File size: 12,602 Bytes
32d9382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# -*- coding: utf-8 -*-
"""context

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1qLh1aASQj5HIENPZpHQltTuShZny_567
"""

# !pip install -q  transformers

# Import important libraries
# Commented out IPython magic to ensure Python compatibility.
import os
import json
import wanb
from pprint import pprint

import torch 
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from transformers import AdamW
from tqdm.notebook import tqdm 
from transformers import BertForQuestionAnswering,BertTokenizer,BertTokenizerFast

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
# %matplotlib inline

#connecting to wandb
wandb.login()

#Sweep Configuration
PROJECT_NAME="context"
ENTITY=None

sweep_config={
    'method':'random'
}

#set metric information --> we want to minimize the loss function.
metric = {
    'name': 'Validation accuracy',
    'goal': 'maximize'   
    }
sweep_config['metric'] = metric

#set all other hyperparameters
parameters_dict = {
    'epochs':{
        'values': [1]
    },
    'optimizer':{
        'values': ['sgd','adam']
    },
    'momentum':{
        'distribution': 'uniform',
        'min': 0.5,
        'max': 0.99
    },
    'batch_size':{
        'distribution': 'q_log_uniform_values',
        'q': 8,
        'min': 16,
        'max': 256 
    }
    }
sweep_config['parameters'] = parameters_dict

#print the configuration of the sweep
pprint(sweep_config)

#initialize the sweep
sweep_id=wandb.sweep(sweep_config,project=PROJECT_NAME,entity=ENTITY)

# Mount the Google Drive to save the model
from google.colab import drive
drive.mount('/content/drive')

if not os.path.exists('/content/drive/MyDrive/BERT-SQuAD'):
  os.mkdir('/content/drive/MyDrive/BERT-SQuAD')

# Download SQuAD 2.0 data
# !wget -nc https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json
# !wget -nc https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json

"""Load the training dataset and take a look at it"""
with open('train-v2.0.json','rb') as f:
  squad=json.load(f)

# Each 'data' dict has two keys (title and paragraphs)
squad['data'][150]['paragraphs'][0]['context']

"""Load the dev dataset and take a look at it"""
def read_data(path):

  with open(path,'rb') as f:
    squad=json.load(f)

  contexts=[]
  questions=[]
  answers=[]
  for group in squad['data']:
    for passage in group['paragraphs']:
      context=passage['context']
      for qna in passage['qas']:
        question=qna['question']
        for answer in qna['answers']:
          contexts.append(context)
          questions.append(question)
          answers.append(answer)
  return contexts,questions,answers


#Put the contexts, questions and answers for training and validation into the appropriate lists.
"""
The answers are dictionaries whith the answer text and an integer which indicates the start index of the answer in the context.
"""
train_contexts,train_questions,train_answers=read_data('train-v2.0.json')
valid_contexts,valid_questions,valid_answers=read_data('dev-v2.0.json')
# print(train_contexts[:10])

# Create a dictionary to map the words to their indices
def end_idx(answers,contexts):
  for answers,context in zip(answers,contexts):
    gold_text=answers['text']
    start_idx=answers['answer_start']
    end_idx=start_idx+len(gold_text)

    # sometimes squad answers are off by a character or two so we fix this
    if context[start_idx:end_idx] == gold_text:
      answers['answer_end'] = end_idx
    elif context[start_idx-1:end_idx-1] == gold_text:
      answers['answer_start'] = start_idx - 1
      answers['answer_end'] = end_idx - 1     # When the gold label is off by one character
    elif context[start_idx-2:end_idx-2] == gold_text:
      answers['answer_start'] = start_idx - 2
      answers['answer_end'] = end_idx - 2     # When the gold label is off by two characters


""""Tokenization"""
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
train_encodings = tokenizer(train_contexts, train_questions, truncation=True, padding=True)
valid_encodings = tokenizer(valid_contexts, valid_questions, truncation=True, padding=True)

