File size: 22,535 Bytes
e4890d1 1fe8b25 f3d239f e4890d1 a21beb3 e4890d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
import Plotly from 'plotly.js-basic-dist-min';
import Papa from 'papaparse';
import _ from 'lodash';
import { getColor } from './colors.mjs';
const languageMap = {
'Arabic': 'ar',
'Turkish': 'tr',
'Swahili': 'sw',
'Russian': 'ru',
'Telugu': 'te',
'Thai': 'th',
'Chinese': 'zh',
'French': 'fr',
'Hindi': 'hi'
};
const runNameMap = {
"orion": "Dataset-A",
"helios": "Dataset-B",
"lynx": "Dataset-C",
"aquila": "Dataset-D",
"commoncrawl": "CommonCrawl",
"baseline": "Baseline"
};
const taskLists = {
ar: ['acva_ara:_average', 'alfgahafa_mlqa_ara_cf', 'alghafa_arc_ara_cf:easy', 'alghafa_facts_ara_cf', 'alghafa_meta_dialects_ara_cf', 'alghafa_mmlu_ara_cf:_average', 'alghafa_openbookqa_ara_cf', 'alghafa_piqa_ara_cf', 'alghafa_race_ara_cf', 'alghafa_rating_sentiment_ara_cf', 'alghafa_rating_sentiment_no_neutral_ara_cf', 'alghafa_sciqa_ara_cf', 'alghafa_sentiment_ara_cf', 'arcd_ara', 'belebele_arb_Arab_cf', 'boolq_ara', 'exams_ara_cf:_average', 'mkqa_ara:_average', 'mlmm_arc_ara_cf:challenge', 'mlmm_hellaswag_ara_cf', 'mlmm_mmlu_ara_cf:_average', 'mlmm_truthfulqa_ara_cf:mc1', 'mlmm_truthfulqa_ara_cf:mc2', 'mlqa_ara', 'mmlu_ara_cf:_average', 'soqal_ara_cf', 'toxigen_ara_cf', 'tydiqa_ara', 'xcodah_ara_cf', 'xcopa_ara_cf', 'xcsqa_ara_cf', 'xnli2.0_ara_cf', 'xnli_ara_cf', 'xquad_ara', 'xstory_cloze_ara_cf'],
fr: ['belebele_fra_Latn_cf', 'community_boolq_fra_cf', 'exams_fra_cf:_average', 'fquadv2_fra', 'frenchbench_arc_fra_cf:challenge', 'frenchbench_hellaswag_fra_cf', 'meta_mmlu_fra_cf:_average', 'mintaka_fra', 'mkqa_fra:_average', 'mlmm_arc_fra_cf:challenge', 'mlmm_hellaswag_fra_cf', 'mlmm_mmlu_fra_cf:_average', 'mlmm_truthfulqa_fra_cf:mc1', 'mlmm_truthfulqa_fra_cf:mc2', 'pawsx_fra_cf', 'xcodah_fra_cf', 'xcsqa_fra_cf', 'xnli2.0_fra_cf', 'xwinograd_fra_cf'],
hi: ['belebele_hin_Deva_cf', 'community_arc_hin_cf:challenge', 'community_arc_hin_cf:easy', 'community_boolq_hin', 'community_hellaswag_hin_cf', 'indicnxnli_hin_cf', 'indicqa_hin', 'indicxcopa_hin_cf', 'meta_mmlu_hin_cf:_average', 'mintaka_hin', 'mlmm_arc_hin_cf:challenge', 'mlmm_hellaswag_hin_cf', 'mlmm_mmlu_hin_cf:_average', 'mlmm_truthfulqa_hin_cf:mc1', 'mlmm_truthfulqa_hin_cf:mc2', 'mlqa_hin', 'xcodah_hin_cf', 'xcsqa_hin_cf', 'xnli2.0_hin_cf', 'xnli_hin_cf', 'xquad_hin', 'xstory_cloze_hin_cf'],
ru: ['belebele_rus_Cyrl_cf', 'chegeka_rus', 'mathlogic_qa_rus_cf', 'mera_openbookqa_rus_cf', 'mera_worldtree_rus_cf', 'mkqa_rus:_average', 'mlmm_arc_rus_cf:challenge', 'mlmm_hellaswag_rus_cf', 'mlmm_mmlu_rus_cf:_average', 'mlmm_truthfulqa_rus_cf:mc1', 'mlmm_truthfulqa_rus_cf:mc2', 'parus_rus_cf', 'rcb_rus_cf', 'rummlu_rus_cf:_average', 'sber_squad_rus', 'tydiqa_rus', 'xcodah_rus_cf', 'xcsqa_rus_cf', 'xnli2.0_rus_cf', 'xquad_rus', 'xstory_cloze_rus_cf', 'xwinograd_rus_cf'],
sw: ['afric_mmlu_swa_cf:_average', 'afric_xnli_swa_cf', 'belebele_swh_Latn_cf', 'community_arc_swa_cf:challenge', 'community_arc_swa_cf:easy', 'community_mmlu_swa_cf', 'kenswquad_swa', 'm3exams_swa_cf', 'openai_mmlu_swa_cf:_average', 'tydiqa_swa', 'xcodah_swa_cf', 'xcopa_swa_cf', 'xcsqa_swa_cf', 'xnli2.0_swa_cf', 'xnli_swa_cf', 'xstory_cloze_swa_cf'],
te: ['belebele_tel_Telu_cf', 'community_hellaswag_tel_cf', 'indicnxnli_tel_cf', 'indicqa_tel', 'indicxcopa_tel_cf', 'mlmm_arc_tel_cf:challenge', 'mlmm_hellaswag_tel_cf', 'mlmm_mmlu_tel_cf:_average', 'mlmm_truthfulqa_tel_cf:mc1', 'mlmm_truthfulqa_tel_cf:mc2', 'tydiqa_tel', 'xstory_cloze_tel_cf'],
