File size: 8,805 Bytes
6ad6df4 75f8177 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 3344dd3 6ad6df4 bb5a804 6ad6df4 7827df9 b5325ff 724f73d 15064f4 3344dd3 d187eed 3344dd3 6ad6df4 126357b 6ad6df4 0b26aed 126357b 0b26aed d262340 0b26aed d6586ba b1cdef5 0b26aed b1cdef5 af08cf0 6ad6df4 cbed291 6ad6df4 44338f2 6ad6df4 cbed291 8d83de8 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 1cff2f2 df522bc cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 abba874 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 6ad6df4 cbed291 7dd0b84 cbed291 0b26aed 0a0867b 0b26aed a29eb3f cbed291 abba874 cbed291 44338f2 cbed291 abba874 cbed291 9452e2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 13 16:58:28 2021
"""
import time
import streamlit as st
import tensorflow as tf
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
import numpy as np
import pandas as pd
from absl import app, flags, logging
from absl.flags import FLAGS
import cv2
from models import (YoloV3, YoloV3Tiny)
from dataset import transform_images
from utils import draw_outputs
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.patches import Rectangle
from geotiff import GeoTiff
from PIL import Image
import os
import sys
import requests
image = load_img('trees.jpg')
image = img_to_array(image).astype('float')/255
st.image(image)
c1, c2, c3 = st.columns([0.2, 0.6, 0.2])
file_str=c2.text_input(label='URL to GeoTIFF file', value='')
if file_str:
filepath = 'example.tif'
file=filepath
#file = wget.download(file_str, out=filepath)
#file = wget.download(file_str)
r = requests.get(file_str, allow_redirects=True)
open(filepath, 'wb').write(r.content)
geo_tiff = GeoTiff(filepath)
# the original crs code
# geo_tiff.crs_code
# the current crs code
# geo_tiff.as_crs
# the shape of the tiff
# geo_tiff.tif_shape
# the bounding box in the as_crs CRS
# geo_tiff.tif_bBox
# the bounding box as WGS 84
# geo_tiff.tif_bBox_wgs_84
# the bounding box in the as_crs converted coordinates
# geo_tiff.tif_bBox_converted
i = geo_tiff.tif_shape[1]
j = geo_tiff.tif_shape[0]
# in the as_crs coords
# geo_tiff.get_coords(i, j)
# in WGS 84 coords
print('Koordinaten')
print(geo_tiff.get_wgs_84_coords(i, j))
print(geo_tiff.get_wgs_84_coords(0, 0))
# degrees per Pixel in x-direction
deg_pixel_x = (geo_tiff.get_wgs_84_coords(i, j)[
0]-geo_tiff.get_wgs_84_coords(0, 0)[0])/(i, -j)[0]
deg_pixel_y = (geo_tiff.get_wgs_84_coords(i, j)[
1]-geo_tiff.get_wgs_84_coords(0, 0)[1])/(i, -j)[1]
start_x = geo_tiff.get_wgs_84_coords(0, 0)[0]
start_y = geo_tiff.get_wgs_84_coords(i, j)[1]
#print(start_x, start_y)
#print(deg_pixel_x,deg_pixel_y )
#print('_'*50 + ' Ende '+ '_'*50)
#size = 416
#area_box = [(start_x+int(i/size/2)*deg_pixel_x*size, start_y+int(j/size/2)*deg_pixel_y*size), (start_x+int(i/size/2) *
# deg_pixel_x*size+size*deg_pixel_x, start_y+int(j/size/2)*deg_pixel_y*size+size*deg_pixel_y)]
#array = geo_tiff.read_box(area_box.copy())
size=(416, 416)
Image.MAX_IMAGE_PIXELS = 10000000000
with Image.open(file) as im:
im.thumbnail(size)
gloabl_image = c2.image(im)
#gloabl_image = c2.image(array/255)
threshold = c2.text_input(
label='Detection threshold: Reduce to detect more trees, increase to remove duplicates', value=0.3)
button = c2.button('Start detecting defect trees')
my_bar = c2.progress(0)
if button == True:
size = 416
FLAGS(sys.argv)
flags.DEFINE_string('classes', 'trees_simple.names', 'path to classes file')
flags.DEFINE_string('weights', 'checkpoints/trees_all.tf',
'path to weights file')
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_string('video', './data/video.mp4',
'path to video file or number for webcam)')
