Spaces:
Runtime error
Runtime error
File size: 4,870 Bytes
b4b5272 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
import torch
import numpy as np
from transformers import AutoProcessor, AutoModel
from PIL import Image
import cv2
from pathlib import Path
from tempfile import NamedTemporaryFile
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
CLIP_LEN = 32
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME).to(device)
def get_video_length(file_path):
cap = cv2.VideoCapture(file_path)
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
return length
def read_video_opencv(file_path, indices):
frames = []
failed_indices = []
cap = cv2.VideoCapture(file_path)
if not cap.isOpened():
print(f"Error opening video file: {file_path}")
return frames
max_index = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
for idx in indices:
if idx <= max_index:
frame = get_frame_with_opened_cap(cap, idx)
if frame is not None:
frames.append(frame)
else:
failed_indices.append(idx)
else:
failed_indices.append(idx)
cap.release()
if failed_indices:
print(f"Failed to extract frames at indices: {failed_indices}")
return frames
def get_frame_with_opened_cap(cap, index):
cap.set(cv2.CAP_PROP_POS_FRAMES, index)
ret, frame = cap.read()
if ret:
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return None
def sample_uniform_frame_indices(clip_len, seg_len):
if seg_len < clip_len:
repeat_factor = np.ceil(clip_len / seg_len).astype(int)
indices = np.arange(seg_len).tolist() * repeat_factor
indices = indices[:clip_len]
else:
spacing = seg_len // clip_len
indices = [i * spacing for i in range(clip_len)]
return np.array(indices).astype(np.int64)
def concatenate_frames(frames, clip_len):
layout = { 32: (4, 8) }
rows, cols = layout[clip_len]
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
frame_iter = iter(frames)
y_offset = 0
for i in range(rows):
x_offset = 0
for j in range(cols):
img = Image.fromarray(next(frame_iter))
combined_image.paste(img, (x_offset, y_offset))
x_offset += frames[0].shape[1]
y_offset += frames[0].shape[0]
return combined_image
def model_interface(uploaded_video, activity):
video_length = get_video_length(uploaded_video)
indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=video_length)
video = read_video_opencv(uploaded_video, indices)
concatenated_image = concatenate_frames(video, CLIP_LEN)
activities_list = [activity, "other"]
inputs = processor(
text=activities_list,
videos=list(video),
return_tensors="pt",
padding=True,
)
for key, value in inputs.items():
if isinstance(value, torch.Tensor):
inputs[key] = value.to(device)
with torch.no_grad():
outputs = model(**inputs)
logits_per_video = outputs.logits_per_video
probs = logits_per_video.softmax(dim=1)
results_probs = []
results_logits = []
max_prob_index = torch.argmax(probs[0]).item()
for i in range(len(activities_list)):
current_activity = activities_list[i]
prob = float(probs[0][i].cpu())
logit = float(logits_per_video[0][i].cpu())
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
likely_label = activities_list[max_prob_index]
likely_probability = float(probs[0][max_prob_index].cpu()) * 100
return concatenated_image, results_probs, results_logits, [likely_label, likely_probability]
iface = gr.Interface(
fn=model_interface,
inputs=[
gr.Video(label="Upload a Video"),
gr.Textbox(label="Activity to Detect")
],
outputs=[
gr.Image(label="Concatenated Frames"),
gr.Dataframe(headers=["Activity", "Probability"], label="Probabilities"),
gr.Dataframe(headers=["Activity", "Raw Score"], label="Raw Scores"),
gr.Textbox(label="Most Likely Activity")
],
title="Video Activity Classifier",
description="""
**Instructions:**
1. **Upload a Video**: Select a video file to upload.
2. **Enter Activity Label**: Specify the activity you want to detect in the video.
3. **View Results**:
- The concatenated frames from the video will be displayed.
- Probabilities and raw scores for the specified activity and the "other" category will be shown.
- The most likely activity detected in the video will be displayed.
"""
)
if __name__ == "__main__":
iface.launch()
|