th: ['belebele_tha_Thai_cf', 'community_hellaswag_tha_cf', 'm3exams_tha_cf', 'meta_mmlu_tha_cf:_average', 'mkqa_tha:_average', 'thai_exams_tha_cf:_average', 'thai_exams_tha_cf:tgat', 'thaiqa_tha', 'wsci_tha_cf', 'xcopa_tha_cf', 'xnli2.0_tha_cf', 'xnli_tha_cf', 'xquad_tha'],
tr: ['belebele_tur_Latn_cf', 'community_arc_tur_cf:easy', 'community_hellaswag_tur_cf', 'community_mmlu_tur_cf:_average', 'community_truthfulqa_tur_cf:mc1', 'community_truthfulqa_tur_cf:mc2', 'community_xwinograd_tur_cf', 'exams_tur_cf:_average', 'mkqa_tur:_average', 'tquadv2_tur', 'xcopa_tur_cf', 'xnli2.0_tur_cf', 'xnli_tur_cf', 'xquad_tur'],
zh: ['agieval_zho_cf:_average', 'belebele_zho_Hans_cf', 'c3_zho_cf', 'ceval_zho_cf:_average', 'chinese_squad_zho', 'cmath_zho_cf', 'cmmlu_zho_cf:_average', 'cmnli_zho_cf', 'cmrc2018_zho', 'm3exams_zho_cf', 'mkqa_zho:_average', 'mlmm_arc_zho_cf:challenge', 'mlmm_hellaswag_zho_cf', 'mlmm_mmlu_zho_cf:_average', 'mlmm_truthfulqa_zho_cf:mc1', 'mlmm_truthfulqa_zho_cf:mc2', 'ocnli_zho_cf', 'pawsx_zho_cf', 'xcodah_zho_cf', 'xcopa_zho_cf', 'xcsqa_zho_cf', 'xnli2.0_zho_cf', 'xnli_zho_cf', 'xquad_zho', 'xstory_cloze_zho_cf', 'xwinograd_zho_cf']
};
const LINE_SETTINGS = {
width: 2.5,
type: "scatter",
mode: "lines+markers",
};
const DEFAULT_LAYOUT = {
font: {
family: "apple-system, Arial, sans-serif",
},
title: {
font: {
size: 15,
},
},
xaxis: {
title: {
text: "Training Tokens (billions)",
font: {
size: 14,
},
},
tickfont: {
size: 12,
},
showgrid: false,
mirror: true,
ticks: "outside",
showline: true,
},
yaxis: {
title: {
font: {
size: 14,
},
standoff: 10,
},
showgrid: false,
mirror: true,
ticks: "outside",
showline: true,
tickfont: {
size: 12,
},
},
height: 300, // You can adjust this value
autosize: true,
legend: {
orientation: 'h', // Set to 'h' for horizontal legend (required for columns)
yanchor: 'bottom',
y: 0, // Position at the bottom
xanchor: 'right',
x: 1, // Position at the right
traceorder: 'normal',
font: { size: 12 },
tracegroupgap: 0, // Space between legend items
bgcolor: 'rgba(255, 255, 255, 0.8)' // White background with 70% transparency (1 - 0.3 = 70%)
},
margin: {
t: 25,
b: 60,
l: 60,
r: 40,
},
};
export function initPlotApplets() {
const plotContainers = document.querySelectorAll('.task-signal-plot');
plotContainers.forEach(container => {
initPlotApplet(container);
});
}
function initPlotApplet(container) {
const defaultLanguage = container.dataset.language || 'Arabic';
const defaultTask = container.dataset.task || '';
const defaultMetric = container.dataset.metric || '';
const groupSeeds = container.dataset.groupSeeds === 'true';
const showControls = container.dataset.showControls === 'true';
const taskMetrics = (container.dataset.taskMetrics || 'monotonicity,snr,ordering,randomness').split(",");
const controls = createControls(container, defaultLanguage, defaultTask, defaultMetric, taskMetrics);
if (!showControls)
controls.style.display = 'none';
container.appendChild(controls);
const plotContainer = document.createElement('div');
plotContainer.className = 'plot-container';
container.appendChild(plotContainer);
const statsContainer = document.createElement('div');
statsContainer.className = 'stats-container';
container.appendChild(statsContainer);
// Create an initial empty plot
Plotly.newPlot(plotContainer, []);
// Set up the resize function
const resizePlot = () => {
const width = container.offsetWidth;