# print(train_encodings.keys()) ---> dict_keys(['input_ids', 'token_type_ids', 'attention_mask'])

# Positional encoding
def add_token_positions(encodings,answers):
  start_positions=[]
  end_positions=[]
  for i in range(len(answers)):
    start_positions.append(encodings.char_to_token(i,answers[i]['answer_start']))
    end_positions.append(encodings.char_to_token(i,answers[i]['answer_end']))

    # if start position is None, the answer passage has been truncated
    if start_positions[-1] is None:
      start_positions[-1] = tokenizer.model_max_length
    if end_positions[-1] is None:
      end_positions[-1] = tokenizer.model_max_length

  encodings.update({'start_positions': start_positions, 'end_positions': end_positions})


"""Dataloader for the training dataset"""
class DatasetRetriever(Dataset):
  def __init__(self,encodings):
    self.encodings=encodings

  def __getitem__(self,idx):
    return {key:torch.tensor(val[idx]) for key,val in self.encodings.items()}

  def __len__(self):    
    return len(self.encodings.input_ids)

#Split the dataset into train and validation
train_dataset=DatasetRetriever(train_encodings)
valid_dataset=DatasetRetriever(valid_encodings)
train_loader=DataLoader(train_dataset,batch_size=16,shuffle=True)
valid_loader=DataLoader(valid_dataset,batch_size=16)
model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

#Training and testing Loop
def pipeline():
  epochs=1,
  optimizer = torch.optim.AdamW(model.parameters(),lr=5e-5)
  
  with wandb.init(config=None):
    config=wandb.config
    model.to(device)

    #train the model
    model.train()
    for epoch in range(config.epochs):
      loop = tqdm(train_loader, leave=True)
      for batch in loop:
        optimizer.zero_grad()
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        start_positions = batch['start_positions'].to(device)
        end_positions = batch['end_positions'].to(device)
        outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions)
        loss = outputs[0]
        loss.backward()
        optimizer.step()
    
        loop.set_description(f'Epoch {epoch+1}')
        loop.set_postfix(loss=loss.item())
        wandb.log({'Validation Loss':loss})

    #set the model to evaluation phase    
    model.eval()
    acc=[]
    for batch in tqdm(valid_loader):
      with torch.no_grad():
        input_ids=batch['input_ids'].to(device)
        attention_mask=batch['attention_mask'].to(device)
        start_true=batch['start_positions'].to(device)
        end_true=batch['end_positions'].to(device)
    
        outputs=model(input_ids,attention_mask=attention_mask)
    
        start_pred=torch.argmax(outputs['start_logits'],dim=1)
        end_pred=torch.argmax(outputs['end_logits'],dim=1)
    
        acc.append(((start_pred == start_true).sum()/len(start_pred)).item())
        acc.append(((end_pred == end_true).sum()/len(end_pred)).item())
    
    acc = sum(acc)/len(acc)
    
    print("\n\nT/P\tanswer_start\tanswer_end\n")
    for i in range(len(start_true)):
      print(f"true\t{start_true[i]}\t{end_true[i]}\n"
            f"pred\t{start_pred[i]}\t{end_pred[i]}\n")    
    wandb.log({'Validation accuracy': acc})

#Run the pipeline
wandb.agent(sweep_id, pipeline, count = 4)    


"""Save the model so we dont have to train it again"""
model_path = '/content/drive/MyDrive/BERT-SQuAD'
model.save_pretrained(model_path)
tokenizer.save_pretrained(model_path)

"""Load the model"""
model_path = '/content/drive/MyDrive/BERT-SQuAD'
model = BertForQuestionAnswering.from_pretrained(model_path)
tokenizer = BertTokenizerFast.from_pretrained(model_path)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = model.to(device)



#Get predictions
def get_prediction(context,answer):
  inputs=tokenizer.encode_plus(question,context,return_tensors='pt').to(device)
  outputs=model(**inputs)
  answer_start=torch.argmax(outputs[0]) # start position of the answer
  answer_end=torch.argmax(outputs[1])+1 # end position of the answer
  answer = tokenizer.convert_tokens_to_string(tokenizer. ## convert the tokens to string
  convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end]))
  return answer 


