G.Hemanth Sai commited on
Commit
32d9382
1 Parent(s): e1b10aa
.gitattributes CHANGED
@@ -31,3 +31,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
31
  *.zip filter=lfs diff=lfs merge=lfs -text
32
  *.zst filter=lfs diff=lfs merge=lfs -text
33
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
31
  *.zip filter=lfs diff=lfs merge=lfs -text
32
  *.zst filter=lfs diff=lfs merge=lfs -text
33
  *tfevents* filter=lfs diff=lfs merge=lfs -text
34
+ *tar.gz filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #editor specific files
2
+ .vscode
3
+ .idea
4
+
5
+ #cache files
6
+ __pycache__
7
+ tempCodeRunnerFile.py
8
+
9
+ # models
10
+ models/s2v_old
11
+ models/._s2v_old
README.md CHANGED
@@ -1,13 +1,85 @@
 
 
 
 
 
 
 
 
1
  ---
2
- title: IntelligentQuestionGenerator
3
- emoji: 📊
4
- colorFrom: pink
5
- colorTo: indigo
6
- sdk: streamlit
7
- sdk_version: 1.10.0
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
1
+ # Internship-IVIS-labs
2
+
3
+ - The *Intelligent Question Generator* app is an easy-to-use interface built in Streamlit which uses [KeyBERT](https://github.com/MaartenGr/KeyBERT), [Sense2vec](https://github.com/explosion/sense2vec), [T5](https://huggingface.co/ramsrigouthamg/t5_paraphraser)
4
+ - It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers](https://huggingface.co/transformers/) 🤗 to create keywords/keyphrases that are most similar to a document.
5
+ - [sense2vec](https://github.com/explosion/sense2vec) (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors.
6
+
7
+ ## Repository Breakdown
8
+ ### src Directory
9
  ---
10
+ - `src/Pipeline/QAhaystack.py`: This file contains the code of question answering using [haystack](https://haystack.deepset.ai/overview/intro).
11
+ - `src/Pipeline/QuestGen.py`: This file contains the code of question generation.
12
+ - `src/Pipeline/Reader.py`: This file contains the code of reading the document.
13
+ - `src/Pipeline/TextSummariztion.py`: This file contains the code of text summarization.
14
+ - `src/PreviousVersionCode/context.py`: This file contains the finding the context of the paragraph.
15
+ - `src/PreviousVersionCode/QuestionGenerator.py`: This file contains the code of first attempt of question generation.
16
+
17
+ ## Installation
18
+ ```shell
19
+ $ git clone https://github.com/HemanthSai7/Internship-IVIS-labs.git
20
+ ```
21
+ ```shell
22
+ $ cd Internship-IVIS-labs
23
+ ```
24
+ ```python
25
+ pip install -r requirements.txt
26
+ ```
27
+ - For the running the app for the first time locally, you need to uncomment the the lines in `src/Pipeline/QuestGen.py` to download the models to the models directory.
28
+
29
+ ```python
30
+ streamlit run app.py
31
+ ```
32
+ - Once the app is running, you can access it at http://localhost:8501
33
+ ```shell
34
+ You can now view your Streamlit app in your browser.
35
+
36
+ Local URL: http://localhost:8501
37
+ Network URL: http://192.168.0.103:8501
38
+ ```
39
+
40
+ ## Tech Stack Used
41
+ ![image](https://img.shields.io/badge/Sense2vec-EF546D?style=for-the-badge&logo=Explosion.ai&logoColor=white)
42
+ ![image](https://img.shields.io/badge/Spacy-09A3D5?style=for-the-badge&logo=spaCy&logoColor=white)
43
+ ![image](https://img.shields.io/badge/Haystack-03AF9D?style=for-the-badge&logo=Haystackh&logoColor=white)
44
+ ![image](https://img.shields.io/badge/Python-3776AB?style=for-the-badge&logo=python&logoColor=white)
45
+ ![image](https://img.shields.io/badge/PyTorch-D04139?style=for-the-badge&logo=pytorch&logoColor=white)
46
+ ![image](https://img.shields.io/badge/Numpy-013243?style=for-the-badge&logo=numpy&logoColor=white)
47
+ ![image](https://img.shields.io/badge/Pandas-130654?style=for-the-badge&logo=pandas&logoColor=white)
48
+ ![image](https://img.shields.io/badge/matplotlib-b2feb0?style=for-the-badge&logo=matplotlib&logoColor=white)
49
+ ![image](https://img.shields.io/badge/scikit_learn-F7931E?style=for-the-badge&logo=scikit-learn&logoColor=white)
50
+ ![image](https://img.shields.io/badge/Streamlit-EA6566?style=for-the-badge&logo=streamlit&logoColor=white)
51
+
52
+ ## Timeline
53
+ ### Week 1-2:
54
+ #### Tasks
55
+ - [x] Understanding and brushing up the concepts of NLP.
56
+ - [x] Extracting images and text from a pdf file and storing it in a texty file.
57
+ - [x] Exploring various open source tools for generating questions from a given text.
58
+ - [x] Read papers related to the project (Bert,T5,RoBERTa etc).
59
+ - [x] Summarizing the extracted text using T5 base pre-trained model from the pdf file.
60
+
61
+ ### Week 3-4:
62
+ #### Tasks
63
+ - [x] Understanding the concept of QA systems.
64
+ - [x] Created a basic script for generating questions from the text.
65
+ - [x] Created a basic script for finding the context of the paragraph.
66
+
67
+ ### Week 5-6:
68
+ #### Tasks
69
+
70
+ - [x] Understanding how Transformers models work for NLP tasks Question answering and generation
71
+ - [x] Understanding how to use the Haystack library for QA systems.
72
+ - [x] Understanding how to use the Haystack library for Question generation.
73
+ - [x] PreProcessed the document for Haystack QA for better results .
74
+
75
+ ### Week 7-8:
76
+ #### Tasks
77
+ - [x] Understanding how to generate questions intelligently.
78
+ - [x] Explored wordnet to find synonyms
79
+ - [x] Used BertWSD for disambiguating the sentence provided.
80
+ - [x] Used KeyBERT for finding the keywords in the document.
81
+ - [x] Used sense2vec for finding better words with high relatedness for the keywords generated.
