Spaces:
Sleeping
Sleeping
Create inference.py
Browse files- inference.py +146 -0
inference.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import onnxruntime
|
5 |
+
|
6 |
+
from utils import draw_detections
|
7 |
+
|
8 |
+
|
9 |
+
class YOLOv10:
|
10 |
+
def __init__(self, path):
|
11 |
+
|
12 |
+
# Initialize model
|
13 |
+
self.initialize_model(path)
|
14 |
+
|
15 |
+
def __call__(self, image):
|
16 |
+
return self.detect_objects(image)
|
17 |
+
|
18 |
+
def initialize_model(self, path):
|
19 |
+
self.session = onnxruntime.InferenceSession(
|
20 |
+
path, providers=onnxruntime.get_available_providers()
|
21 |
+
)
|
22 |
+
# Get model info
|
23 |
+
self.get_input_details()
|
24 |
+
self.get_output_details()
|
25 |
+
|
26 |
+
def detect_objects(self, image, conf_threshold=0.3):
|
27 |
+
input_tensor = self.prepare_input(image)
|
28 |
+
|
29 |
+
# Perform inference on the image
|
30 |
+
new_image = self.inference(image, input_tensor, conf_threshold)
|
31 |
+
|
32 |
+
return new_image
|
33 |
+
|
34 |
+
def prepare_input(self, image):
|
35 |
+
self.img_height, self.img_width = image.shape[:2]
|
36 |
+
|
37 |
+
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
38 |
+
|
39 |
+
# Resize input image
|
40 |
+
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
|
41 |
+
|
42 |
+
# Scale input pixel values to 0 to 1
|
43 |
+
input_img = input_img / 255.0
|
44 |
+
input_img = input_img.transpose(2, 0, 1)
|
45 |
+
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
|
46 |
+
|
47 |
+
return input_tensor
|
48 |
+
|
49 |
+
def inference(self, image, input_tensor, conf_threshold=0.3):
|
50 |
+
start = time.perf_counter()
|
51 |
+
outputs = self.session.run(
|
52 |
+
self.output_names, {self.input_names[0]: input_tensor}
|
53 |
+
)
|
54 |
+
|
55 |
+
print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
|
56 |
+
boxes, scores, class_ids, = self.process_output(outputs, conf_threshold)
|
57 |
+
return self.draw_detections(image, boxes, scores, class_ids)
|
58 |
+
|
59 |
+
def process_output(self, output, conf_threshold=0.3):
|
60 |
+
predictions = np.squeeze(output[0])
|
61 |
+
|
62 |
+
# Filter out object confidence scores below threshold
|
63 |
+
scores = predictions[:, 4]
|
64 |
+
predictions = predictions[scores > conf_threshold, :]
|
65 |
+
scores = scores[scores > conf_threshold]
|
66 |
+
|
67 |
+
if len(scores) == 0:
|
68 |
+
return [], [], []
|
69 |
+
|
70 |
+
# Get the class with the highest confidence
|
71 |
+
class_ids = predictions[:, 5].astype(int)
|
72 |
+
|
73 |
+
# Get bounding boxes for each object
|
74 |
+
boxes = self.extract_boxes(predictions)
|
75 |
+
|
76 |
+
return boxes, scores, class_ids
|
77 |
+
|
78 |
+
def extract_boxes(self, predictions):
|
79 |
+
# Extract boxes from predictions
|
80 |
+
boxes = predictions[:, :4]
|
81 |
+
|
82 |
+
# Scale boxes to original image dimensions
|
83 |
+
boxes = self.rescale_boxes(boxes)
|
84 |
+
|
85 |
+
# Convert boxes to xyxy format
|
86 |
+
#boxes = xywh2xyxy(boxes)
|
87 |
+
|
88 |
+
return boxes
|
89 |
+
|
90 |
+
def rescale_boxes(self, boxes):
|
91 |
+
# Rescale boxes to original image dimensions
|
92 |
+
input_shape = np.array(
|
93 |
+
[self.input_width, self.input_height, self.input_width, self.input_height]
|
94 |
+
)
|
95 |
+
boxes = np.divide(boxes, input_shape, dtype=np.float32)
|
96 |
+
boxes *= np.array(
|
97 |
+
[self.img_width, self.img_height, self.img_width, self.img_height]
|
98 |
+
)
|
99 |
+
return boxes
|
100 |
+
|
101 |
+
def draw_detections(self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4):
|
102 |
+
return draw_detections(
|
103 |
+
image, boxes, scores, class_ids, mask_alpha
|
104 |
+
)
|
105 |
+
|
106 |
+
def get_input_details(self):
|
107 |
+
model_inputs = self.session.get_inputs()
|
108 |
+
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
|
109 |
+
|
110 |
+
self.input_shape = model_inputs[0].shape
|
111 |
+
self.input_height = self.input_shape[2]
|
112 |
+
self.input_width = self.input_shape[3]
|
113 |
+
|
114 |
+
def get_output_details(self):
|
115 |
+
model_outputs = self.session.get_outputs()
|
116 |
+
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
import requests
|
121 |
+
import tempfile
|
122 |
+
from huggingface_hub import hf_hub_download
|
123 |
+
|
124 |
+
model_file = hf_hub_download(
|
125 |
+
repo_id="onnx-community/yolov10s", filename="onnx/model.onnx"
|
126 |
+
)
|
127 |
+
|
128 |
+
yolov8_detector = YOLOv10(model_file)
|
129 |
+
|
130 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
|
131 |
+
f.write(
|
132 |
+
requests.get(
|
133 |
+
"https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg"
|
134 |
+
).content
|
135 |
+
)
|
136 |
+
f.seek(0)
|
137 |
+
img = cv2.imread(f.name)
|
138 |
+
|
139 |
+
# # Detect Objects
|
140 |
+
combined_image = yolov8_detector.detect_objects(img)
|
141 |
+
|
142 |
+
|
143 |
+
# Draw detections
|
144 |
+
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
|
145 |
+
cv2.imshow("Output", combined_image)
|
146 |
+
cv2.waitKey(0)
|