Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
import torch
|
|
|
|
| 4 |
from threading import Thread
|
| 5 |
from PIL import Image
|
| 6 |
from transformers import (
|
|
@@ -23,55 +29,89 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
| 23 |
|
| 24 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
# Load Chandra-OCR
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
model_v = None
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# Load Nanonets-OCR2-3B
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
# Load Dots.OCR
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
).eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# Load olmOCR-2-7B-1025
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
# Load DeepSeek-OCR
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
@spaces.GPU
|
| 77 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
|
@@ -81,6 +121,9 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 81 |
Generates responses using the selected model for image input.
|
| 82 |
Yields raw text and Markdown-formatted text.
|
| 83 |
|
|
|
|
|
|
|
|
|
|
| 84 |
Args:
|
| 85 |
model_name: Name of the OCR model to use
|
| 86 |
text: Prompt text for the model
|
|
@@ -94,25 +137,40 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 94 |
Yields:
|
| 95 |
tuple: (raw_text, markdown_text)
|
| 96 |
"""
|
|
|
|
|
|
|
|
|
|
| 97 |
# Select model and processor based on model_name
|
| 98 |
if model_name == "olmOCR-2-7B-1025":
|
|
|
|
|
|
|
|
|
|
| 99 |
processor = processor_m
|
| 100 |
-
model = model_m
|
| 101 |
elif model_name == "Nanonets-OCR2-3B":
|
|
|
|
|
|
|
|
|
|
| 102 |
processor = processor_x
|
| 103 |
-
model = model_x
|
| 104 |
elif model_name == "Chandra-OCR":
|
| 105 |
if model_v is None:
|
| 106 |
-
yield "Chandra-OCR
|
| 107 |
return
|
| 108 |
processor = processor_v
|
| 109 |
-
model = model_v
|
| 110 |
elif model_name == "Dots.OCR":
|
|
|
|
|
|
|
|
|
|
| 111 |
processor = processor_d
|
| 112 |
-
model = model_d
|
| 113 |
elif model_name == "DeepSeek-OCR":
|
|
|
|
|
|
|
|
|
|
| 114 |
processor = processor_ds
|
| 115 |
-
model = model_ds
|
| 116 |
else:
|
| 117 |
yield "Invalid model selected.", "Invalid model selected."
|
| 118 |
return
|
|
@@ -121,89 +179,108 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 121 |
yield "Please upload an image.", "Please upload an image."
|
| 122 |
return
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
|
| 182 |
# Example usage for Gradio interface
|
| 183 |
if __name__ == "__main__":
|
| 184 |
import gradio as gr
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
with gr.Row():
|
| 191 |
with gr.Column():
|
| 192 |
model_selector = gr.Dropdown(
|
| 193 |
-
choices=
|
| 194 |
-
|
| 195 |
-
"Nanonets-OCR2-3B",
|
| 196 |
-
"Chandra-OCR",
|
| 197 |
-
"Dots.OCR",
|
| 198 |
-
"DeepSeek-OCR"
|
| 199 |
-
],
|
| 200 |
-
value="DeepSeek-OCR",
|
| 201 |
label="Select OCR Model"
|
| 202 |
)
|
| 203 |
image_input = gr.Image(type="pil", label="Upload Image")
|
| 204 |
text_input = gr.Textbox(
|
| 205 |
value="Extract all text from this image.",
|
| 206 |
-
label="Prompt"
|
|
|
|
| 207 |
)
|
| 208 |
|
| 209 |
with gr.Accordion("Advanced Settings", open=False):
|
|
@@ -249,6 +326,15 @@ if __name__ == "__main__":
|
|
| 249 |
output_text = gr.Textbox(label="Extracted Text", lines=20)
|
| 250 |
output_markdown = gr.Markdown(label="Formatted Output")
|
| 251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
submit_btn.click(
|
| 253 |
fn=generate_image,
|
| 254 |
inputs=[
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
OCR Application with Multiple Models including DeepSeek OCR
|
| 3 |
+
