Spaces:
Sleeping
Sleeping
harshitv804
commited on
Commit
•
68413f4
1
Parent(s):
640e52e
Rename app.py to app1.py
Browse files- app.py → app1.py +67 -39
app.py → app1.py
RENAMED
@@ -1,82 +1,110 @@
|
|
1 |
from langchain_community.vectorstores import FAISS
|
2 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
-
from langchain.callbacks.manager import CallbackManager
|
4 |
-
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
5 |
-
from langchain.chains import LLMChain
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
from langchain_community.llms import LlamaCpp
|
8 |
-
from langchain.memory import
|
9 |
from langchain.chains import ConversationalRetrievalChain
|
10 |
import streamlit as st
|
11 |
-
from langchain.callbacks import StreamlitCallbackHandler
|
12 |
import time
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/llm-embedder")
|
16 |
db = FAISS.load_local("faiss_index", embeddings)
|
17 |
db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 3})
|
18 |
-
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
19 |
|
20 |
llm = LlamaCpp(
|
21 |
-
model_path="
|
22 |
temperature=0.75,
|
23 |
max_tokens=2000,
|
24 |
n_ctx = 4000,
|
25 |
-
top_p=1
|
26 |
-
n_gpu_layers=10)
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
Context: {context}
|
31 |
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
Only return the helpful answer below and nothing else.
|
36 |
|
37 |
-
|
38 |
"""
|
39 |
prompt = PromptTemplate(template=custom_prompt_template,
|
40 |
-
input_variables=['context', 'question','chat_history'])
|
41 |
|
42 |
qa = ConversationalRetrievalChain.from_llm(
|
43 |
llm=llm,
|
44 |
-
memory=
|
45 |
-
memory_key="chat_history",
|
46 |
-
ai_prefix="AI Assistant",
|
47 |
-
return_messages=True
|
48 |
-
),
|
49 |
retriever=db_retriever,
|
50 |
combine_docs_chain_kwargs={'prompt': prompt}
|
51 |
)
|
52 |
|
53 |
-
if "messages" not in st.session_state:
|
54 |
-
st.session_state.messages = []
|
55 |
-
|
56 |
-
# st.write(st.session_state.messages)
|
57 |
-
|
58 |
for message in st.session_state.messages:
|
59 |
with st.chat_message(message.get("role")):
|
60 |
st.write(message.get("content"))
|
61 |
|
62 |
-
|
63 |
|
64 |
-
if
|
65 |
with st.chat_message("user"):
|
66 |
-
st.write(
|
67 |
|
68 |
-
st.session_state.messages.append({"role":"user","content":
|
69 |
|
70 |
with st.chat_message("assistant"):
|
71 |
-
with st.status("Thinking
|
72 |
-
|
73 |
-
|
74 |
-
st.session_state.messages.append({"role":"assistant","content":result["answer"]})
|
75 |
message_placeholder = st.empty()
|
76 |
-
full_response = ""
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
1 |
from langchain_community.vectorstores import FAISS
|
2 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
from langchain_community.llms import LlamaCpp
|
5 |
+
from langchain.memory import ConversationBufferWindowMemory
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
import streamlit as st
|
|
|
8 |
import time
|
9 |
+
|
10 |
+
col1, col2, col3 = st.columns([1,4,1])
|
11 |
+
with col2:
|
12 |
+
st.image("https://github.com/harshitv804/MedChat/assets/100853494/0aa18d7e-5305-4d8e-89d8-09fffce1589e")
|
13 |
+
|
14 |
+
st.markdown(
|
15 |
+
"""
|
16 |
+
<style>
|
17 |
+
div.stButton > button:first-child {
|
18 |
+
background-color: #ffd0d0;
|
19 |
+
}
|
20 |
+
div.stButton > button:active {
|
21 |
+
background-color: #ff6262;
|
22 |
+
}
|
23 |
+
|
24 |
+