82
 
83
+ ### Week 9-10:
84
+ #### Tasks
85
+ - [x] Create a streamlit app to demonstrate the project.
app.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from keybert import KeyBERT
4
+
5
+ import seaborn as sns
6
+
7
+ from src.Pipeline.TextSummarization import T5_Base
8
+ from src.Pipeline.QuestGen import sense2vec_get_words,get_question
9
+
10
+
11
+ st.title("❓ Intelligent Question Generator")
12
+ st.header("")
13
+
14
+
15
+ with st.expander("ℹ️ - About this app", expanded=True):
16
+
17
+ st.write(
18
+ """
19
+ - The *Intelligent Question Generator* app is an easy-to-use interface built in Streamlit which uses [KeyBERT](https://github.com/MaartenGr/KeyBERT), [Sense2vec](https://github.com/explosion/sense2vec), [T5](https://huggingface.co/ramsrigouthamg/t5_paraphraser)
20
+ - It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers](https://huggingface.co/transformers/) 🤗 to create keywords/keyphrases that are most similar to a document.
21
+ - [sense2vec](https://github.com/explosion/sense2vec) (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors.
22
+ """
23
+ )
24
+
25
+ st.markdown("")
26
+
27
+ st.markdown("")
28
+ st.markdown("## 📌 Paste document ")
29
+
30
+ with st.form(key="my_form"):
31
+ ce, c1, ce, c2, c3 = st.columns([0.07, 2, 0.07, 5, 1])
32
+ with c1:
33
+ ModelType = st.radio(
34
+ "Choose your model",
35
+ ["DistilBERT (Default)", "BERT", "RoBERTa", "ALBERT", "XLNet"],
36
+ help="At present, you can choose 1 model ie DistilBERT to embed your text. More to come!",
37
+ )
38
+
39
+ if ModelType == "Default (DistilBERT)":
40
+ # kw_model = KeyBERT(model=roberta)
41
+
42
+ @st.cache(allow_output_mutation=True)
43
+ def load_model(model):
44
+ return KeyBERT(model=model)
45
+
46
+ kw_model = load_model('roberta')
47
+
48
+ else:
49
+ @st.cache(allow_output_mutation=True)
50
+ def load_model(model):
51
+ return KeyBERT(model=model)
52
+
53
+ kw_model = load_model("distilbert-base-nli-mean-tokens")
54
+
55
+ top_N = st.slider(
56
+ "# of results",
57
+ min_value=1,
58
+ max_value=30,
59
+ value=10,
60
+ help="You can choose the number of keywords/keyphrases to display. Between 1 and 30, default number is 10.",
61
+ )
62
+ min_Ngrams = st.number_input(
63
+ "Minimum Ngram",
64
+ min_value=1,
65
+ max_value=4,
66
+ help="""The minimum value for the ngram range.
67
+ *Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""",
68
+ # help="Minimum value for the keyphrase_ngram_range. keyphrase_ngram_range sets the length of the resulting keywords/keyphrases. To extract keyphrases, simply set keyphrase_ngram_range to (1, # 2) or higher depending on the number of words you would like in the resulting keyphrases.",
69
+ )
70
+
71
+ max_Ngrams = st.number_input(
72
+ "Maximum Ngram",
73
+ value=1,
74
+ min_value=1,
75
+ max_value=4,
76
+ help="""The maximum value for the keyphrase_ngram_range.
77
+ *Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.
78
+ To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""",
79
+ )
80
+
81
+ StopWordsCheckbox = st.checkbox(
82
+ "Remove stop words",
83
+ value=True,
84
+ help="Tick this box to remove stop words from the document (currently English only)",
85
+ )
86
+
87
+ use_MMR = st.checkbox(
88
+ "Use MMR",
89
+ value=True,
90
+ help="You can use Maximal Margin Relevance (MMR) to diversify the results. It creates keywords/keyphrases based on cosine similarity. Try high/low 'Diversity' settings below for interesting variations.",
91
+ )
92
+
93
+ Diversity = st.slider(
94
+ "Keyword diversity (MMR only)",
95
+ value=0.5,
96
+ min_value=0.0,
97
+ max_value=1.0,
98
+ step=0.1,
99
+ help="""The higher the setting, the more diverse the keywords.Note that the *Keyword diversity* slider only works if the *MMR* checkbox is ticked.""",
100
+ )
101
+
102
+ with c2:
103
+ doc = st.text_area(
104
+ "Paste your text below (max 500 words)",
105
+ height=510,
106
+ )
107
+
108
+ MAX_WORDS = 500
109
+ import re
110
+ res = len(re.findall(r"\w+", doc))
111
+ if res > MAX_WORDS:
112
+ st.warning(
113
+ "⚠️ Your text contains "
114
+ + str(res)
115
+ + " words."
116
+ + " Only the first 500 words will be reviewed. Stay tuned as increased allowance is coming! 😊"
117
+ )
118
+
119
+ doc = doc[:MAX_WORDS]
120
+ # base=base=T5_Base("t5-base","cpu",2048)
121
+ # doc=base.summarize(doc)
122
+
123
+ submit_button = st.form_submit_button(label="✨ Get me the data!")
124
+
125
+ if use_MMR:
126
+ mmr = True
127
+ else:
128
+ mmr = False
129
+
130
+ if StopWordsCheckbox:
131
+ StopWords = "english"
132
+ else:
133
+ StopWords = None
134
+
135
+ if min_Ngrams > max_Ngrams:
136
+ st.warning("min_Ngrams can't be greater than max_Ngrams")
137
+ st.stop()
138
+
139
+ # Uses KeyBERT to extract the top keywords from a text
140
+ # Arguments: text (str)
141
+ # Returns: list of keywords (list)
142
+ keywords = kw_model.extract_keywords(
143
+ doc,
144
+ keyphrase_ngram_range=(min_Ngrams, max_Ngrams),
145
+ use_mmr=mmr,
146
+ stop_words=StopWords,
147
+ top_n=top_N,
148
+ diversity=Diversity,
149
+ )
150
+ # print(keywords)
151
+
152
+ st.markdown("## 🎈 Results ")
153
+
154
+ st.header("")
155
+
156
+
157
+ df = (
158
+ pd.DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
159
+ .sort_values(by="Relevancy", ascending=False)
160
+ .reset_index(drop=True)
161
+ )
162
+
163
+ df.index += 1
164
+
165
+ # Add styling
166
+ cmGreen = sns.light_palette("green", as_cmap=True)
167
+ cmRed = sns.light_palette("red", as_cmap=True)
168
+ df = df.style.background_gradient(
169
+ cmap=cmGreen,
170
+ subset=[
171
+ "Relevancy",
172
+ ],
173
+ )
174
+
175
+ c1, c2, c3 = st.columns([1, 3, 1])
176
+
177
+ format_dictionary = {
178
+ "Relevancy": "{:.2%}",
179
+ }
180
+
181
+ df = df.format(format_dictionary)
182
+
183
+ with c2:
184
+ st.table(df)
185
+
186
+ with st.expander("Note about Quantitative Relevancy"):
187
+ st.markdown(
188
+ """
189
+ - The relevancy score is a quantitative measure of how relevant the keyword/keyphrase is to the document. It is calculated using cosine similarity. The higher the score, the more relevant the keyword/keyphrase is to the document.