flags.DEFINE_string('output', './data/video2.mp4', 'path to output video')
flags.DEFINE_string('output_format', 'XVID',
'codec used in VideoWriter when saving video to file')
flags.DEFINE_integer('num_classes', 5, 'number of classes in the model')
flags.DEFINE_float('yolo_iou_threshold', 0.5, 'iou threshold')
flags.DEFINE_float('yolo_score_threshold', float(threshold), 'score threshold')
physical_devices = tf.config.experimental.list_physical_devices('GPU')
for physical_device in physical_devices:
tf.config.experimental.set_memory_growth(physical_device, True)
if FLAGS.tiny:
yolo = YoloV3Tiny(classes=FLAGS.num_classes)
else:
yolo = YoloV3(classes=FLAGS.num_classes)
yolo.load_weights(FLAGS.weights)
logging.info('weights loaded')
class_names = [c.strip() for c in open(FLAGS.classes).readlines()]
logging.info('classes loaded')
times = []
try:
vid = cv2.VideoCapture(int(FLAGS.video))
except:
vid = cv2.VideoCapture(FLAGS.video)
out = None
images = []
bboxes_x_found = []
bboxes_y_found = []
classes_found = []
scores_found = []
fig = plt.figure()
canvas = FigureCanvasAgg()
ax = fig.add_subplot()
ax.axis('off')
imgg = st.image([], width=300)
z2 = pd.DataFrame(np.ones((0, 4)), columns=['Class', 'Certainty', 'Longitude', 'Lattitude'])
datafr = c2.dataframe(data=z2)
for m in (range(int(i/size))):
my_bar.progress(int((m+1)/int(i/size)*100))
for n in range(int(j/size)):
area_box = [(start_x+m*deg_pixel_x*size, start_y+n*deg_pixel_y*size), (start_x+m *
deg_pixel_x*size+size*deg_pixel_x, start_y+n*deg_pixel_y*size+size*deg_pixel_y)]
array = geo_tiff.read_box(area_box.copy())
img = array
# img_in = np.arra([img[:, :, :3], img[:, :, :3], img[:, :, :3]])
img_in = tf.expand_dims(img[:, :, :3], 0)
img_in = transform_images(img_in, FLAGS.size)
t1 = time.time()
boxes, scores, classes, nums = yolo.predict(img_in, verbose=False)
#print('image min max:', img.min(), img.max(), img.shape)
#images.append(img.astype('float')/255)
#imgg.image(images, width=230)
if nums > 0:
ax.cla()
ax.imshow(im)
rect = Rectangle((m, n), 416, 416, linewidth=2,
edgecolor='r', facecolor='none')
ax.add_patch(rect)
ax.draw(canvas.get_renderer())
im = np.array(canvas.buffer_rgba())
# gloabl_image.image(im)
t2 = time.time()
times.append(t2-t1)
times = times[-20:]
img = draw_outputs(img, (boxes, scores, classes, nums), class_names)
img = cv2.putText(img, "Time: {:.2f}ms".format(sum(times)/len(times)*1000), (0, 30),
cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2)
images.append(img/255)
imgg.image(images, width=230)
for ind in range(nums[0]):
classes_found.append(class_names[int(classes[0][ind])])
scores_found.append(np.array(scores[0][ind]))
bboxes_x_found.append(
np.array(boxes[0][ind][0]*deg_pixel_x*size+start_x+m*deg_pixel_x*size))
bboxes_y_found.append(
np.array(boxes[0][ind][1]*deg_pixel_y*size+start_y+n*deg_pixel_y*size))
# plt.imshow(img)
# plt.show()
if len(classes_found) != 0:
classes_found_np = np.array(classes_found).reshape(-1, 1).astype('str')
bboxes_x_found_np = np.array(bboxes_x_found).reshape(-1, 1)
bboxes_y_found_np = np.array(bboxes_y_found).reshape(-1, 1)
scores_found_np = np.array(scores_found).reshape(-1, 1).astype('float64')
found = np.concatenate((classes_found_np, scores_found_np,
bboxes_x_found_np, bboxes_y_found_np), axis=1)
# np.savetxt(r'C:\Users\alfa\Desktop\Python\Baum Projekt Labels\found trees.txt',
# found, fmt=['%s', '%.0f', '%.7f', '%.7f'])
z2 = found
z2 = pd.DataFrame(
z2, columns=['Class', 'Certainty', 'Longitude', 'Lattitude'])
datafr.dataframe(data=z2)
if len(classes_found) != 0:
z3 = z2.to_csv()
st.download_button('Download *.csv file', z3) |