File size: 7,663 Bytes
32d9382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import streamlit as st
import pandas as pd
from keybert import KeyBERT

import seaborn as sns

from src.Pipeline.TextSummarization import T5_Base
from src.Pipeline.QuestGen import sense2vec_get_words,get_question


st.title("❓ Intelligent Question Generator")
st.header("")


with st.expander("ℹ️ - About this app", expanded=True):

    st.write(
        """     
-   The *Intelligent Question Generator* app is an easy-to-use interface built in Streamlit which uses [KeyBERT](https://github.com/MaartenGr/KeyBERT), [Sense2vec](https://github.com/explosion/sense2vec), [T5](https://huggingface.co/ramsrigouthamg/t5_paraphraser)
-   It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers](https://huggingface.co/transformers/) πŸ€— to create keywords/keyphrases that are most similar to a document.
- [sense2vec](https://github.com/explosion/sense2vec) (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors.
	    """
    )

    st.markdown("")

st.markdown("")
st.markdown("## πŸ“Œ Paste document ")

with st.form(key="my_form"):
    ce, c1, ce, c2, c3 = st.columns([0.07, 2, 0.07, 5, 1])
    with c1:
        ModelType = st.radio(
            "Choose your model",
            ["DistilBERT (Default)", "BERT", "RoBERTa", "ALBERT", "XLNet"],
            help="At present, you can choose 1 model ie DistilBERT to embed your text. More to come!",
        )

        if ModelType == "Default (DistilBERT)":
            # kw_model = KeyBERT(model=roberta)

            @st.cache(allow_output_mutation=True)
            def load_model(model):
                return KeyBERT(model=model)

            kw_model = load_model('roberta')

        else:
            @st.cache(allow_output_mutation=True)
            def load_model(model):
                return KeyBERT(model=model)

            kw_model = load_model("distilbert-base-nli-mean-tokens")

        top_N = st.slider(
            "# of results",
            min_value=1,
            max_value=30,
            value=10,
            help="You can choose the number of keywords/keyphrases to display. Between 1 and 30, default number is 10.",
        )
        min_Ngrams = st.number_input(
            "Minimum Ngram",
            min_value=1,
            max_value=4,
            help="""The minimum value for the ngram range.
            *Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""",
            # help="Minimum value for the keyphrase_ngram_range. keyphrase_ngram_range sets the length of the resulting keywords/keyphrases. To extract keyphrases, simply set keyphrase_ngram_range to (1, # 2) or higher depending on the number of words you would like in the resulting keyphrases.",
        )

        max_Ngrams = st.number_input(
            "Maximum Ngram",
            value=1,
            min_value=1,
            max_value=4,
            help="""The maximum value for the keyphrase_ngram_range.
            *Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.
            To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""",
        )

        StopWordsCheckbox = st.checkbox(
            "Remove stop words",
            value=True,
            help="Tick this box to remove stop words from the document (currently English only)",
        )

        use_MMR = st.checkbox(
            "Use MMR",
            value=True,
            help="You can use Maximal Margin Relevance (MMR) to diversify the results. It creates keywords/keyphrases based on cosine similarity. Try high/low 'Diversity' settings below for interesting variations.",
        )

        Diversity = st.slider(
            "Keyword diversity (MMR only)",
            value=0.5,
            min_value=0.0,
            max_value=1.0,
            step=0.1,
            help="""The higher the setting, the more diverse the keywords.Note that the *Keyword diversity* slider only works if the *MMR* checkbox is ticked.""",
        )

    with c2:
        doc = st.text_area(
            "Paste your text below (max 500 words)",
            height=510,
        )

        MAX_WORDS = 500
        import re
        res = len(re.findall(r"\w+", doc))
        if res > MAX_WORDS:
            st.warning(
                "⚠️ Your text contains "
                + str(res)
                + " words."
                + " Only the first 500 words will be reviewed. Stay tuned as increased allowance is coming! 😊"
            )

            doc = doc[:MAX_WORDS]
            # base=base=T5_Base("t5-base","cpu",2048)
            # doc=base.summarize(doc)

        submit_button = st.form_submit_button(label="✨ Get me the data!")

    if use_MMR:
        mmr = True
    else:
        mmr = False

    if StopWordsCheckbox:
        StopWords = "english"
    else:
        StopWords = None
    
if min_Ngrams > max_Ngrams:
    st.warning("min_Ngrams can't be greater than max_Ngrams")
    st.stop()

# Uses KeyBERT to extract the top keywords from a text
# Arguments: text (str)
# Returns: list of keywords (list)
keywords = kw_model.extract_keywords(
    doc,
    keyphrase_ngram_range=(min_Ngrams, max_Ngrams),
    use_mmr=mmr,
    stop_words=StopWords,
    top_n=top_N,
    diversity=Diversity,
)
# print(keywords)
    
st.markdown("## 🎈 Results ")

st.header("")


df = (
    pd.DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
    .sort_values(by="Relevancy", ascending=False)
    .reset_index(drop=True)
)

df.index += 1

# Add styling
cmGreen = sns.light_palette("green", as_cmap=True)
cmRed = sns.light_palette("red", as_cmap=True)
df = df.style.background_gradient(
    cmap=cmGreen,
    subset=[
        "Relevancy",
    ],
)

c1, c2, c3 = st.columns([1, 3, 1])

format_dictionary = {
    "Relevancy": "{:.2%}",
}

df = df.format(format_dictionary)

with c2:
    st.table(df)      

with st.expander("Note about Quantitative Relevancy"):
    st.markdown(
        """
    - The relevancy score is a quantitative measure of how relevant the keyword/keyphrase is to the document. It is calculated using cosine similarity. The higher the score, the more relevant the keyword/keyphrase is to the document.
    - So if you see a keyword/keyphrase with a high relevancy score, it means that it is a good keyword/keyphrase to use in question answering, generation ,summarization, and other NLP tasks.
    """
    )           

with st.form(key="ques_form"):
    ice, ic1, ice, ic2 ,ic3= st.columns([0.07, 2, 0.07, 5,0.07])
    with ic1:
        TopN = st.slider(
            "Top N sense2vec results",
            value=20,
            min_value=0,
            max_value=50,
            step=1,
            help="""Get the n most similar terms.""",
        )

    with ic2:
        input_keyword = st.text_input("Paste any keyword generated above")
        keywrd_button = st.form_submit_button(label="✨ Get me the questions!")

if keywrd_button:
    st.markdown("## 🎈 Questions ")    
    ext_keywrds=sense2vec_get_words(TopN,input_keyword)
    if len(ext_keywrds)<1:
        st.warning("Sorry questions couldn't be generated")
    
    for answer in ext_keywrds:
        sentence_for_T5=" ".join(doc.split())
        ques=get_question(sentence_for_T5,answer)
        ques=ques.replace("<pad>","").replace("</s>","").replace("<s>","")
        st.markdown(f'> #### {ques} ')