Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,701 Bytes
c801df7 6b8b7fc b2c5cb8 962d22d 5594430 0eb08d6 6b8b7fc b2c5cb8 6b8b7fc b2c5cb8 0eb08d6 6b8b7fc b2c5cb8 da048ad 6b8b7fc c0fa0f9 da048ad 5594430 c0fa0f9 da048ad 6b8b7fc c0fa0f9 da048ad 6b8b7fc da048ad 6b8b7fc c0fa0f9 6b8b7fc b2c5cb8 c0fa0f9 da048ad 962d22d c0fa0f9 da048ad 6b8b7fc 962d22d da048ad 962d22d 6b8b7fc 962d22d b2c5cb8 c0fa0f9 da048ad 6b8b7fc 962d22d da048ad 962d22d 6b8b7fc 962d22d da048ad 962d22d b2c5cb8 161e0b2 da048ad b2c5cb8 c0fa0f9 b2c5cb8 962d22d 6b8b7fc 962d22d c0fa0f9 da048ad 6b8b7fc e71abcc 962d22d b2c5cb8 da048ad 6b8b7fc 962d22d 6b8b7fc da048ad 6b8b7fc 962d22d 6b8b7fc da048ad b2c5cb8 c0fa0f9 da048ad 6b8b7fc c0fa0f9 962d22d c0fa0f9 da048ad 5594430 91fc8ec 5594430 b2c5cb8 c0fa0f9 da048ad 962d22d b2c5cb8 c0fa0f9 da048ad 962d22d 5594430 962d22d c0fa0f9 da048ad 962d22d c0fa0f9 da048ad 962d22d c0fa0f9 da048ad 962d22d c0fa0f9 da048ad 962d22d c0fa0f9 da048ad 962d22d 91fc8ec 962d22d b2c5cb8 da048ad 6b8b7fc c0fa0f9 da048ad 962d22d 78efca1 962d22d 78efca1 962d22d 78efca1 962d22d c0fa0f9 da048ad 78efca1 c0fa0f9 da048ad 962d22d c0fa0f9 da048ad 6b8b7fc 962d22d 6b8b7fc b2c5cb8 6b8b7fc 962d22d b2c5cb8 c0fa0f9 da048ad 6b8b7fc c0fa0f9 6b8b7fc c0fa0f9 6b8b7fc c0fa0f9 6b8b7fc c0fa0f9 6b8b7fc c0fa0f9 0eb08d6 c0fa0f9 da048ad 6b8b7fc c0fa0f9 da048ad 6b8b7fc c0fa0f9 da048ad 962d22d c0fa0f9 da048ad 6b8b7fc c0fa0f9 6b8b7fc c0fa0f9 da048ad 5594430 da048ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import os
import time
import torch
import spaces
import warnings
import tempfile
import sys
from io import StringIO
from contextlib import contextmanager
from threading import Thread
from PIL import Image
from transformers import (
AutoProcessor,
AutoModelForCausalLM,
AutoModel,
AutoTokenizer,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer
)
from huggingface_hub import snapshot_download
from qwen_vl_utils import process_vision_info
# Suppress the warning about uninitialized weights
warnings.filterwarnings('ignore', message='Some weights.*were not initialized')
# Try importing Qwen3VL if available
try:
from transformers import Qwen3VLForConditionalGeneration
except ImportError:
Qwen3VLForConditionalGeneration = None
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
CACHE_DIR = os.getenv("HF_CACHE_DIR", "./models")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Initial Device: {device}")
print(f"CUDA Available: {torch.cuda.is_available()}")
# Load Chandra-OCR
try:
MODEL_ID_V = "datalab-to/chandra"
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
if Qwen3VLForConditionalGeneration:
model_v = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID_V,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
).eval()
print("✓ Chandra-OCR loaded")
else:
model_v = None
print("✗ Chandra-OCR: Qwen3VL not available")
except Exception as e:
model_v = None
processor_v = None
print(f"✗ Chandra-OCR: Failed to load - {str(e)}")
# Load Nanonets-OCR2-3B
try:
MODEL_ID_X = "nanonets/Nanonets-OCR2-3B"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
).eval()
print("✓ Nanonets-OCR2-3B loaded")
except Exception as e:
model_x = None
processor_x = None
print(f"✗ Nanonets-OCR2-3B: Failed to load - {str(e)}")
# Load olmOCR-2-7B-1025
try:
MODEL_ID_M = "allenai/olmOCR-2-7B-1025"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
).eval()
print("✓ olmOCR-2-7B-1025 loaded")
except Exception as e:
model_m = None
processor_m = None
print(f"✗ olmOCR-2-7B-1025: Failed to load - {str(e)}")
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int, temperature: float, top_p: float,
top_k: int, repetition_penalty: float):
"""
Generates responses using the selected model for image input.