Plotly.relayout(plotContainer, { width: width });
};
// Add resize listener
window.addEventListener('resize', resizePlot);
// Initial resize
resizePlot();
// Load the initial data
updateLanguageTasks(container, defaultTask, defaultMetric, groupSeeds, taskMetrics);
}
function createControls(container, defaultLanguage, defaultTask, defaultMetric, taskMetrics) {
const controls = document.createElement('div');
controls.className = 'controls';
const languageSelect = createSelect('language', Object.keys(languageMap), () => updateLanguageTasks(container, '', '', true, taskMetrics));
languageSelect.value = defaultLanguage;
const taskSelect = createSelect('task', [], () => updateMetrics(container, '', true, taskMetrics));
const metricSelect = createSelect('metric', [], () => updatePlot(container, taskMetrics));
controls.appendChild(createControlGroup('Language:', languageSelect));
controls.appendChild(createControlGroup('Task:', taskSelect));
controls.appendChild(createControlGroup('Metric:', metricSelect));
return controls;
}
function createSelect(id, options, onChangeHandler) {
const select = document.createElement('select');
select.id = id;
options.forEach(option => {
const optionElement = document.createElement('option');
optionElement.value = option;
optionElement.textContent = option;
select.appendChild(optionElement);
});
select.addEventListener('change', onChangeHandler);
return select;
}
function createControlGroup(labelText, inputElement) {
const group = document.createElement('div');
group.className = 'control-group';
const label = document.createElement('label');
label.textContent = labelText;
label.className = 'control-label';
group.appendChild(label);
group.appendChild(inputElement);
return group;
}
async function updateLanguageTasks(container, defaultTask = '', defaultMetric = '', groupSeeds, taskMetrics) {
const languageSelect = container.querySelector('#language');
const taskSelect = container.querySelector('#task');
const language = languageSelect.value;
const langCode = languageMap[language];
taskSelect.innerHTML = '<option value="">Loading tasks...</option>';
try {
const tasks = await getTasksForLanguage(langCode);
taskSelect.innerHTML = '';
if (tasks.length > 0) {
tasks.forEach(task => {
const option = document.createElement('option');
option.value = task;
option.textContent = truncateText(task, 25); // Reduced from 30 to 25
option.title = task; // Set full task name as title for tooltip
taskSelect.appendChild(option);
});
if (defaultTask && tasks.includes(defaultTask)) {
taskSelect.value = defaultTask;
} else {
taskSelect.selectedIndex = 0;
}
await updateMetrics(container, defaultMetric, groupSeeds, taskMetrics);
} else {
taskSelect.innerHTML = '<option value="">No tasks available</option>';
clearPlot(container);
}
} catch (error) {
console.error('Error fetching tasks:', error);
taskSelect.innerHTML = '<option value="">Error loading tasks</option>';
clearPlot(container);
}
}
async function getTasksForLanguage(langCode) {
return taskLists[langCode] || [];
}
async function updateMetrics(container, defaultMetric = '', groupSeeds, taskMetrics) {
const language = container.querySelector('#language').value;
const task = container.querySelector('#task').value;
const langCode = languageMap[language];
const metricSelect = container.querySelector('#metric');
metricSelect.innerHTML = '<option value="">Loading metrics...</option>';
try {
const metrics = await getMetricsForTask(langCode, task);
