web_search,
    arvix_search,
]
#save_and_read_file,
#download_file_from_url,
#extract_text_from_image,
#analyze_csv_file,
#analyze_excel_file,
#execute_code_multilang,
#analyze_image,
#transform_image,
#draw_on_image,
#generate_simple_image,
#combine_images,    


# Build graph function
def build_graph(provider: str = "huggingface"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "huggingface":
        # Huggingface endpoint
        """
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                #endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                #endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-30B-A3B",
                endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B.Instruct",
                #endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-4B",
                temperature=0,
            ),
        )
        """
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
                #endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                #endpoint_url="https://api-inference.huggingface.co/models/microsoft/phi-4",
                #endpoint_url="https://api-inference.huggingface.co/models/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
                task="text-generation",  # for chat‐style use “text-generation”
                #max_new_tokens=1024,
                #do_sample=False,
                #repetition_penalty=1.03,
                temperature=0,
            ),
            #verbose=True,
        )

    elif provider == "google":
        # Google Gemini
        #llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
        llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=0)
        
    else:
        raise ValueError("Invalid provider. Choose 'huggingface'.")
        
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""      
        return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]}
        
    """
    def retriever(state: MessagesState):
        #Retriever node
        similar_question = vector_store.similarity_search(state["messages"][0].content)
        example_msg = HumanMessage(
            content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
        )
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}
 
    """
    def retriever(state: MessagesState):
        """Retriever node"""
        return {"messages": [sys_msg] + state["messages"]}
    

    builder = StateGraph(MessagesState)
    #builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    #builder.add_edge(START, "retriever")
    builder.add_edge(START, "assistant")
    #builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    #builder.add_edge("tools", "retriever")
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()

# test
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    # Build the graph
    graph = build_graph(provider="huggingface")
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()