Spaces:
Running
on
A10G
Running
on
A10G
File size: 1,842 Bytes
668e702 bfcd10f 668e702 bfcd10f 668e702 bfcd10f 668e702 bfcd10f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
import torch
model_id = "HuggingFaceM4/idefics2-8b"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.float16
)
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype=torch.float16, quantization_config=quantization_config)
def respond(multimodal_input):
images = multimodal_input["files"]
content = [{"type": "image"} for _ in images]
content.append({"type": "text", "text": multimodal_input["text"]})
messages = [{"role": "user", "content": content}]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
num_tokens = len(inputs["input_ids"][0])
with torch.inference_mode():
generated_ids = model.generate(**inputs, max_new_tokens=500)
new_tokens = generated_ids[:, num_tokens:]
generated_text = processor.batch_decode(new_tokens, skip_special_tokens=True)[0]
return generated_text
gr.Interface(
respond,
inputs=[gr.MultimodalTextbox(file_types=["image"], show_label=False)],
outputs="text",
title="IDEFICS2-8B DPO",
description="Try IDEFICS2-8B fine-tuned using direct preference optimization (DPO) in this demo. Learn more about vision language model DPO integration of TRL [here](https://huggingface.co/blog/dpo_vlm).",
examples=[
{"text": "What is the type of flower in the image and what insect is on it?", "files": ["./bee.jpg"]},
{"text": "Describe the image", "files": ["./howl.jpg"]},
],
).launch()
|