metricSelect.innerHTML = '';
metrics.forEach(metric => {
const option = document.createElement('option');
option.value = metric;
option.textContent = metric;
metricSelect.appendChild(option);
});
if (defaultMetric && metrics.includes(defaultMetric)) {
metricSelect.value = defaultMetric;
} else if (metricSelect.options.length > 0) {
metricSelect.selectedIndex = 0;
}
await updatePlot(container, taskMetrics);
} catch (error) {
console.error('Error fetching metrics:', error);
metricSelect.innerHTML = '<option value="">Error loading metrics</option>';
clearPlot(container);
}
}
async function getMetricsForTask(langCode, task) {
return new Promise((resolve, reject) => {
Papa.parse(`data/nanotron_tasks/${langCode}/${task}_stats.csv`, {
download: true,
header: true,
complete: function(results) {
const metrics = [...new Set(results.data.map(row => row.metric).filter(metric => metric))];
resolve(metrics);
},
error: function(error) {
console.error('Error fetching metrics:', error);
reject(error);
}
});
});
}
function updatePlot(container, taskMetrics) {
const language = container.querySelector('#language').value;
const task = container.querySelector('#task').value;
const metric = container.querySelector('#metric').value;
const title = container.dataset.title;
const langCode = languageMap[language];
if (!langCode || !task || !metric) {
clearPlot(container);
return;
}
const dataUrl = `data/nanotron_tasks/${langCode}/${task}_data.csv`;
const statsUrl = `data/nanotron_tasks/${langCode}/${task}_stats.csv`;
Promise.all([
new Promise((resolve, reject) => {
Papa.parse(dataUrl, {
download: true,
header: true,
dynamicTyping: true,
complete: resolve,
error: reject
});
}),
new Promise((resolve, reject) => {
Papa.parse(statsUrl, {
download: true,
header: true,
dynamicTyping: true,
complete: resolve,
error: reject
});
})
]).then(([dataResult, statsResult]) => {
const taskData = dataResult.data;
const statsData = statsResult.data;
plotData(container, taskData, statsData, metric, title, taskMetrics);
}).catch(error => {
console.error('Error parsing CSV:', error);
clearPlot(container);
});
}
function plotData(container, data, stats, metric, title, taskMetrics) {
const groupSeeds = container.dataset.groupSeeds === 'true';
const sortedData = sortDataByTokens(data);
const groupedData = groupDataByRunname(sortedData, groupSeeds, metric);
const interpolatedData = interpolateData(groupedData, metric);
const smoothedData = smoothData(interpolatedData, metric);
const traces = createTraces(smoothedData, metric);
const plotContainer = container.querySelector('.plot-container');
const layout = _.merge({}, DEFAULT_LAYOUT, {
title: { text: `${title}` },
xaxis: {
title: { text: 'Training Tokens (billions)' },
tickvals: [0, 5, 10, 15, 20, 25],
ticktext: ['0', '5B', '10B', '15B', '20B', '25B'],
tickangle: 45,
range: [0, 30], // Set the range to start from 0 and end at 30B
},
yaxis: {
title: { text: 'Score' },
range: [Math.min(...traces.flatMap(trace => trace.y)) * 0.95, Math.max(...traces.flatMap(trace => trace.y)) * 1.05], // Add 5% padding to the top and bottom
},
width: container.offsetWidth,
});
Plotly.newPlot(plotContainer, traces, layout, {responsive: true});
// Display statistics
displayStatistics(container, stats, metric, taskMetrics);
}
function displayStatistics(container, stats, metric, taskMetrics) {
const statsContainer = container.querySelector('.stats-container');
const metricStats = stats.find(stat => stat.metric === metric);
if (metricStats) {
