Spaces:
Runtime error
Runtime error
IbrahimHasani
commited on
Commit
•
b4b5272
1
Parent(s):
06c6341
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoProcessor, AutoModel
|
5 |
+
from PIL import Image
|
6 |
+
import cv2
|
7 |
+
from pathlib import Path
|
8 |
+
from tempfile import NamedTemporaryFile
|
9 |
+
|
10 |
+
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
|
11 |
+
CLIP_LEN = 32
|
12 |
+
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
|
15 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
16 |
+
model = AutoModel.from_pretrained(MODEL_NAME).to(device)
|
17 |
+
|
18 |
+
def get_video_length(file_path):
|
19 |
+
cap = cv2.VideoCapture(file_path)
|
20 |
+
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
21 |
+
cap.release()
|
22 |
+
return length
|
23 |
+
|
24 |
+
def read_video_opencv(file_path, indices):
|
25 |
+
frames = []
|
26 |
+
failed_indices = []
|
27 |
+
|
28 |
+
cap = cv2.VideoCapture(file_path)
|
29 |
+
if not cap.isOpened():
|
30 |
+
print(f"Error opening video file: {file_path}")
|
31 |
+
return frames
|
32 |
+
|
33 |
+
max_index = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
|
34 |
+
for idx in indices:
|
35 |
+
if idx <= max_index:
|
36 |
+
frame = get_frame_with_opened_cap(cap, idx)
|
37 |
+
if frame is not None:
|
38 |
+
frames.append(frame)
|
39 |
+
else:
|
40 |
+
failed_indices.append(idx)
|
41 |
+
else:
|
42 |
+
failed_indices.append(idx)
|
43 |
+
cap.release()
|
44 |
+
|
45 |
+
if failed_indices:
|
46 |
+
print(f"Failed to extract frames at indices: {failed_indices}")
|
47 |
+
return frames
|
48 |
+
|
49 |
+
def get_frame_with_opened_cap(cap, index):
|
50 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, index)
|
51 |
+
ret, frame = cap.read()
|
52 |
+
if ret:
|
53 |
+
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
54 |
+
return None
|
55 |
+
|
56 |
+
def sample_uniform_frame_indices(clip_len, seg_len):
|
57 |
+
if seg_len < clip_len:
|
58 |
+
repeat_factor = np.ceil(clip_len / seg_len).astype(int)
|
59 |
+
indices = np.arange(seg_len).tolist() * repeat_factor
|
60 |
+
indices = indices[:clip_len]
|
61 |
+
else:
|
62 |
+
spacing = seg_len // clip_len
|
63 |
+
indices = [i * spacing for i in range(clip_len)]
|
64 |
+
return np.array(indices).astype(np.int64)
|
65 |
+
|
66 |
+
def concatenate_frames(frames, clip_len):
|
67 |
+
layout = { 32: (4, 8) }
|
68 |
+
rows, cols = layout[clip_len]
|
69 |
+
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
|
70 |
+
frame_iter = iter(frames)
|
71 |
+
y_offset = 0
|
72 |
+
for i in range(rows):
|
73 |
+
x_offset = 0
|
74 |
+
for j in range(cols):
|
75 |
+
img = Image.fromarray(next(frame_iter))
|
76 |
+
combined_image.paste(img, (x_offset, y_offset))
|
77 |
+
x_offset += frames[0].shape[1]
|
78 |
+
y_offset += frames[0].shape[0]
|
79 |
+
return combined_image
|
80 |
+
|
81 |
+
def model_interface(uploaded_video, activity):
|
82 |
+
video_length = get_video_length(uploaded_video)
|
83 |
+
indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=video_length)
|
84 |
+
video = read_video_opencv(uploaded_video, indices)
|
85 |
+
concatenated_image = concatenate_frames(video, CLIP_LEN)
|
86 |
+
|
87 |
+
activities_list = [activity, "other"]
|
88 |
+
inputs = processor(
|
89 |
+
text=activities_list,
|
90 |
+
videos=list(video),
|
91 |
+
return_tensors="pt",
|
92 |
+
padding=True,
|
93 |
+
)
|
94 |
+
|
95 |
+
for key, value in inputs.items():
|
96 |
+
if isinstance(value, torch.Tensor):
|
97 |
+
inputs[key] = value.to(device)
|
98 |
+
|
99 |
+
with torch.no_grad():
|
100 |
+
outputs = model(**inputs)
|
101 |
+
|
102 |
+
logits_per_video = outputs.logits_per_video
|
103 |
+
probs = logits_per_video.softmax(dim=1)
|
104 |
+
|
105 |
+
results_probs = []
|
106 |
+
results_logits = []
|
107 |
+
max_prob_index = torch.argmax(probs[0]).item()
|
108 |
+
for i in range(len(activities_list)):
|
109 |
+
current_activity = activities_list[i]
|
110 |
+
prob = float(probs[0][i].cpu())
|
111 |
+
logit = float(logits_per_video[0][i].cpu())
|
112 |
+
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
|
113 |
+
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
|
114 |
+
|
115 |
+
likely_label = activities_list[max_prob_index]
|
116 |
+
likely_probability = float(probs[0][max_prob_index].cpu()) * 100
|
117 |
+
|
118 |
+
return concatenated_image, results_probs, results_logits, [likely_label, likely_probability]
|
119 |
+
|
120 |
+
iface = gr.Interface(
|
121 |
+
fn=model_interface,
|
122 |
+
inputs=[
|
123 |
+
gr.Video(label="Upload a Video"),
|
124 |
+
gr.Textbox(label="Activity to Detect")
|
125 |
+
],
|
126 |
+
outputs=[
|
127 |
+
gr.Image(label="Concatenated Frames"),
|
128 |
+
gr.Dataframe(headers=["Activity", "Probability"], label="Probabilities"),
|
129 |
+
gr.Dataframe(headers=["Activity", "Raw Score"], label="Raw Scores"),
|
130 |
+
gr.Textbox(label="Most Likely Activity")
|
131 |
+
],
|
132 |
+
title="Video Activity Classifier",
|
133 |
+
description="""
|
134 |
+
**Instructions:**
|
135 |
+
|
136 |
+
1. **Upload a Video**: Select a video file to upload.
|
137 |
+
2. **Enter Activity Label**: Specify the activity you want to detect in the video.
|
138 |
+
3. **View Results**:
|
139 |
+
- The concatenated frames from the video will be displayed.
|
140 |
+
- Probabilities and raw scores for the specified activity and the "other" category will be shown.
|
141 |
+
- The most likely activity detected in the video will be displayed.
|
142 |
+
"""
|
143 |
+
)
|
144 |
+
|
145 |
+
if __name__ == "__main__":
|
146 |
+
iface.launch()
|