Fixed version with @spaces.GPU decorator for Hugging Face Spaces
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
import os
|
| 7 |
import time
|
| 8 |
import torch
|
| 9 |
+
import spaces
|
| 10 |
from threading import Thread
|
| 11 |
from PIL import Image
|
| 12 |
from transformers import (
|
|
|
|
| 29 |
|
| 30 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 31 |
|
| 32 |
+
print(f"Initial Device: {device}")
|
| 33 |
+
print(f"CUDA Available: {torch.cuda.is_available()}")
|
| 34 |
+
|
| 35 |
# Load Chandra-OCR
|
| 36 |
+
try:
|
| 37 |
+
MODEL_ID_V = "datalab-to/chandra"
|
| 38 |
+
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 39 |
+
if Qwen3VLForConditionalGeneration:
|
| 40 |
+
model_v = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 41 |
+
MODEL_ID_V,
|
| 42 |
+
trust_remote_code=True,
|
| 43 |
+
torch_dtype=torch.float16
|
| 44 |
+
).eval()
|
| 45 |
+
print("✓ Chandra-OCR loaded")
|
| 46 |
+
else:
|
| 47 |
+
model_v = None
|
| 48 |
+
print("✗ Chandra-OCR: Qwen3VL not available")
|
| 49 |
+
except Exception as e:
|
| 50 |
model_v = None
|
| 51 |
+
processor_v = None
|
| 52 |
+
print(f"✗ Chandra-OCR: Failed to load - {str(e)}")
|
| 53 |
|
| 54 |
# Load Nanonets-OCR2-3B
|
| 55 |
+
try:
|
| 56 |
+
MODEL_ID_X = "nanonets/Nanonets-OCR2-3B"
|
| 57 |
+
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 58 |
+
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 59 |
+
MODEL_ID_X,
|
| 60 |
+
trust_remote_code=True,
|
| 61 |
+
torch_dtype=torch.float16
|
| 62 |
+
).eval()
|
| 63 |
+
print("✓ Nanonets-OCR2-3B loaded")
|
| 64 |
+
except Exception as e:
|
| 65 |
+
model_x = None
|
| 66 |
+
processor_x = None
|
| 67 |
+
print(f"✗ Nanonets-OCR2-3B: Failed to load - {str(e)}")
|
| 68 |
|
| 69 |
+
# Load Dots.OCR - will be moved to GPU when needed
|
| 70 |
+
try:
|
| 71 |
+
MODEL_PATH_D = "strangervisionhf/dots.ocr-base-fix"
|
| 72 |
+
processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
|
| 73 |
+
model_d = AutoModelForCausalLM.from_pretrained(
|
| 74 |
+
MODEL_PATH_D,
|
| 75 |
+
attn_implementation="flash_attention_2",
|
| 76 |
+
torch_dtype=torch.bfloat16,
|
| 77 |
+
trust_remote_code=True
|
| 78 |
+
).eval()
|
| 79 |
+
print("✓ Dots.OCR loaded")
|
| 80 |
+
except Exception as e:
|
| 81 |
+
model_d = None
|
| 82 |
+
processor_d = None
|
| 83 |
+
print(f"✗ Dots.OCR: Failed to load - {str(e)}")
|
| 84 |
|
| 85 |
# Load olmOCR-2-7B-1025
|
| 86 |
+
try:
|
| 87 |
+
MODEL_ID_M = "allenai/olmOCR-2-7B-1025"
|
| 88 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 89 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 90 |
+
MODEL_ID_M,
|
| 91 |
+
trust_remote_code=True,
|
| 92 |
+
torch_dtype=torch.float16
|
| 93 |
+
).eval()
|
| 94 |
+
print("✓ olmOCR-2-7B-1025 loaded")
|
| 95 |
+
except Exception as e:
|
| 96 |
+
model_m = None
|
| 97 |
+
processor_m = None
|
| 98 |
+
print(f"✗ olmOCR-2-7B-1025: Failed to load - {str(e)}")
|
| 99 |
|
| 100 |
# Load DeepSeek-OCR
|
| 101 |
+
try:
|
| 102 |
+
MODEL_ID_DS = "deepseek-ai/deepseek-ocr"
|
| 103 |
+
processor_ds = AutoProcessor.from_pretrained(MODEL_ID_DS, trust_remote_code=True)
|
| 104 |
+
model_ds = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 105 |
+
MODEL_ID_DS,
|
| 106 |
+
trust_remote_code=True,
|
| 107 |
+
torch_dtype=torch.float16
|
| 108 |
+
).eval()
|
| 109 |
+
print("✓ DeepSeek-OCR loaded")
|
| 110 |
+
except Exception as e:
|
| 111 |
+
model_ds = None
|
| 112 |
+
processor_ds = None
|
| 113 |
+
print(f"✗ DeepSeek-OCR: Failed to load - {str(e)}")
|
| 114 |
+
|
| 115 |
|
| 116 |
@spaces.GPU
|
| 117 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
|
|
|
| 121 |
Generates responses using the selected model for image input.
