Spaces:
Sleeping
Sleeping
File size: 4,516 Bytes
a6ff289 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import time
import cv2
import numpy as np
import onnxruntime
from utils import draw_detections
class YOLOv10:
def __init__(self, path):
# Initialize model
self.initialize_model(path)
def __call__(self, image):
return self.detect_objects(image)
def initialize_model(self, path):
self.session = onnxruntime.InferenceSession(
path, providers=onnxruntime.get_available_providers()
)
# Get model info
self.get_input_details()
self.get_output_details()
def detect_objects(self, image, conf_threshold=0.3):
input_tensor = self.prepare_input(image)
# Perform inference on the image
new_image = self.inference(image, input_tensor, conf_threshold)
return new_image
def prepare_input(self, image):
self.img_height, self.img_width = image.shape[:2]
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Resize input image
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
# Scale input pixel values to 0 to 1
input_img = input_img / 255.0
input_img = input_img.transpose(2, 0, 1)
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
return input_tensor
def inference(self, image, input_tensor, conf_threshold=0.3):
start = time.perf_counter()
outputs = self.session.run(
self.output_names, {self.input_names[0]: input_tensor}
)
print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
boxes, scores, class_ids, = self.process_output(outputs, conf_threshold)
return self.draw_detections(image, boxes, scores, class_ids)
def process_output(self, output, conf_threshold=0.3):
predictions = np.squeeze(output[0])
# Filter out object confidence scores below threshold
scores = predictions[:, 4]
predictions = predictions[scores > conf_threshold, :]
scores = scores[scores > conf_threshold]
if len(scores) == 0:
return [], [], []
# Get the class with the highest confidence
class_ids = predictions[:, 5].astype(int)
# Get bounding boxes for each object
boxes = self.extract_boxes(predictions)
return boxes, scores, class_ids
def extract_boxes(self, predictions):
# Extract boxes from predictions
boxes = predictions[:, :4]
# Scale boxes to original image dimensions
boxes = self.rescale_boxes(boxes)
# Convert boxes to xyxy format
#boxes = xywh2xyxy(boxes)
return boxes
def rescale_boxes(self, boxes):
# Rescale boxes to original image dimensions
input_shape = np.array(
[self.input_width, self.input_height, self.input_width, self.input_height]
)
boxes = np.divide(boxes, input_shape, dtype=np.float32)
boxes *= np.array(
[self.img_width, self.img_height, self.img_width, self.img_height]
)
return boxes
def draw_detections(self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4):
return draw_detections(
image, boxes, scores, class_ids, mask_alpha
)
def get_input_details(self):
model_inputs = self.session.get_inputs()
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
self.input_shape = model_inputs[0].shape
self.input_height = self.input_shape[2]
self.input_width = self.input_shape[3]
def get_output_details(self):
model_outputs = self.session.get_outputs()
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
if __name__ == "__main__":
import requests
import tempfile
from huggingface_hub import hf_hub_download
model_file = hf_hub_download(
repo_id="onnx-community/yolov10s", filename="onnx/model.onnx"
)
yolov8_detector = YOLOv10(model_file)
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
f.write(
requests.get(
"https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg"
).content
)
f.seek(0)
img = cv2.imread(f.name)
# # Detect Objects
combined_image = yolov8_detector.detect_objects(img)
# Draw detections
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
cv2.imshow("Output", combined_image)
cv2.waitKey(0) |