Yields raw text and Markdown-formatted text.
This function is decorated with @spaces.GPU to ensure it runs on GPU
when available in Hugging Face Spaces.
Args:
model_name: Name of the OCR model to use
text: Prompt text for the model
image: PIL Image object to process
max_new_tokens: Maximum number of tokens to generate
temperature: Sampling temperature
top_p: Nucleus sampling parameter
top_k: Top-k sampling parameter
repetition_penalty: Penalty for repeating tokens
Yields:
tuple: (raw_text, markdown_text)
"""
# Device will be cuda when @spaces.GPU decorator activates
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Select model and processor based on model_name
if model_name == "olmOCR-2-7B-1025":
if model_m is None:
yield "olmOCR-2-7B-1025 is not available.", "olmOCR-2-7B-1025 is not available."
return
processor = processor_m
model = model_m
elif model_name == "Nanonets-OCR2-3B":
if model_x is None:
yield "Nanonets-OCR2-3B is not available.", "Nanonets-OCR2-3B is not available."
return
processor = processor_x
model = model_x
elif model_name == "Chandra-OCR":
if model_v is None:
yield "Chandra-OCR is not available.", "Chandra-OCR is not available."
return
processor = processor_v
model = model_v
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
try:
# Prepare messages in chat format
messages = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": text},
]
}]
# Apply chat template with fallback
try:
prompt_full = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
except Exception as template_error:
# Fallback: create a simple prompt without chat template
print(f"Chat template error: {template_error}. Using fallback prompt.")
prompt_full = f"{text}"
# Process inputs
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True
).to(device)
# Setup streaming generation
streamer = TextIteratorStreamer(
processor.tokenizer if hasattr(processor, 'tokenizer') else processor,
skip_prompt=True,
skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
# Start generation in separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Stream the results
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Ensure thread completes
thread.join()
except Exception as e:
error_msg = f"Error during generation: {str(e)}"
print(f"Full error: {e}")
import traceback
traceback.print_exc()
yield error_msg, error_msg
# Example usage for Gradio interface
if __name__ == "__main__":
import gradio as gr
# Determine available models
available_models = []
if model_m is not None:
available_models.append("olmOCR-2-7B-1025")
print(" Added: olmOCR-2-7B-1025")
if model_x is not None:
available_models.append("Nanonets-OCR2-3B")
print(" Added: Nanonets-OCR2-3B")
if model_v is not None:
available_models.append("Chandra-OCR")
print(" Added: Chandra-OCR")
if not available_models:
print("ERROR: No models were loaded successfully!")
exit(1)
print(f"\n✓ Available models for dropdown: {', '.join(available_models)}")
with gr.Blocks(title="Multi-Model OCR") as demo:
gr.Markdown("# 🔍 Multi-Model OCR Application")
gr.Markdown("Upload an image and select a model to extract text. Models run on GPU via Hugging Face Spaces.")
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(
choices=available_models,
value=available_models[0] if available_models else None,
label="Select OCR Model"
)
image_input = gr.Image(type="pil", label="Upload Image")
text_input = gr.Textbox(
value="Extract all text from this image.",
label="Prompt",
lines=2
)
with gr.Accordion("Advanced Settings", open=False):
max_tokens = gr.Slider(
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
value=DEFAULT_MAX_NEW_TOKENS,
step=1,
label="Max New Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.05,
label="Top P"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top K"
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty"
)
submit_btn = gr.Button("Extract Text", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Extracted Text", lines=20)
output_markdown = gr.Markdown(label="Formatted Output")
gr.Markdown("""
### Available Models:
- **olmOCR-2-7B-1025**: Allen AI's OCR model
- **Nanonets-OCR2-3B**: Nanonets OCR model
- **Chandra-OCR**: Datalab OCR model
""")
submit_btn.click(
fn=generate_image,
inputs=[
model_selector,
text_input,
image_input,
max_tokens,
temperature,
top_p,
top_k,
repetition_penalty
],
outputs=[output_text, output_markdown]
)
# Launch with share=True for Hugging Face Spaces
demo.launch(share=True)
|