File size: 7,663 Bytes
32d9382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import streamlit as st
import pandas as pd
from keybert import KeyBERT
import seaborn as sns
from src.Pipeline.TextSummarization import T5_Base
from src.Pipeline.QuestGen import sense2vec_get_words,get_question
st.title("β Intelligent Question Generator")
st.header("")
with st.expander("βΉοΈ - About this app", expanded=True):
st.write(
"""
- The *Intelligent Question Generator* app is an easy-to-use interface built in Streamlit which uses [KeyBERT](https://github.com/MaartenGr/KeyBERT), [Sense2vec](https://github.com/explosion/sense2vec), [T5](https://huggingface.co/ramsrigouthamg/t5_paraphraser)
- It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers](https://huggingface.co/transformers/) π€ to create keywords/keyphrases that are most similar to a document.
- [sense2vec](https://github.com/explosion/sense2vec) (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors.
"""
)
st.markdown("")
st.markdown("")
st.markdown("## π Paste document ")
with st.form(key="my_form"):
ce, c1, ce, c2, c3 = st.columns([0.07, 2, 0.07, 5, 1])
with c1:
ModelType = st.radio(
"Choose your model",
["DistilBERT (Default)", "BERT", "RoBERTa", "ALBERT", "XLNet"],
help="At present, you can choose 1 model ie DistilBERT to embed your text. More to come!",
)
if ModelType == "Default (DistilBERT)":
# kw_model = KeyBERT(model=roberta)
@st.cache(allow_output_mutation=True)
def load_model(model):
return KeyBERT(model=model)
kw_model = load_model('roberta')
else:
@st.cache(allow_output_mutation=True)
def load_model(model):
return KeyBERT(model=model)
kw_model = load_model("distilbert-base-nli-mean-tokens")
top_N = st.slider(
"# of results",
min_value=1,
max_value=30,
value=10,
help="You can choose the number of keywords/keyphrases to display. Between 1 and 30, default number is 10.",
)
min_Ngrams = st.number_input(
"Minimum Ngram",
min_value=1,
max_value=4,
help="""The minimum value for the ngram range.
*Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""",
# help="Minimum value for the keyphrase_ngram_range. keyphrase_ngram_range sets the length of the resulting keywords/keyphrases. To extract keyphrases, simply set keyphrase_ngram_range to (1, # 2) or higher depending on the number of words you would like in the resulting keyphrases.",
)
max_Ngrams = st.number_input(
"Maximum Ngram",
value=1,
min_value=1,
max_value=4,
help="""The maximum value for the keyphrase_ngram_range.
*Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.
To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""",
)
StopWordsCheckbox = st.checkbox(
"Remove stop words",
value=True,
help="Tick this box to remove stop words from the document (currently English only)",
)
use_MMR = st.checkbox(
"Use MMR",
value=True,
help="You can use Maximal Margin Relevance (MMR) to diversify the results. It creates keywords/keyphrases based on cosine similarity. Try high/low 'Diversity' settings below for interesting variations.",
)
Diversity = st.slider(
"Keyword diversity (MMR only)",
value=0.5,
min_value=0.0,
max_value=1.0,
step=0.1,
help="""The higher the setting, the more diverse the keywords.Note that the *Keyword diversity* slider only works if the *MMR* checkbox is ticked.""",
)
with c2:
doc = st.text_area(
"Paste your text below (max 500 words)",
height=510,
)
MAX_WORDS = 500
import re
res = len(re.findall(r"\w+", doc))
if res > MAX_WORDS:
st.warning(
"β οΈ Your text contains "
+ str(res)
+ " words."
+ " Only the first 500 words will be reviewed. Stay tuned as increased allowance is coming! π"
)
doc = doc[:MAX_WORDS]
# base=base=T5_Base("t5-base","cpu",2048)
# doc=base.summarize(doc)
submit_button = st.form_submit_button(label="β¨ Get me the data!")
if use_MMR:
mmr = True
else:
mmr = False
if StopWordsCheckbox:
StopWords = "english"
else:
StopWords = None
if min_Ngrams > max_Ngrams:
st.warning("min_Ngrams can't be greater than max_Ngrams")
st.stop()
# Uses KeyBERT to extract the top keywords from a text
# Arguments: text (str)
# Returns: list of keywords (list)
keywords = kw_model.extract_keywords(
doc,
keyphrase_ngram_range=(min_Ngrams, max_Ngrams),
use_mmr=mmr,
stop_words=StopWords,
top_n=top_N,
diversity=Diversity,
)
# print(keywords)
st.markdown("## π Results ")
st.header("")
df = (
pd.DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
.sort_values(by="Relevancy", ascending=False)
.reset_index(drop=True)
)
df.index += 1
# Add styling
cmGreen = sns.light_palette("green", as_cmap=True)
cmRed = sns.light_palette("red", as_cmap=True)
df = df.style.background_gradient(
cmap=cmGreen,
subset=[
"Relevancy",
],
)
c1, c2, c3 = st.columns([1, 3, 1])
format_dictionary = {
"Relevancy": "{:.2%}",
}
df = df.format(format_dictionary)
with c2:
st.table(df)
with st.expander("Note about Quantitative Relevancy"):
st.markdown(
"""
- The relevancy score is a quantitative measure of how relevant the keyword/keyphrase is to the document. It is calculated using cosine similarity. The higher the score, the more relevant the keyword/keyphrase is to the document.
- So if you see a keyword/keyphrase with a high relevancy score, it means that it is a good keyword/keyphrase to use in question answering, generation ,summarization, and other NLP tasks.
"""
)
with st.form(key="ques_form"):
ice, ic1, ice, ic2 ,ic3= st.columns([0.07, 2, 0.07, 5,0.07])
with ic1:
TopN = st.slider(
"Top N sense2vec results",
value=20,
min_value=0,
max_value=50,
step=1,
help="""Get the n most similar terms.""",
)
with ic2:
input_keyword = st.text_input("Paste any keyword generated above")
keywrd_button = st.form_submit_button(label="β¨ Get me the questions!")
if keywrd_button:
st.markdown("## π Questions ")
ext_keywrds=sense2vec_get_words(TopN,input_keyword)
if len(ext_keywrds)<1:
st.warning("Sorry questions couldn't be generated")
for answer in ext_keywrds:
sentence_for_T5=" ".join(doc.split())
ques=get_question(sentence_for_T5,answer)
ques=ques.replace("<pad>","").replace("</s>","").replace("<s>","")
st.markdown(f'> #### {ques} ')
|