Update app.py
Browse files
app.py
CHANGED
@@ -84,6 +84,7 @@ if file_str:
|
|
84 |
start_x = geo_tiff.get_wgs_84_coords(0, 0)[0]
|
85 |
start_y = geo_tiff.get_wgs_84_coords(i, j)[1]
|
86 |
|
|
|
87 |
print(start_x, start_y)
|
88 |
print(deg_pixel_x,deg_pixel_y )
|
89 |
print('_'*50 + ' Ende '+ '_'*50)
|
@@ -94,7 +95,7 @@ if file_str:
|
|
94 |
deg_pixel_x*size+size*deg_pixel_x, start_y+int(j/size/2)*deg_pixel_y*size+size*deg_pixel_y)]
|
95 |
|
96 |
array = geo_tiff.read_box(area_box.copy())
|
97 |
-
|
98 |
|
99 |
size=(416, 416)
|
100 |
|
@@ -102,8 +103,8 @@ if file_str:
|
|
102 |
with Image.open(file) as im:
|
103 |
im.thumbnail(size)
|
104 |
|
105 |
-
|
106 |
-
gloabl_image = c2.image(array/255)
|
107 |
|
108 |
threshold = c2.text_input(
|
109 |
label='Detection threshold: Reduce to detect more trees, increase to remove duplicates', value=0.05)
|
@@ -190,10 +191,12 @@ if file_str:
|
|
190 |
t1 = time.time()
|
191 |
boxes, scores, classes, nums = yolo.predict(img_in, verbose=False)
|
192 |
|
|
|
193 |
print('image min max:', img.min(), img.max(), img.shape)
|
194 |
|
195 |
images.append(img.astype('float')/255)
|
196 |
imgg.image(images, width=230)
|
|
|
197 |
|
198 |
if nums > 0:
|
199 |
|
@@ -215,8 +218,8 @@ if file_str:
|
|
215 |
img = cv2.putText(img, "Time: {:.2f}ms".format(sum(times)/len(times)*1000), (0, 30),
|
216 |
cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2)
|
217 |
|
218 |
-
|
219 |
-
|
220 |
|
221 |
for ind in range(nums[0]):
|
222 |
classes_found.append(class_names[int(classes[0][ind])])
|
|
|
84 |
start_x = geo_tiff.get_wgs_84_coords(0, 0)[0]
|
85 |
start_y = geo_tiff.get_wgs_84_coords(i, j)[1]
|
86 |
|
87 |
+
'''
|
88 |
print(start_x, start_y)
|
89 |
print(deg_pixel_x,deg_pixel_y )
|
90 |
print('_'*50 + ' Ende '+ '_'*50)
|
|
|
95 |
deg_pixel_x*size+size*deg_pixel_x, start_y+int(j/size/2)*deg_pixel_y*size+size*deg_pixel_y)]
|
96 |
|
97 |
array = geo_tiff.read_box(area_box.copy())
|
98 |
+
'''
|
99 |
|
100 |
size=(416, 416)
|
101 |
|
|
|
103 |
with Image.open(file) as im:
|
104 |
im.thumbnail(size)
|
105 |
|
106 |
+
gloabl_image = c2.image(im)
|
107 |
+
#gloabl_image = c2.image(array/255)
|
108 |
|
109 |
threshold = c2.text_input(
|
110 |
label='Detection threshold: Reduce to detect more trees, increase to remove duplicates', value=0.05)
|
|
|
191 |
t1 = time.time()
|
192 |
boxes, scores, classes, nums = yolo.predict(img_in, verbose=False)
|
193 |
|
194 |
+
'''
|
195 |
print('image min max:', img.min(), img.max(), img.shape)
|
196 |
|
197 |
images.append(img.astype('float')/255)
|
198 |
imgg.image(images, width=230)
|
199 |
+
'''
|
200 |
|
201 |
if nums > 0:
|
202 |
|
|
|
218 |
img = cv2.putText(img, "Time: {:.2f}ms".format(sum(times)/len(times)*1000), (0, 30),
|
219 |
cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2)
|
220 |
|
221 |
+
images.append(img/255)
|
222 |
+
imgg.image(images, width=230)
|
223 |
|
224 |
for ind in range(nums[0]):
|
225 |
classes_found.append(class_names[int(classes[0][ind])])
|