File size: 1,312 Bytes
0ff9fbe df76918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
# تعريف النماذج
models = {
"Whisper Small": "openai/whisper-small.en",
"Wav2Vec2": "facebook/wav2vec2-base-960h"
}
# تحميل النماذج
whisper = gr.Interface.load(f"huggingface/{models['Whisper Small']}")
wav2vec = gr.Interface.load(f"huggingface/{models['Wav2Vec2']}")
# دالة للمقارنة
def transcribe_with_all(audio_path):
whisper_result = whisper(audio_path)
wav2vec_result = wav2vec(audio_path)
return whisper_result, wav2vec_result
# واجهة Gradio
with gr.Blocks() as demo:
gr.Markdown("# مقارنة بين نماذج التعرف على الصوت")
gr.Markdown("قارن بين نموذج Whisper و Wav2Vec2")
audio_input = gr.Audio(type="filepath", label="ملف صوتي")
transcribe_btn = gr.Button("تحويل النص")
with gr.Row():
with gr.Column():
gr.Markdown("### Whisper Small (OpenAI)")
whisper_output = gr.Textbox(label="نتيجة Whisper")
with gr.Column():
gr.Markdown("### Wav2Vec2 (Facebook)")
wav2vec_output = gr.Textbox(label="نتيجة Wav2Vec2")
transcribe_btn.click(
fn=transcribe_with_all,
inputs=audio_input,
outputs=[whisper_output, wav2vec_output]
)
demo.launch(share=True)
|