190
+ - So if you see a keyword/keyphrase with a high relevancy score, it means that it is a good keyword/keyphrase to use in question answering, generation ,summarization, and other NLP tasks.
191
+ """
192
+ )
193
+
194
+ with st.form(key="ques_form"):
195
+ ice, ic1, ice, ic2 ,ic3= st.columns([0.07, 2, 0.07, 5,0.07])
196
+ with ic1:
197
+ TopN = st.slider(
198
+ "Top N sense2vec results",
199
+ value=20,
200
+ min_value=0,
201
+ max_value=50,
202
+ step=1,
203
+ help="""Get the n most similar terms.""",
204
+ )
205
+
206
+ with ic2:
207
+ input_keyword = st.text_input("Paste any keyword generated above")
208
+ keywrd_button = st.form_submit_button(label="✨ Get me the questions!")
209
+
210
+ if keywrd_button:
211
+ st.markdown("## 🎈 Questions ")
212
+ ext_keywrds=sense2vec_get_words(TopN,input_keyword)
213
+ if len(ext_keywrds)<1:
214
+ st.warning("Sorry questions couldn't be generated")
215
+
216
+ for answer in ext_keywrds:
217
+ sentence_for_T5=" ".join(doc.split())
218
+ ques=get_question(sentence_for_T5,answer)
219
+ ques=ques.replace("<pad>","").replace("</s>","").replace("<s>","")
220
+ st.markdown(f'> #### {ques} ')
221
+
222
+
models/s2v_reddit_2015_md.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5afb7c665d7833e54b04dfaf181500acca0327b5509e5e1f8ccb3b5986f53713
3
+ size 600444501
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ numpy
3
+ pandas
4
+ seaborn
5
+ scikit-learn
6
+ PyPDF2
7
+ fitz
8
+ transformers
9
+ spacy
10
+ keybert
11
+ sense2vec
src/Pipeline/QAhaystack.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import logging
3
+
4
+ from haystack.document_stores import ElasticsearchDocumentStore
5
+ from haystack.utils import launch_es,print_answers
6
+ from haystack.nodes import FARMReader,TransformersReader,BM25Retriever
7
+ from haystack.pipelines import ExtractiveQAPipeline
8
+ from haystack.nodes import TextConverter,PDFToTextConverter,PreProcessor
9
+ from haystack.utils import convert_files_to_docs, fetch_archive_from_http
10
+ from Reader import PdfReader,ExtractedText
11
+
12
+ launch_es() # Launches an Elasticsearch instance on your local machine
13
+
14
+ # Install the latest release of Haystack in your own environment
15
+ #! pip install farm-haystack
16
+
17
+ """Install the latest main of Haystack"""
18
+ # !pip install --upgrade pip
19
+ # !pip install git+https://github.com/deepset-ai/haystack.git#egg=farm-haystack[colab,ocr]
20
+
21
+ # # For Colab/linux based machines
22
+ # !wget --no-check-certificate https://dl.xpdfreader.com/xpdf-tools-linux-4.04.tar.gz
23
+ # !tar -xvf xpdf-tools-linux-4.04.tar.gz && sudo cp xpdf-tools-linux-4.04/bin64/pdftotext /usr/local/bin
24
+
25
+ # For Macos machines
26
+ # !wget --no-check-certificate https://dl.xpdfreader.com/xpdf-tools-mac-4.03.tar.gz
27
+ # !tar -xvf xpdf-tools-mac-4.03.tar.gz && sudo cp xpdf-tools-mac-4.03/bin64/pdftotext /usr/local/bin
28
+
29
+ "Run this script from the root of the project"
30
+ # # In Colab / No Docker environments: Start Elasticsearch from source
31
+ # ! wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.9.2-linux-x86_64.tar.gz -q
32
+ # ! tar -xzf elasticsearch-7.9.2-linux-x86_64.tar.gz
33
+ # ! chown -R daemon:daemon elasticsearch-7.9.2
34
+
35
+ # import os
36
+ # from subprocess import Popen, PIPE, STDOUT
37
+
38
+ # es_server = Popen(
39
+ # ["elasticsearch-7.9.2/bin/elasticsearch"], stdout=PIPE, stderr=STDOUT, preexec_fn=lambda: os.setuid(1) # as daemon
40
+ # )
41
+ # # wait until ES has started
42
+ # ! sleep 30
43
+
44
+ logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING)
45
+ logging.getLogger("haystack").setLevel(logging.INFO)
46
+
47
+ class Connection:
48
+ def __init__(self,host="localhost",username="",password="",index="document"):
49
+ """
50
+ host: Elasticsearch host. If no host is provided, the default host "localhost" is used.
51
+
52
+ port: Elasticsearch port. If no port is provided, the default port 9200 is used.
53
+
54
+ username: Elasticsearch username. If no username is provided, no username is used.
55
+
56
+ password: Elasticsearch password. If no password is provided, no password is used.
57
+
58
+ index: Elasticsearch index. If no index is provided, the default index "document" is used.
59
+ """
60
+ self.host=host
61
+ self.username=username
62
+ self.password=password
63
+ self.index=index
64
+
65
+ def get_connection(self):
66
+ document_store=ElasticsearchDocumentStore(host=self.host,username=self.username,password=self.password,index=self.index)
67
+ return document_store
68
+
69
+ class QAHaystack:
70
+ def __init__(self, filename):
71
+ self.filename=filename
72
+
73
+ def preprocessing(self,data):
74
+ """
75
+ This function is used to preprocess the data. Its a simple function which removes the special characters and converts the data to lower case.
76
+ """
77
+
78
+ converter = TextConverter(remove_numeric_tables=True, valid_languages=["en"])
79
+ doc_txt = converter.convert(file_path=ExtractedText(self.filename,'data.txt').save(4,6), meta=None)[0]
80
+
81
+ converter = PDFToTextConverter(remove_numeric_tables=True, valid_languages=["en"])
82
+ doc_pdf = converter.convert(file_path="data/tutorial8/manibook.pdf", meta=None)[0]
83
+
84
+ preprocess_text=data.lower() # lowercase
85
+ preprocess_text = re.sub(r'\s+', ' ', preprocess_text) # remove extra spaces
86
+ return preprocess_text
87
+
88
+ def convert_to_document(self,data):
89
+
90
+ """
91
+ Write the data to a text file. This is required since the haystack library requires the data to be in a text file so that it can then be converted to a document.