div[data-testid="stStatusWidget"] div button {
|
25 |
+
display: none;
|
26 |
+
}
|
27 |
+
|
28 |
+
.reportview-container {
|
29 |
+
margin-top: -2em;
|
30 |
+
}
|
31 |
+
#MainMenu {visibility: hidden;}
|
32 |
+
.stDeployButton {display:none;}
|
33 |
+
footer {visibility: hidden;}
|
34 |
+
#stDecoration {display:none;}
|
35 |
+
button[title="View fullscreen"]{
|
36 |
+
visibility: hidden;}
|
37 |
+
</style>
|
38 |
+
""",
|
39 |
+
unsafe_allow_html=True,
|
40 |
+
)
|
41 |
+
|
42 |
+
def reset_conversation():
|
43 |
+
st.session_state.messages = []
|
44 |
+
st.session_state.memory.clear()
|
45 |
+
|
46 |
+
if "messages" not in st.session_state:
|
47 |
+
st.session_state.messages = []
|
48 |
+
|
49 |
+
if "memory" not in st.session_state:
|
50 |
+
st.session_state.memory = ConversationBufferWindowMemory(k=3, memory_key="chat_history",return_messages=True)
|
51 |
|
52 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/llm-embedder")
|
53 |
db = FAISS.load_local("faiss_index", embeddings)
|
54 |
db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 3})
|
|
|
55 |
|
56 |
llm = LlamaCpp(
|
57 |
+
model_path=r"C:\Users\TESS\Downloads\stablelm-zephyr-3b.Q4_K_M.gguf",
|
58 |
temperature=0.75,
|
59 |
max_tokens=2000,
|
60 |
n_ctx = 4000,
|
61 |
+
top_p=1)
|
|
|
62 |
|
63 |
+
|
64 |
+
custom_prompt_template = """You are a medical practitioner who provides right medical information. Use the given following pieces of information to answer the user's question correctly. If you don't know the answer, just say that you don't know, don't try to make up an answer. Utilize the provided knowledge base and search for relevant information. Follow and answer the question format closely. Give only the important information. The information should be abstract, high quality content and comprehensive.
|
65 |
|
66 |
Context: {context}
|
67 |
|
68 |
+
History: {chat_history}
|
69 |
|
70 |
+
Question: {question}
|
|
|
71 |
|
72 |
+
Answer:
|
73 |
"""
|
74 |
prompt = PromptTemplate(template=custom_prompt_template,
|
75 |
+
input_variables=['context', 'question', 'chat_history'])
|
76 |
|
77 |
qa = ConversationalRetrievalChain.from_llm(
|
78 |
llm=llm,
|
79 |
+
memory=st.session_state.memory,
|
|
|
|
|
|
|
|
|
80 |
retriever=db_retriever,
|
81 |
combine_docs_chain_kwargs={'prompt': prompt}
|
82 |
)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
84 |
for message in st.session_state.messages:
|
85 |
with st.chat_message(message.get("role")):
|
86 |
st.write(message.get("content"))
|
87 |
|
88 |
+
input_prompt = st.chat_input("Say something")
|
89 |
|
90 |
+
if input_prompt:
|
91 |
with st.chat_message("user"):
|
92 |
+
st.write(input_prompt)
|
93 |
|
94 |
+
st.session_state.messages.append({"role":"user","content":input_prompt})
|
95 |
|
96 |
with st.chat_message("assistant"):
|
97 |
+
with st.status("Thinking 💡...",expanded=True):
|
98 |
+
result = qa.invoke(input=input_prompt)
|
99 |
+
|
|
|
100 |
message_placeholder = st.empty()
|
|
|
101 |
|
102 |
+
full_response = "⚠️ **_Note: Information provided may be inaccurate. Consult a qualified doctor for accurate advice._** \n\n\n"
|
103 |
+
for chunk in result["answer"]:
|
104 |
+
full_response+=chunk
|
105 |
+
time.sleep(0.02)
|
106 |
+
|
107 |
+
message_placeholder.markdown(full_response+" ▌")
|
108 |
+
st.button('Reset All Chat 🗑️', on_click=reset_conversation)
|
109 |
|
110 |
+
st.session_state.messages.append({"role":"assistant","content":result["answer"]})
|