|
| 122 |
Yields raw text and Markdown-formatted text.
|
| 123 |
|
| 124 |
+
This function is decorated with @spaces.GPU to ensure it runs on GPU
|
| 125 |
+
when available in Hugging Face Spaces.
|
| 126 |
+
|
| 127 |
Args:
|
| 128 |
model_name: Name of the OCR model to use
|
| 129 |
text: Prompt text for the model
|
|
|
|
| 137 |
Yields:
|
| 138 |
tuple: (raw_text, markdown_text)
|
| 139 |
"""
|
| 140 |
+
# Device will be cuda when @spaces.GPU decorator activates
|
| 141 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 142 |
+
|
| 143 |
# Select model and processor based on model_name
|
| 144 |
if model_name == "olmOCR-2-7B-1025":
|
| 145 |
+
if model_m is None:
|
| 146 |
+
yield "olmOCR-2-7B-1025 is not available.", "olmOCR-2-7B-1025 is not available."
|
| 147 |
+
return
|
| 148 |
processor = processor_m
|
| 149 |
+
model = model_m.to(device)
|
| 150 |
elif model_name == "Nanonets-OCR2-3B":
|
| 151 |
+
if model_x is None:
|
| 152 |
+
yield "Nanonets-OCR2-3B is not available.", "Nanonets-OCR2-3B is not available."
|
| 153 |
+
return
|
| 154 |
processor = processor_x
|
| 155 |
+
model = model_x.to(device)
|
| 156 |
elif model_name == "Chandra-OCR":
|
| 157 |
if model_v is None:
|
| 158 |
+
yield "Chandra-OCR is not available.", "Chandra-OCR is not available."
|
| 159 |
return
|
| 160 |
processor = processor_v
|
| 161 |
+
model = model_v.to(device)
|
| 162 |
elif model_name == "Dots.OCR":
|
| 163 |
+
if model_d is None:
|
| 164 |
+
yield "Dots.OCR is not available.", "Dots.OCR is not available."
|
| 165 |
+
return
|
| 166 |
processor = processor_d
|
| 167 |
+
model = model_d.to(device)
|
| 168 |
elif model_name == "DeepSeek-OCR":
|
| 169 |
+
if model_ds is None:
|
| 170 |
+
yield "DeepSeek-OCR is not available.", "DeepSeek-OCR is not available."
|
| 171 |
+
return
|
| 172 |
processor = processor_ds
|
| 173 |
+
model = model_ds.to(device)
|
| 174 |
else:
|
| 175 |
yield "Invalid model selected.", "Invalid model selected."
|
| 176 |
return
|
|
|
|
| 179 |
yield "Please upload an image.", "Please upload an image."