92
+ """
93
+ data=self.preprocessing(data)
94
+ with open(self.filename,'w') as f:
95
+ f.write(data)
96
+
97
+ """
98
+ Read the data from the text file.
99
+ """
100
+ data=self.preprocessing(data)
101
+ with open(self.filename,'r') as f:
102
+ data=f.read()
103
+ data=data.split("\n")
104
+
105
+ """
106
+ DocumentStores expect Documents in dictionary form, like that below. They are loaded using the DocumentStore.write_documents()
107
+
108
+ dicts=[
109
+ {
110
+ 'content': DOCUMENT_TEXT_HERE,
111
+ 'meta':{'name': DOCUMENT_NAME,...}
112
+ },...
113
+ ]
114
+
115
+ (Optionally: you can also add more key-value-pairs here, that will be indexed as fields in Elasticsearch and can be accessed later for filtering or shown in the responses of the Pipeline)
116
+ """
117
+ data_json=[{
118
+ 'content':paragraph,
119
+ 'meta':{
120
+ 'name':self.filename
121
+ }
122
+ } for paragraph in data
123
+ ]
124
+
125
+ document_store=Connection().get_connection()
126
+ document_store.write_documents(data_json)
127
+ return document_store
128
+
129
+
130
+ class Pipeline:
131
+ def __init__(self,filename,retriever=BM25Retriever,reader=FARMReader):
132
+ self.reader=reader
133
+ self.retriever=retriever
134
+ self.filename=filename
135
+
136
+ def get_prediction(self,data,query):
137
+ """
138
+ Retrievers help narrowing down the scope for the Reader to smaller units of text where a given question could be answered. They use some simple but fast algorithm.
139
+
140
+ Here: We use Elasticsearch's default BM25 algorithm . I'll check out the other retrievers as well.
141
+ """
142
+ retriever=self.retriever(document_store=QAHaystack(self.filename).convert_to_document(data))
143
+
144
+ """
145
+ Readers scan the texts returned by retrievers in detail and extract k best answers. They are based on powerful, but slower deep learning models.Haystack currently supports Readers based on the frameworks FARM and Transformers.
146
+ """
147
+ reader = self.reader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True)
148
+
149
+ """
150
+ With a Haystack Pipeline we can stick together your building blocks to a search pipeline. Under the hood, Pipelines are Directed Acyclic Graphs (DAGs) that you can easily customize for our own use cases. To speed things up, Haystack also comes with a few predefined Pipelines. One of them is the ExtractiveQAPipeline that combines a retriever and a reader to answer our questions.
151
+ """
152
+ pipe = ExtractiveQAPipeline(reader, retriever)
153
+
154
+ """
155
+ This function is used to get the prediction from the pipeline.
156
+ """
157
+ prediction = pipe.run(query=query, params={"Retriever":{"top_k":10}, "Reader":{"top_k":5}})
158
+ return prediction
src/Pipeline/QuestGen.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Download important files for the pipeline. Uncomment the following lines if you are running this script for the first time"""
2
+ # !wget https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz
3
+ # !tar -xvf s2v_reddit_2015_md.tar.gz
4
+ # if tar file is already downloaded don't download it again
5
+ import os
6
+ import urllib.request
7
+ import tarfile
8
+ if not os.path.exists("models/s2v_reddit_2015_md.tar.gz"):
9
+ print ("Downloading Sense2Vec model")
10
+ urllib.request.urlretrieve(r"https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz",filename=r"models/s2v_reddit_2015_md.tar.gz")
11
+ else:
12
+ print ("Sense2Vec model already downloaded")
13
+
14
+ reddit_s2v= "models/s2v_reddit_2015_md.tar.gz"
15
+ extract_s2v="models"
16
+ extract_s2v_folder=reddit_s2v.replace(".tar.gz","")
17
+ if not os.path.isdir(extract_s2v_folder):
18
+ with tarfile.open(reddit_s2v, 'r:gz') as tar:
19
+ tar.extractall(f"models/")
20
+ else:
21
+ print ("Already extracted")
22
+
23
+ """Import required libraries"""
24
+
25
+ import warnings
26
+ warnings.filterwarnings('ignore')
27
+
28
+ from transformers import T5ForConditionalGeneration,T5Tokenizer
29
+
30
+ import streamlit as st
31
+ from sense2vec import Sense2Vec
32
+
33
+ @st.cache(allow_output_mutation=True)
34
+ def cache_models(paths2v,pathT5cond,pathT5):
35
+ s2v = Sense2Vec().from_disk(paths2v)
36
+ question_model = T5ForConditionalGeneration.from_pretrained(pathT5cond)
37
+ question_tokenizer = T5Tokenizer.from_pretrained(pathT5)
38
+ return (s2v,question_model,question_tokenizer)
39
+ s2v,question_model,question_tokenizer=cache_models("models/s2v_old",'ramsrigouthamg/t5_squad_v1','t5-base')
40
+
41
+
42
+ """Filter out same sense words using sense2vec algorithm"""
43
+
44
+ def filter_same_sense_words(original,wordlist):
45
+ filtered_words=[]
46
+ base_sense =original.split('|')[1]
47
+ for eachword in wordlist:
48
+ if eachword[0].split('|')[1] == base_sense:
49
+ filtered_words.append(eachword[0].split('|')[0].replace("_", " ").title().strip())
50
+ return filtered_words
51
+
52
+ def sense2vec_get_words(topn,input_keyword):
53
+ word=input_keyword
54
+ output=[]
55
+ required_keywords=[]
56
+ output = []
57
+ try:
58
+ sense = s2v.get_best_sense(word)
59
+ most_similar = s2v.most_similar(sense, n=topn)
60
+ for i in range(len(most_similar)):
61
+ required_keywords.append(most_similar[i])
62
+ output = filter_same_sense_words(sense,required_keywords)
63
+ print (f"Similar:{output}")
64
+ except:
65
+ output =[]
66
+
67
+ return output
68
+
69
+ """T5 Question generation"""
70
+ question_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_squad_v1')
71
+ question_tokenizer = T5Tokenizer.from_pretrained('t5-base')
72
+
73
+ def get_question(sentence,answer):
74
+ text = f"context: {sentence} answer: {answer} </s>"
75
+ max_len = 256
76
+ encoding = question_tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=True, return_tensors="pt")
77
+
78
+ input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
79
+
80
+ outs = question_model.generate(input_ids=input_ids,
81
+ attention_mask=attention_mask,
82
+ early_stopping=True,
83
+ num_beams=5,
84
+ num_return_sequences=1,
85
+ no_repeat_ngram_size=2,
86
+ max_length=200)
87
+
88
+
89
+ dec = [question_tokenizer.decode(ids) for ids in outs]
90
+
91
+
92
+ Question = dec[0].replace("question:","")
