Spaces:
Sleeping
Sleeping
File size: 5,112 Bytes
68413f4 f69a536 f187321 68413f4 3233728 68413f4 9c5d9f8 68413f4 9d9d0be 68413f4 950fd59 eb1991e 68413f4 0e177f4 68413f4 f69a536 68413f4 f69a536 68413f4 f69a536 68413f4 f187321 68413f4 c5da2fe 68413f4 c26a009 f69a536 dd0a8c5 f69a536 0a887ab f69a536 f187321 68413f4 f187321 68413f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain_together import Together
import os
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.retrievers import ContextualCompressionRetriever
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import ConversationalRetrievalChain
import streamlit as st
import time
st.set_page_config(page_title="MedChat", page_icon="favicon.png")
col1, col2, col3 = st.columns([1,4,1])
with col2:
st.image("https://github.com/harshitv804/MedChat/assets/100853494/95962c34-029b-4f19-97d0-18146dd1e1f3")
st.markdown(
"""
<style>
div.stButton > button:first-child {
background-color: #ffd0d0;
}
div.stButton > button:active {
background-color: #ff6262;
}
div[data-testid="stStatusWidget"] div button {
display: none;
}
.reportview-container {
margin-top: -2em;
}
#MainMenu {visibility: hidden;}
.stDeployButton {display:none;}
footer {visibility: hidden;}
#stDecoration {display:none;}
button[title="View fullscreen"]{
visibility: hidden;}
</style>
""",
unsafe_allow_html=True,
)
def reset_conversation():
st.session_state.messages = []
st.session_state.memory.clear()
if "messages" not in st.session_state:
st.session_state.messages = []
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history",return_messages=True)
embeddings = HuggingFaceEmbeddings(model_name="BAAI/llm-embedder")
db = FAISS.load_local("medchat_db", embeddings)
db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 3})
custom_prompt_template = """Follow these instructions clearly. This is a chat tempalte and you are a medical practitioner chat bot who provides correct medical information. The way you speak should be in a doctor's perspective. You are given the following pieces of information to answer the user's question correctly. You will be given context, chat history and the question. Choose only the required context based on the user's question. If the question is not related to the chat history, then don't use the history. Use chat history when required for similar related questions. While searching for the relevant information always give priority to the context given. If there are multiple medicines same medicine name and different strength mention them. Always take the context related only to the question. Use your won knowledge base and answer the question when the context is not related to the user's question. Utilize the provided knowledge base and search for relevant information from the context. Follow the user's question and the format closely. The answer should be abstract and concise. Understand all the context given here and generate only the answer, don't repeat the chat template in the answer. If you don't know the answer, just say that you don't know, don't try to make up your own questions and answers. Add bullet points and bold text using markdown in the required area if needed, to make it more pleasing to eyes.
CONTEXT: {context}
CHAT HISTORY: {chat_history}
QUESTION: {question}
ANSWER:
"""
prompt = PromptTemplate(template=custom_prompt_template,
input_variables=['context', 'question', 'chat_history'])
TOGETHER_AI_API= os.environ['TOGETHER_AI']
llm = Together(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.7,
max_tokens=1024,
together_api_key=f"{TOGETHER_AI_API}"
)
embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.80)
compression_retriever = ContextualCompressionRetriever(
base_compressor=embeddings_filter, base_retriever=db_retriever
)
qa = ConversationalRetrievalChain.from_llm(
llm=llm,
memory=st.session_state.memory,
retriever=compression_retriever,
combine_docs_chain_kwargs={'prompt': prompt}
)
for message in st.session_state.messages:
with st.chat_message(message.get("role")):
st.write(message.get("content"))
input_prompt = st.chat_input("Say something")
if input_prompt:
with st.chat_message("user"):
st.write(input_prompt)
st.session_state.messages.append({"role":"user","content":input_prompt})
with st.chat_message("assistant"):
with st.status("Thinking 💡...",expanded=True):
result = qa.invoke(input=input_prompt)
message_placeholder = st.empty()
full_response = "⚠️ **_Note: Information provided may be inaccurate. Consult a qualified doctor for accurate advice._** \n\n\n"
for chunk in result["answer"]:
full_response+=chunk
time.sleep(0.02)
message_placeholder.markdown(full_response+" ▌")
st.button('Reset All Chat 🗑️', on_click=reset_conversation)
st.session_state.messages.append({"role":"assistant","content":result["answer"]})
|