|
| 180 |
return
|
| 181 |
|
| 182 |
+
try:
|
| 183 |
+
# Prepare messages in chat format
|
| 184 |
+
messages = [{
|
| 185 |
+
"role": "user",
|
| 186 |
+
"content": [
|
| 187 |
+
{"type": "image"},
|
| 188 |
+
{"type": "text", "text": text},
|
| 189 |
+
]
|
| 190 |
+
}]
|
| 191 |
+
|
| 192 |
+
# Apply chat template
|
| 193 |
+
prompt_full = processor.apply_chat_template(
|
| 194 |
+
messages,
|
| 195 |
+
tokenize=False,
|
| 196 |
+
add_generation_prompt=True
|
| 197 |
+
)
|
| 198 |
|
| 199 |
+
# Process inputs
|
| 200 |
+
inputs = processor(
|
| 201 |
+
text=[prompt_full],
|
| 202 |
+
images=[image],
|
| 203 |
+
return_tensors="pt",
|
| 204 |
+
padding=True
|
| 205 |
+
).to(device)
|
| 206 |
|
| 207 |
+
# Setup streaming generation
|
| 208 |
+
streamer = TextIteratorStreamer(
|
| 209 |
+
processor,
|
| 210 |
+
skip_prompt=True,
|
| 211 |
+
skip_special_tokens=True
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
generation_kwargs = {
|
| 215 |
+
**inputs,
|
| 216 |
+
"streamer": streamer,
|
| 217 |
+
"max_new_tokens": max_new_tokens,
|
| 218 |
+
"do_sample": True,
|
| 219 |
+
"temperature": temperature,
|
| 220 |
+
"top_p": top_p,
|
| 221 |
+
"top_k": top_k,
|
| 222 |
+
"repetition_penalty": repetition_penalty,
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
# Start generation in separate thread
|
| 226 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 227 |
+
thread.start()
|
| 228 |
+
|
| 229 |
+
# Stream the results
|
| 230 |
+
buffer = ""
|
| 231 |
+
for new_text in streamer:
|
| 232 |
+
buffer += new_text
|
| 233 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 234 |
+
time.sleep(0.01)
|
| 235 |
+
yield buffer, buffer
|
| 236 |
+
|
| 237 |
+
# Ensure thread completes
|
| 238 |
+
thread.join()
|
| 239 |
+
|
| 240 |
+
except Exception as e:
|
| 241 |
+
error_msg = f"Error during generation: {str(e)}"
|
| 242 |
+
yield error_msg, error_msg
|
| 243 |
|
| 244 |
|
| 245 |
# Example usage for Gradio interface
|
| 246 |
if __name__ == "__main__":
|
| 247 |
import gradio as gr
|
| 248 |
|
| 249 |
+
# Determine available models
|
| 250 |
+
available_models = []
|
| 251 |
+
if model_m is not None:
|
| 252 |
+
available_models.append("olmOCR-2-7B-1025")
|
| 253 |
+
if model_x is not None:
|
| 254 |
+
available_models.append("Nanonets-OCR2-3B")
|
| 255 |
+
if model_v is not None:
|
| 256 |
+
available_models.append("Chandra-OCR")
|
| 257 |
+
if model_d is not None:
|
| 258 |
+
available_models.append("Dots.OCR")
|
| 259 |
+
if model_ds is not None:
|
| 260 |
+
available_models.append("DeepSeek-OCR")
|
| 261 |
+
|
| 262 |
+
if not available_models:
|
| 263 |
+
print("ERROR: No models were loaded successfully!")
|
| 264 |
+
exit(1)
|
| 265 |
+
|
| 266 |
+
print(f"\n✓ Available models: {', '.join(available_models)}")
|
| 267 |
+
|
| 268 |
+
with gr.Blocks(title="Multi-Model OCR") as demo:
|
| 269 |
+
gr.Markdown("# 🔍 Multi-Model OCR Application")
|
| 270 |
+
gr.Markdown("Upload an image and select a model to extract text. Models run on GPU via Hugging Face Spaces.")
|
| 271 |
|
| 272 |
with gr.Row():
|
| 273 |
with gr.Column():
|
| 274 |
model_selector = gr.Dropdown(
|
| 275 |
+
choices=available_models,
|
| 276 |
+
value=available_models[0] if available_models else None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
label="Select OCR Model"
|
| 278 |
)
|
| 279 |
image_input = gr.Image(type="pil", label="Upload Image")
|
| 280 |
text_input = gr.Textbox(
|
| 281 |
value="Extract all text from this image.",
|
| 282 |
+
label="Prompt",
|
| 283 |
+
lines=2
|
| 284 |
)
|
| 285 |
|
| 286 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
| 326 |
output_text = gr.Textbox(label="Extracted Text", lines=20)
|
| 327 |
output_markdown = gr.Markdown(label="Formatted Output")
|
| 328 |
|
| 329 |
+
gr.Markdown("""
|
| 330 |
+
### Available Models:
|
| 331 |
+
- **olmOCR-2-7B-1025**: Allen AI's OCR model
|
| 332 |
+
- **Nanonets-OCR2-3B**: Nanonets OCR model
|
| 333 |
+
- **Chandra-OCR**: Datalab OCR model
|
| 334 |
+
- **Dots.OCR**: Stranger Vision OCR model
|
| 335 |
+
- **DeepSeek-OCR**: DeepSeek AI's OCR model
|
| 336 |
+
""")
|
| 337 |
+
|
| 338 |
submit_btn.click(
|
| 339 |
fn=generate_image,
|
| 340 |
inputs=[
|