93
+ Question= Question.strip()
94
+ return Question
src/Pipeline/Reader.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import PyPDF2
2
+ import fitz
3
+
4
+ class PdfReader:
5
+ def __init__(self, filename):
6
+ self.filename = filename
7
+
8
+ def total_pages(self):
9
+ with open(self.filename, 'rb') as f:
10
+ pdf_reader = PyPDF2.PdfFileReader(f)
11
+ return pdf_reader.numPages
12
+
13
+ def read(self):
14
+ with open(self.filename, 'rb') as f:
15
+ pdf_reader = PyPDF2.PdfFileReader(f)
16
+ num_pages = pdf_reader.numPages
17
+ count = 0
18
+ text = ''
19
+ while count < num_pages:
20
+ text += pdf_reader.getPage(count).extractText()
21
+ count += 1
22
+ return text
23
+
24
+ def read_pages(self, start_page, end_page):
25
+ with open(self.filename, 'rb') as f:
26
+ pdf_reader = PyPDF2.PdfFileReader(f)
27
+ text = ''
28
+ for page in range(start_page, end_page):
29
+ text += pdf_reader.getPage(page).extractText()
30
+ return text
31
+
32
+ def extract_images(self):
33
+ doc = fitz.open(self.filename)
34
+ for page_index in range(len(doc)):
35
+ for img in doc.get_page_images(page_index):
36
+ xref = img[0]
37
+ pix = fitz.Pixmap(doc, xref)
38
+ if pix.n < 5: # GRAY or RGB
39
+ pix.save(f"{xref}.png")
40
+ else: # convert to RGB
41
+ pix1 = fitz.Pixmap(fitz.csRGB, pix)
42
+ pix1.save(f"{xref}.png")
43
+ pix1 = None
44
+ pix = None
45
+
46
+ class ExtractedText(PdfReader):
47
+ def __init__(self, filename, output_filename):
48
+ super().__init__(filename)
49
+ self.output_filename = output_filename
50
+
51
+ def save(self,start_page, end_page):
52
+ with open(self.filename,'rb') as f:
53
+ pdf_reader = PyPDF2.PdfFileReader(f)
54
+ text = ''
55
+ for page in range(start_page, end_page):
56
+ text += pdf_reader.getPage(page).extractText()
57
+ with open(self.output_filename, 'w',encoding='utf-8') as f:
58
+ f.write(text)
src/Pipeline/TextSummarization.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
3
+ import random
4
+ import numpy as np
5
+ from nltk.tokenize import sent_tokenize
6
+
7
+ class T5_Base:
8
+ def __init__(self,path,device,model_max_length):
9
+ self.model=T5ForConditionalGeneration.from_pretrained(path)
10
+ self.tokenizer=T5Tokenizer.from_pretrained(path,model_max_length=model_max_length)
11
+ self.device=torch.device(device)
12
+
13
+ def set_seed(seed):
14
+ random.seed(seed)
15
+ np.random.seed(seed)
16
+ torch.manual_seed(seed)
17
+ torch.cuda.manual_seed_all(seed)
18
+
19
+ def preprocess(self,data):
20
+ preprocess_text=data.strip().replace('\n',' ')
21
+ return preprocess_text
22
+
23
+ def post_process(self,data):
24
+ final=""
25
+ for sent in sent_tokenize(data):
26
+ sent=sent.capitalize()
27
+ final+=sent+" "+sent
28
+ return final
29
+
30
+ def getSummary(self,data):
31
+ data=self.preprocess(data)
32
+ t5_prepared_Data="summarize: "+data
33
+ tokenized_text=self.tokenizer.encode_plus(t5_prepared_Data,max_length=512,pad_to_max_length=False,truncation=True,return_tensors='pt').to(self.device)
34
+ input_ids,attention_mask=tokenized_text['input_ids'],tokenized_text['attention_mask']
35
+ summary_ids=self.model.generate(input_ids=input_ids,
36
+ attention_mask=attention_mask,
37
+ early_stopping=True,
38
+ num_beams=3,
39
+ num_return_sequences=1,
40
+ no_repeat_ngram_size=2,
41
+ min_length = 75,
42
+ max_length=300)
43
+
44
+ output=[self.tokenizer.decode(ids,skip_special_tokens=True) for ids in summary_ids]
45
+ summary=output[0]
46
+ summary=self.post_process(summary)
47
+ summary=summary.strip()
48
+ return summary
49
+
50
+
src/PreviousVersionCode/QuestionGenerator.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from TextSummarization import T5_Base
2
+
3
+ import spacy
4
+ import torch
5
+ from transformers import BertTokenizer, BertModel
6
+ from transformers import T5ForConditionalGeneration, T5Tokenizer, BertTokenizer, BertModel, AutoTokenizer
7
+ from sentence_transformers import SentenceTransformer
8
+ from sklearn.feature_extraction.text import CountVectorizer
9
+ from sklearn.metrics.pairwise import cosine_similarity
10
+
11
+ """
12
+ spacy.load() returns a language model object containing all components and data needed to process text. It is usually called nlp. Calling the nlp object on a string of text will return a processed Doc
13
+ """
14
+ nlp = spacy.load("en_core_web_sm") #spacy's trained pipeline model
15
+
16
+ from warnings import filterwarnings as filt
17
+ filt('ignore')
18
+
19
+ class QuestionGenerator:
20
+ def __init__(self,path,device,model_max_length):
21
+ self.model=T5ForConditionalGeneration.from_pretrained(path)
22
+ self.tokenizer=AutoTokenizer.from_pretrained(path,model_max_length=model_max_length)
23
+ self.device=torch.device(device)
24
+
25
+ def preprocess(self,data):
26
+ preprocess_text=data.strip().replace('\n','')
27
+ return preprocess_text
28
+
29
+ def gen_question(self,data,answer):
30
+ data=self.preprocess(data)
31
+ t5_prepared_data=f'context: {data} answer: {answer}'
32
+ encoding=self.tokenizer.encode_plus(t5_prepared_data,max_length=512,pad_to_max_length=True,truncation=True,return_tensors='pt').to(self.device)
33
+ input_ids,attention_mask=encoding['input_ids'],encoding['attention_mask']
34
+ output=self.model.generate(input_ids,
35
+ attention_mask=attention_mask,
36
+ num_beams=4,
37
+ num_return_sequences=1,
38
+ no_repeat_ngram_size=2,
39
+ min_length=30,
40
+ max_length=512,
41
+ early_stopping=True)
42
+
43
+ dec=[self.tokenizer.decode(ids,skip_special_tokens=True) for ids in output]
44
+ Question=dec[0].replace("question:","").strip()
45
+ return Question
46
+ class KeywordGenerator:
47
+ def __init__(self,path,device):
48
+ self.bert_model=BertModel.from_pretrained(path)
49
+ self.bert_tokenizer=BertTokenizer.from_pretrained(path)
50
+ self.sentence_model=SentenceTransformer('distilbert-base-nli-mean-tokens')
51
+ self.device=torch.device(device)
52
+
53
+ def get_embedding(self):
54
+ """
55
+ Token Embedding
56
+ txt = '[CLS] ' + doc + ' [SEP]' where CLS (used for classification task) is the token for the start of the sentence and SEP is the token for the end of the sentence and doc is the document to be encoded.