statsContainer.innerHTML = `
<div class="compact-stats${taskMetrics.length === 1 ? '-single' : ''}">
${taskMetrics.includes('monotonicity') ? '<span title="Average Spearman Correlation">Monotonicity: ' + metricStats.avg_spearman.toFixed(2) + '</span>' : ''}
${taskMetrics.includes('snr') ? '<span title="Average Signal-to-Noise Ratio">Signal-to-Noise: ' + metricStats.avg_snr.toFixed(2) + '</span>' : ''}
${taskMetrics.includes('ordering') ? '<span title="Average Kendall Tau-a">Ordering Consistency: ' + metricStats.avg_kendall_tau_a.toFixed(2) + '</span>' : ''}
${taskMetrics.includes('randomness') ? '<span title="Max N Standard Deviations">Non-Randomness: ' + metricStats.max_n_std.toFixed(2) + '</span>' : ''}
</div>
`;
} else {
statsContainer.innerHTML = '<p>No statistics available for this metric.</p>';
}
}
function getReducedTickValues(tokens) {
const uniqueTokens = [...new Set(tokens)].sort((a, b) => a - b);
const tokenCount = uniqueTokens.length;
const targetTickCount = 10; // Adjust this value to increase/decrease the number of ticks
if (tokenCount <= targetTickCount) {
return uniqueTokens;
}
const stride = Math.ceil(tokenCount / targetTickCount);
return uniqueTokens.filter((_, index) => index % stride === 0);
}
function formatTickLabel(value) {
if (value >= 1e9) {
return (value / 1e9).toFixed(1) + 'B';
} else if (value >= 1e6) {
return (value / 1e6).toFixed(1) + 'M';
} else if (value >= 1e3) {
return (value / 1e3).toFixed(1) + 'K';
}
return value.toString();
}
function computeStatistics(data, metric) {
const stats = {
avg_spearman: 0,
avg_kendall_tau_a: 0,
avg_snr: 0,
max_n_std: 0
};
const baselineRun = Object.keys(data).find(key => key.toLowerCase().includes('baseline'));
const nonBaselineRuns = Object.keys(data).filter(key => key !== baselineRun);
// Compute statistics for each non-baseline run
nonBaselineRuns.forEach(run => {
const runData = data[run];
const tokens = runData.map(row => row.tokens);
const scores = runData.map(row => row[metric]);
// Spearman correlation
stats.avg_spearman += spearmanCorrelation(tokens, scores);
// Kendall Tau-a
const lastHalf = Math.floor(runData.length / 2);
const kendallTauValues = [];
for (let i = lastHalf; i < runData.length - 1; i++) {
kendallTauValues.push(kendallTauA(scores.slice(0, i + 1), scores.slice(0, i + 2)));
}
stats.avg_kendall_tau_a += _.mean(kendallTauValues);
// SNR and max_n_std
if (baselineRun) {
const baselineScores = data[baselineRun].map(row => row[metric]);
const stdDev = standardDeviation(scores);
stats.avg_snr += _.mean(scores) / stdDev;
stats.max_n_std = Math.max(stats.max_n_std, (_.max(scores) - _.mean(baselineScores)) / stdDev);
}
});
// Average the statistics
const numRuns = nonBaselineRuns.length;
stats.avg_spearman /= numRuns;
stats.avg_kendall_tau_a /= numRuns;
stats.avg_snr /= numRuns;
return stats;
}
function spearmanCorrelation(x, y) {
const n = x.length;
const rankX = rankData(x);
const rankY = rankData(y);
let sum_d_squared = 0;
for (let i = 0; i < n; i++) {
const d = rankX[i] - rankY[i];
sum_d_squared += d * d;
}
return 1 - (6 * sum_d_squared) / (n * (n * n - 1));
}
function rankData(data) {
const sorted = [...data].sort((a, b) => a - b);
return data.map(x => sorted.indexOf(x) + 1);
}
function kendallTauA(x, y) {
const n = x.length;
let concordant = 0;
let discordant = 0;
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
const sign_x = Math.sign(x[j] - x[i]);
const sign_y = Math.sign(y[j] - y[i]);
