File size: 4,448 Bytes
3342304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3776a15
3342304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import sys
from typing import Dict
sys.path.insert(0, 'gradio-modified')

import gradio as gr
import numpy as np

from PIL import Image

import torch

if torch.cuda.is_available():
    t = torch.cuda.get_device_properties(0).total_memory
    r = torch.cuda.memory_reserved(0)
    a = torch.cuda.memory_allocated(0)
    f = t-a  # free inside reserved
    if f < 2**32:
        device = 'cpu'
    else:
        device = 'cuda'
else:
    device = 'cpu'
    torch._C._jit_set_bailout_depth(0)

print('Use device:', device)


net = torch.jit.load(f'weights/pkp-v1.{device}.jit.pt')


def resize_original(img: Image.Image):
    if img is None:
        return img
    if isinstance(img, dict):
        img = img["image"]
    
    guide_img = img.convert('L')
    w, h = guide_img.size
    scale = 256 / min(guide_img.size)
    guide_img = guide_img.resize([int(round(s*scale)) for s in guide_img.size], Image.Resampling.LANCZOS)

    guide = np.asarray(guide_img)
    h, w = guide.shape[-2:]
    rows = int(np.ceil(h/64))*64
    cols = int(np.ceil(w/64))*64
    ph_1 = (rows-h) // 2
    ph_2 = rows-h - (rows-h) // 2
    pw_1 = (cols-w) // 2
    pw_2 = cols-w - (cols-w) // 2
    guide = np.pad(guide, ((ph_1, ph_2), (pw_1, pw_2)), mode='constant', constant_values=255)
    guide_img = Image.fromarray(guide)

    return gr.Image.update(value=guide_img.convert('RGBA')), guide_img.convert('RGBA')


def colorize(img: Dict[str, Image.Image], guide_img: Image.Image, seed: int, hint_mode: str):
    if not isinstance(img, dict):
        return gr.update(visible=True)

    if hint_mode == "Roughly Hint":
        hint_mode_int = 0
    elif hint_mode == "Precisely Hint":
        hint_mode_int = 1
    
    guide_img = guide_img.convert('L')
    hint_img = img["mask"].convert('RGBA') # I modified gradio to enable it upload colorful mask

    guide = torch.from_numpy(np.asarray(guide_img))[None,None].float().to(device) / 255.0 * 2 - 1
    hint = torch.from_numpy(np.asarray(hint_img)).permute(2,0,1)[None].float().to(device) / 255.0 * 2 - 1
    hint_alpha = (hint[:,-1:] > 0.99).float()
    hint = hint[:,:3] * hint_alpha - 2 * (1 - hint_alpha)

    np.random.seed(int(seed))
    b, c, h, w = hint.shape
    h //= 8
    w //= 8
    noises = [torch.from_numpy(np.random.randn(b, c, h, w)).float().to(device) for _ in range(16+1)]

    with torch.inference_mode():
        sample = net(noises, guide, hint,  hint_mode_int)
        out = sample[0].cpu().numpy().transpose([1,2,0])
        out = np.uint8(((out + 1) / 2 * 255).clip(0,255))
    
    return Image.fromarray(out).convert('RGB')


with gr.Blocks() as demo:
    gr.Markdown('''<center><h1>Anime Colorization With Hint</h1></center>
<h2>Colorize your anime sketches with hint points.</h2>
This is a modified version of 
<a href="https://github.com/HighCWu/pixel-guide-diffusion-for-anime-colorization">
HighCWu/pixel-guide-diffusion-for-anime-colorization
</a> with hint points inputs.<br />
''')
    with gr.Row():
        with gr.Column():
            inp = gr.Image(
                source="upload", 
                tool="sketch", # tool="color-sketch", # color-sketch upload image mixed with the original
                type="pil", 
                label="Sketch", 
                interactive=True,
                elem_id="sketch-canvas"
            )
            inp_store = gr.Image(
                type="pil", 
                interactive=False
            )
            inp_store.visible = False
        with gr.Column():
            seed = gr.Slider(1, 2**32, step=1, label="Seed", interactive=True, randomize=True)
            hint_mode = gr.Radio(["Roughly Hint", "Precisely Hint"], value="Roughly Hint", label="Hint Mode")
            btn = gr.Button("Run")
        with gr.Column():
            output = gr.Image(type="pil", label="Output", interactive=False)
    gr.Markdown('''
PS: Worse than the no hint version I thought. Probably because my model is underfitting in the super-resolution part<br />
I modified a little gradio codes for uploading the colorful hint points.
''')
    gr.Markdown(
        '<center><img src="https://visitor-badge.glitch.me/badge?page_id=highcwu.anime-colorization-with-hint" alt="visitor badge"/></center>'
    )
    inp.upload(
        resize_original, 
        inp, 
        [inp, inp_store],
    )
    btn.click(
        colorize, 
        [inp, inp_store, seed, hint_mode],
        output
    )

if __name__ == "__main__":
    demo.launch()