57
+ Ex: Sentence A : Paris is a beautiful city.
58
+ Sentence B : I love Paris.
59
+ tokens =[[cls] , Paris, is , a , beautiful , city ,[sep] , I , love , Paris ]
60
+ Before feeding the tokens to the Bert we convert the tokens into embeddings using an embedding layer called token embedding layer.
61
+ """
62
+ tokens=self.bert_tokenizer.tokenize(txt)
63
+ token_idx = self.bert_tokenizer.convert_tokens_to_ids(tokens)
64
+
65
+ """
66
+ Segment Embedding
67
+ Segment embedding is used to distinguish between the two gives sentences.The segment embedding layer returns only either of the two embedding EA(embedding of Sentence A) or EB(embedding of Sentence B) i.e if the input token belongs to sentence A then EA else EB for sentence B.
68
+ """
69
+ segment_ids=[1]*len(token_idx) #This is the segment_ids for the document. [1]*len(token_idxs) is a list of 1s of length len(token_idxs).
70
+
71
+ torch_token = torch.tensor([token_idx])
72
+ torch_segment = torch.tensor([segment_ids])
73
+ return self.bert_model(torch_token,torch_segment)[-1].detach().numpy() #
74
+
75
+ def get_posTags(self,context):
76
+ """This function returns the POS tags of the words in the context. Uses Spacy's POS tagger"""
77
+ doc=nlp(context)
78
+ doc_pos=[document.pos_ for document in doc]
79
+ return doc_pos,context.split()
80
+
81
+ def get_sentence(self,context):
82
+ """This function returns the sentences in the context. Uses Spacy's sentence tokenizer"""
83
+ doc=nlp(context)
84
+ return list(doc.sents)
85
+
86
+ def get_vector(self,doc):
87
+ """
88
+ Machines cannot understand characters and words. So when dealing with text data we need to represent it in numbers to be understood by the machine. Countvectorizer is a method to convert text to numerical data.
89
+ """
90
+ stop_words="english" #This is the list of stop words that we want to remove from the text
91
+ n_gram_range=(1,1) # This is the n-gram range. (1,1)->(unigram,unigram), (1,2)->(unigram,bigram), (1,3)->(unigram,trigram), (2,2)->(bigram,bigram) etc.
92
+ df=CountVectorizer(stop_words=stop_words,ngram_range=n_gram_range).fit([doc])
93
+ return df.get_feature_names() #This returns the list of words in the text.
94
+
95
+ def get_key_words(self,context,module_type='t'):
96
+ """
97
+ module_type: 't' for token, 's' for sentence, 'v' for vector
98
+ """
99
+ keywords=[]
100
+ top_n=5
101
+ for txt in self.get_sentence(context):
102
+ keyword=self.get_vector(str(txt))
103
+ print(f'vectors: {keyword}')
104
+ if module_type=='t':
105
+ doc_embedding=self.get_embedding(str(txt))
106
+ keyword_embedding=self.get_embedding(' '.join(keyword))
107
+ else:
108
+ doc_embedding=self.sentence_model.encode([str(txt)])
109
+ keyword_embedding=self.sentence_model.encode(keyword)
110
+
111
+ distances=cosine_similarity(doc_embedding,keyword_embedding)
112
+ print(distances)
113
+ keywords+=[(keyword[index],str(txt)) for index in distances.argsort()[0][-top_n:]]
114
+
115
+ return keywords
116
+
117
+ txt = """Enter text"""
118
+ for ans, context in KeywordGenerator('bert-base-uncased','cpu').get_key_words(txt,'st'):
119
+ print(QuestionGenerator('ramsrigouthamg/t5_squad_v1','cpu',512).gen_question(context, ans))
120
+ print()
121
+
122
+
123
+
124
+
125
+
126
+
127
+
src/PreviousVersionCode/context.py ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """context
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1qLh1aASQj5HIENPZpHQltTuShZny_567
8
+ """
9
+
10
+ # !pip install -q transformers
11
+
12
+ # Import important libraries
13
+ # Commented out IPython magic to ensure Python compatibility.
14
+ import os
15
+ import json
16
+ import wanb
17
+ from pprint import pprint
18
+
19
+ import torch
20
+ from torch.utils.data import Dataset
21
+ from torch.utils.data import DataLoader
22
+ from transformers import AdamW
23
+ from tqdm.notebook import tqdm
24
+ from transformers import BertForQuestionAnswering,BertTokenizer,BertTokenizerFast
25
+
26
+ import numpy as np
27
+ import matplotlib.pyplot as plt
28
+ import seaborn as sns
29
+ import pandas as pd
30
+ # %matplotlib inline
31
+
32
+ #connecting to wandb
33
+ wandb.login()
34
+
35
+ #Sweep Configuration
36
+ PROJECT_NAME="context"
37
+ ENTITY=None
38
+
39
+ sweep_config={
40
+ 'method':'random'
41
+ }
42
+
43
+ #set metric information --> we want to minimize the loss function.