"""
Question testing

Official SQuAD evaluation script-->
https://colab.research.google.com/github/fastforwardlabs/ff14_blog/blob/master/_notebooks/2020-06-09-Evaluating_BERT_on_SQuAD.ipynb#scrollTo=MzPlHgWEBQ8D
"""

def normalize_text(s):
  """Removing articles and punctuation, and standardizing whitespace are all typical text processing steps."""
  import string, re
  def remove_articles(text):
    regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
    return re.sub(regex, " ", text)
  def white_space_fix(text):
    return " ".join(text.split())
  def remove_punc(text):
    exclude = set(string.punctuation)
    return "".join(ch for ch in text if ch not in exclude)
  def lower(text):
    return text.lower()

  return white_space_fix(remove_articles(remove_punc(lower(s))))

def exact_match(prediction, truth):
    return bool(normalize_text(prediction) == normalize_text(truth))

def compute_f1(prediction, truth):
  pred_tokens = normalize_text(prediction).split()
  truth_tokens = normalize_text(truth).split()
  
  # if either the prediction or the truth is no-answer then f1 = 1 if they agree, 0 otherwise
  if len(pred_tokens) == 0 or len(truth_tokens) == 0:
    return int(pred_tokens == truth_tokens)
  
  common_tokens = set(pred_tokens) & set(truth_tokens)
  
  # if there are no common tokens then f1 = 0
  if len(common_tokens) == 0:
    return 0
  
  prec = len(common_tokens) / len(pred_tokens)
  rec = len(common_tokens) / len(truth_tokens)
  
  return round(2 * (prec * rec) / (prec + rec), 2)

def question_answer(context, question,answer):
  prediction = get_prediction(context,question)
  em_score = exact_match(prediction, answer)
  f1_score = compute_f1(prediction, answer)
  
  print(f'Question: {question}')
  print(f'Prediction: {prediction}')
  print(f'True Answer: {answer}')
  print(f'Exact match: {em_score}')
  print(f'F1 score: {f1_score}\n')

context = """Space exploration is a very exciting field of research. It is the 
           frontier of Physics and no doubt will change the understanding of science. 
           However, it does come at a cost. A normal space shuttle costs about 1.5 billion dollars to make. 
           The annual budget of NASA, which is a premier space exploring organization is about 17 billion. 
           So the question that some people ask is that whether it is worth it."""


questions =["What wil change the understanding of science?",
            "What is the main idea in the paragraph?"]

answers = ["Space Exploration",
           "The cost of space exploration is too high"]

"""    
VISUALISATION IN PROGRESS

for question, answer in zip(questions, answers):
  question_answer(context, question, answer)

    #Visualize the start scores
    plt.rcParams["figure.figsize"]=(20,10)
    ax=sns.barplot(x=token_labels,y=start_scores)
    ax.set_xticklabels(ax.get_xticklabels(),rotation=90,ha="center")
    ax.grid(True)
    plt.title("Start word scores")
    plt.show()

    #Visualize the end scores
    plt.rcParams["figure.figsize"]=(20,10)
    ax=sns.barplot(x=token_labels,y=end_scores)
    ax.set_xticklabels(ax.get_xticklabels(),rotation=90,ha="center")
    ax.grid(True)
    plt.title("End word scores")
    plt.show()

    #Visualize both the scores
    scores=[]
    for (i,token_label) in enumerate(token_labels):
      # Add the token's start score as one row.
      scores.append({'token_label':token_label,
                     'score':start_scores[i],
                     'marker':'start'})
      
      # Add  the token's end score as another row.
      scores.append({'token_label': token_label, 
                   'score': end_scores[i],
                   'marker': 'end'})
      
    df=pd.DataFrame(scores)
    group_plot=sns.catplot(x="token_label",y="score",hue="marker",data=df,
                           kind="bar",height=6,aspect=4)
    
    group_plot.set_xticklabels(ax.get_xticklabels(),rotation=90,ha="center")
    group_plot.ax.grid(True)
"""