if (sign_x * sign_y > 0) concordant++;
else if (sign_x * sign_y < 0) discordant++;
}
}
return (concordant - discordant) / (n * (n - 1) / 2);
}
function standardDeviation(values) {
const mean = _.mean(values);
const squareDiffs = values.map(value => {
const diff = value - mean;
return diff * diff;
});
const avgSquareDiff = _.mean(squareDiffs);
return Math.sqrt(avgSquareDiff);
}
function interpolateData(data, metric) {
return _.mapValues(data, (rows) => {
const sortedRows = _.sortBy(rows, 'tokens');
const allTokens = _.uniq(_.flatMap(Object.values(data), rows => rows.map(r => r.tokens))).sort((a, b) => a - b);
return allTokens.map(token => {
const exactMatch = _.find(sortedRows, { tokens: token });
if (exactMatch) return exactMatch;
const lowerRow = _.findLast(sortedRows, r => r.tokens < token);
const upperRow = _.find(sortedRows, r => r.tokens > token);
if (!lowerRow) return { ...upperRow, tokens: token };
if (!upperRow) return { ...lowerRow, tokens: token };
const ratio = (token - lowerRow.tokens) / (upperRow.tokens - lowerRow.tokens);
const interpolatedMetric = lowerRow[metric] + (upperRow[metric] - lowerRow[metric]) * ratio;
return {
...lowerRow,
tokens: token,
[metric]: interpolatedMetric
};
});
});
}
function smoothData(data, metric, windowSize = 3) {
return _.mapValues(data, (rows) => {
return rows.map((row, index, array) => {
const window = array.slice(Math.max(0, index - windowSize + 1), index + 1);
const smoothedMetric = _.meanBy(window, r => r[metric]);
return { ...row, [metric]: smoothedMetric };
});
});
}
function sortDataByTokens(data) {
return _.sortBy(data, 'tokens');
}
function groupDataByRunname(data, groupSeeds, metric) {
// Remove null or undefined runs
data = data.filter(row => row.runname != null && row.runname !== 'null_undefined');
if (!groupSeeds) {
return _.groupBy(data, row => `${processRunName(row.runname)}_${row.seed}`);
}
const grouped = _.groupBy(data, row => processRunName(row.runname));
return _.mapValues(grouped, (rows) => {
const stepGroups = _.groupBy(rows, 'tokens');
return _.map(stepGroups, (stepRows) => {
const meanMetric = _.meanBy(stepRows, row => parseFloat(row[metric]) || 0);
return {
...stepRows[0],
[metric]: meanMetric
};
});
});
}
function processRunName(runname) {
for (const [key, value] of Object.entries(runNameMap)) {
if (runname.includes(key)) {
return value;
}
}
return runname;
}
function createTraces(groupedData, metric) {
const colorsMapping = new Map();
const sortedRunnames = Object.keys(groupedData).sort((a, b) => {
if (a.includes('baseline')) return 1;
if (b.includes('baseline')) return -1;
return a.localeCompare(b);
});
return sortedRunnames.map((runname, index) => {
const color = getColorForTrace(runname, colorsMapping, index);
return {
x: groupedData[runname].map(row => row.tokens),
y: groupedData[runname].map(row => row[metric]),
name: runname,
line: {
color: color,
shape: 'spline',
...LINE_SETTINGS
},
marker: {
color: color,
size: 6,
},
mode: 'lines+markers',
};
});
}
function getColorForTrace(traceName, colorsMapping, index) {
const reusedColor = colorsMapping.get(traceName);
if (reusedColor) {
return reusedColor;
}
const color = getColor(index);
colorsMapping.set(traceName, color);
return color;
}
function clearPlot(container) {
const plotContainer = container.querySelector('.plot-container');
Plotly.purge(plotContainer);
}
function truncateText(text, maxLength) {
if (text.length <= maxLength) return text;
return text.substr(0, maxLength - 2) + '..';
}
|