44
+ metric = {
45
+ 'name': 'Validation accuracy',
46
+ 'goal': 'maximize'
47
+ }
48
+ sweep_config['metric'] = metric
49
+
50
+ #set all other hyperparameters
51
+ parameters_dict = {
52
+ 'epochs':{
53
+ 'values': [1]
54
+ },
55
+ 'optimizer':{
56
+ 'values': ['sgd','adam']
57
+ },
58
+ 'momentum':{
59
+ 'distribution': 'uniform',
60
+ 'min': 0.5,
61
+ 'max': 0.99
62
+ },
63
+ 'batch_size':{
64
+ 'distribution': 'q_log_uniform_values',
65
+ 'q': 8,
66
+ 'min': 16,
67
+ 'max': 256
68
+ }
69
+ }
70
+ sweep_config['parameters'] = parameters_dict
71
+
72
+ #print the configuration of the sweep
73
+ pprint(sweep_config)
74
+
75
+ #initialize the sweep
76
+ sweep_id=wandb.sweep(sweep_config,project=PROJECT_NAME,entity=ENTITY)
77
+
78
+ # Mount the Google Drive to save the model
79
+ from google.colab import drive
80
+ drive.mount('/content/drive')
81
+
82
+ if not os.path.exists('/content/drive/MyDrive/BERT-SQuAD'):
83
+ os.mkdir('/content/drive/MyDrive/BERT-SQuAD')
84
+
85
+ # Download SQuAD 2.0 data
86
+ # !wget -nc https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json
87
+ # !wget -nc https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json
88
+
89
+ """Load the training dataset and take a look at it"""
90
+ with open('train-v2.0.json','rb') as f:
91
+ squad=json.load(f)
92
+
93
+ # Each 'data' dict has two keys (title and paragraphs)
94
+ squad['data'][150]['paragraphs'][0]['context']
95
+
96
+ """Load the dev dataset and take a look at it"""
97
+ def read_data(path):
98
+
99
+ with open(path,'rb') as f:
100
+ squad=json.load(f)
101
+
102
+ contexts=[]
103
+ questions=[]
104
+ answers=[]
105
+ for group in squad['data']:
106
+ for passage in group['paragraphs']:
107
+ context=passage['context']
108
+ for qna in passage['qas']:
109
+ question=qna['question']
110
+ for answer in qna['answers']:
111
+ contexts.append(context)
112
+ questions.append(question)
113
+ answers.append(answer)
114
+ return contexts,questions,answers
115
+
116
+
117
+ #Put the contexts, questions and answers for training and validation into the appropriate lists.
118
+ """
119
+ The answers are dictionaries whith the answer text and an integer which indicates the start index of the answer in the context.
120
+ """
121
+ train_contexts,train_questions,train_answers=read_data('train-v2.0.json')
122
+ valid_contexts,valid_questions,valid_answers=read_data('dev-v2.0.json')
123
+ # print(train_contexts[:10])
124
+
125
+ # Create a dictionary to map the words to their indices
126
+ def end_idx(answers,contexts):
127
+ for answers,context in zip(answers,contexts):
128
+ gold_text=answers['text']
129
+ start_idx=answers['answer_start']
130
+ end_idx=start_idx+len(gold_text)
131
+
132
+ # sometimes squad answers are off by a character or two so we fix this
133
+ if context[start_idx:end_idx] == gold_text:
134
+ answers['answer_end'] = end_idx
135
+ elif context[start_idx-1:end_idx-1] == gold_text:
136
+ answers['answer_start'] = start_idx - 1
137
+ answers['answer_end'] = end_idx - 1 # When the gold label is off by one character
138
+ elif context[start_idx-2:end_idx-2] == gold_text:
139
+ answers['answer_start'] = start_idx - 2
140
+ answers['answer_end'] = end_idx - 2 # When the gold label is off by two characters
141
+
142
+
143
+ """"Tokenization"""
144
+ tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
145
+ train_encodings = tokenizer(train_contexts, train_questions, truncation=True, padding=True)
146
+ valid_encodings = tokenizer(valid_contexts, valid_questions, truncation=True, padding=True)
147
+
148
+ # print(train_encodings.keys()) ---> dict_keys(['input_ids', 'token_type_ids', 'attention_mask'])
149
+
150
+ # Positional encoding
151
+ def add_token_positions(encodings,answers):
152
+ start_positions=[]
153
+ end_positions=[]
154
+ for i in range(len(answers)):
155
+ start_positions.append(encodings.char_to_token(i,answers[i]['answer_start']))
156
+ end_positions.append(encodings.char_to_token(i,answers[i]['answer_end']))
157
+
158
+ # if start position is None, the answer passage has been truncated
159
+ if start_positions[-1] is None:
160
+ start_positions[-1] = tokenizer.model_max_length
161
+ if end_positions[-1] is None:
162
+ end_positions[-1] = tokenizer.model_max_length
163
+
164
+ encodings.update({'start_positions': start_positions, 'end_positions': end_positions})
165
+
166
+
167
+ """Dataloader for the training dataset"""
168
+ class DatasetRetriever(Dataset):
169
+ def __init__(self,encodings):
170
+ self.encodings=encodings
171
+
172
+ def __getitem__(self,idx):
173
+ return {key:torch.tensor(val[idx]) for key,val in self.encodings.items()}
174
+
175
+ def __len__(self):
176
+ return len(self.encodings.input_ids)
177
+
178
+ #Split the dataset into train and validation
179
+ train_dataset=DatasetRetriever(train_encodings)
180
+ valid_dataset=DatasetRetriever(valid_encodings)
181
+ train_loader=DataLoader(train_dataset,batch_size=16,shuffle=True)
182
+ valid_loader=DataLoader(valid_dataset,batch_size=16)
183
+ model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
184
+ device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
185
+
186
+ #Training and testing Loop
187
+ def pipeline():
188
+ epochs=1,
189
+ optimizer = torch.optim.AdamW(model.parameters(),lr=5e-5)
190
+
191
+ with wandb.init(config=None):
192
+ config=wandb.config
193
+ model.to(device)
194
+
195
+ #train the model
196
+ model.train()
197
+ for epoch in range(config.epochs):
198
+ loop = tqdm(train_loader, leave=True)
199
+ for batch in loop:
200
+ optimizer.zero_grad()
201
+ input_ids = batch['input_ids'].to(device)
202
+ attention_mask = batch['attention_mask'].to(device)
203
+ start_positions = batch['start_positions'].to(device)
204
+ end_positions = batch['end_positions'].to(device)
205
+ outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions)
206
+ loss = outputs[0]
207
+ loss.backward()
208
+ optimizer.step()
209
+
210
+ loop.set_description(f'Epoch {epoch+1}')
211
+ loop.set_postfix(loss=loss.item())
212
+ wandb.log({'Validation Loss':loss})
213
+
214
+ #set the model to evaluation phase
215
+ model.eval()
216
+ acc=[]
217
+ for batch in tqdm(valid_loader):
218
+ with torch.no_grad():
219
+ input_ids=batch['input_ids'].to(device)
220
+ attention_mask=batch['attention_mask'].to(device)
221
+ start_true=batch['start_positions'].to(device)
222
+ end_true=batch['end_positions'].to(device)
223
+
224
+ outputs=model(input_ids,attention_mask=attention_mask)
225
+
226
+ start_pred=torch.argmax(outputs['start_logits'],dim=1)
227
+ end_pred=torch.argmax(outputs['end_logits'],dim=1)
228
+
229
+ acc.append(((start_pred == start_true).sum()/len(start_pred)).item())
230
+ acc.append(((end_pred == end_true).sum()/len(end_pred)).item())
231
+
232
+ acc = sum(acc)/len(acc)
233
+
234
+ print("\n\nT/P\tanswer_start\tanswer_end\n")
235
+ for i in range(len(start_true)):
236
+ print(f"true\t{start_true[i]}\t{end_true[i]}\n"
237
+ f"pred\t{start_pred[i]}\t{end_pred[i]}\n")
238
+ wandb.log({'Validation accuracy': acc})
239
+
240
+ #Run the pipeline
241
+ wandb.agent(sweep_id, pipeline, count = 4)
242
+
243
+
244
+ """Save the model so we dont have to train it again"""
245
+ model_path = '/content/drive/MyDrive/BERT-SQuAD'
246
+ model.save_pretrained(model_path)
247
+ tokenizer.save_pretrained(model_path)
248
+
249
+ """Load the model"""
250
+ model_path = '/content/drive/MyDrive/BERT-SQuAD'
251
+ model = BertForQuestionAnswering.from_pretrained(model_path)
252
+ tokenizer = BertTokenizerFast.from_pretrained(model_path)
253
+ device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
254
+ model = model.to(device)
255
+
256
+
257
+
258
+ #Get predictions
259
+ def get_prediction(context,answer):
260
+ inputs=tokenizer.encode_plus(question,context,return_tensors='pt').to(device)
261
+ outputs=model(**inputs)
262
+ answer_start=torch.argmax(outputs[0]) # start position of the answer
263
+ answer_end=torch.argmax(outputs[1])+1 # end position of the answer
264
+ answer = tokenizer.convert_tokens_to_string(tokenizer. ## convert the tokens to string
265
+ convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end]))
266
+ return answer
267
+
268
+
269
+ """
270
+ Question testing
271
+
272
+ Official SQuAD evaluation script-->
273
+ https://colab.research.google.com/github/fastforwardlabs/ff14_blog/blob/master/_notebooks/2020-06-09-Evaluating_BERT_on_SQuAD.ipynb#scrollTo=MzPlHgWEBQ8D
274
+ """
275
+
276
+ def normalize_text(s):
277
+ """Removing articles and punctuation, and standardizing whitespace are all typical text processing steps."""
278
+ import string, re
279
+ def remove_articles(text):
280
+ regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
281
+ return re.sub(regex, " ", text)
282
+ def white_space_fix(text):
283
+ return " ".join(text.split())
284
+ def remove_punc(text):
285
+ exclude = set(string.punctuation)
286
+ return "".join(ch for ch in text if ch not in exclude)
287
+ def lower(text):
288
+ return text.lower()
289
+
290
+ return white_space_fix(remove_articles(remove_punc(lower(s))))
291
+
292
+ def exact_match(prediction, truth):
293
+ return bool(normalize_text(prediction) == normalize_text(truth))
294
+
295
+ def compute_f1(prediction, truth):
296
+ pred_tokens = normalize_text(prediction).split()
297
+ truth_tokens = normalize_text(truth).split()
298
+
299
+ # if either the prediction or the truth is no-answer then f1 = 1 if they agree, 0 otherwise
300
+ if len(pred_tokens) == 0 or len(truth_tokens) == 0:
301
+ return int(pred_tokens == truth_tokens)
302
+
303
+ common_tokens = set(pred_tokens) & set(truth_tokens)
304
+
305
+ # if there are no common tokens then f1 = 0
306
+ if len(common_tokens) == 0:
307
+ return 0
308
+
309
+ prec = len(common_tokens) / len(pred_tokens)
310
+ rec = len(common_tokens) / len(truth_tokens)
311
+
312
+ return round(2 * (prec * rec) / (prec + rec), 2)
313
+
314
+ def question_answer(context, question,answer):
315
+ prediction = get_prediction(context,question)
316
+ em_score = exact_match(prediction, answer)
317
+ f1_score = compute_f1(prediction, answer)
318
+
319
+ print(f'Question: {question}')
320
+ print(f'Prediction: {prediction}')
321
+ print(f'True Answer: {answer}')
322
+ print(f'Exact match: {em_score}')
323
+ print(f'F1 score: {f1_score}\n')
324
+
325
+ context = """Space exploration is a very exciting field of research. It is the
326
+ frontier of Physics and no doubt will change the understanding of science.
327
+ However, it does come at a cost. A normal space shuttle costs about 1.5 billion dollars to make.
328
+ The annual budget of NASA, which is a premier space exploring organization is about 17 billion.
329
+ So the question that some people ask is that whether it is worth it."""
330
+
331
+
332
+ questions =["What wil change the understanding of science?",
333
+ "What is the main idea in the paragraph?"]
334
+
335
+ answers = ["Space Exploration",
336
+ "The cost of space exploration is too high"]
337
+
338
+ """
339
+ VISUALISATION IN PROGRESS
340
+
341
+ for question, answer in zip(questions, answers):
342
+ question_answer(context, question, answer)
343
+
344
+ #Visualize the start scores
345
+ plt.rcParams["figure.figsize"]=(20,10)
346
+ ax=sns.barplot(x=token_labels,y=start_scores)
347
+ ax.set_xticklabels(ax.get_xticklabels(),rotation=90,ha="center")
348
+ ax.grid(True)
349
+ plt.title("Start word scores")
350
+ plt.show()
351
+
352
+ #Visualize the end scores
353
+ plt.rcParams["figure.figsize"]=(20,10)
354
+ ax=sns.barplot(x=token_labels,y=end_scores)
355
+ ax.set_xticklabels(ax.get_xticklabels(),rotation=90,ha="center")
356
+ ax.grid(True)
357
+ plt.title("End word scores")
358
+ plt.show()
359
+
360
+ #Visualize both the scores
361
+ scores=[]
362
+ for (i,token_label) in enumerate(token_labels):
363
+ # Add the token's start score as one row.
364
+ scores.append({'token_label':token_label,
365
+ 'score':start_scores[i],
366
+ 'marker':'start'})
367
+
368
+ # Add the token's end score as another row.
369
+ scores.append({'token_label': token_label,
370
+ 'score': end_scores[i],
371
+ 'marker': 'end'})
372
+
373
+ df=pd.DataFrame(scores)
374
+ group_plot=sns.catplot(x="token_label",y="score",hue="marker",data=df,
375
+ kind="bar",height=6,aspect=4)
376
+
377
+ group_plot.set_xticklabels(ax.get_xticklabels(),rotation=90,ha="center")
378
+ group_plot.ax.grid(True)
379
+ """