Create asr_comparison.py
Browse files- asr_comparison.py +42 -0
asr_comparison.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
# تعريف النماذج
|
4 |
+
models = {
|
5 |
+
"Whisper Small": "openai/whisper-small.en",
|
6 |
+
"Wav2Vec2": "facebook/wav2vec2-base-960h"
|
7 |
+
}
|
8 |
+
|
9 |
+
# تحميل النماذج
|
10 |
+
whisper = gr.Interface.load(f"huggingface/{models['Whisper Small']}")
|
11 |
+
wav2vec = gr.Interface.load(f"huggingface/{models['Wav2Vec2']}")
|
12 |
+
|
13 |
+
# دالة للمقارنة
|
14 |
+
def transcribe_with_all(audio_path):
|
15 |
+
whisper_result = whisper(audio_path)
|
16 |
+
wav2vec_result = wav2vec(audio_path)
|
17 |
+
return whisper_result, wav2vec_result
|
18 |
+
|
19 |
+
# واجهة Gradio
|
20 |
+
with gr.Blocks() as demo:
|
21 |
+
gr.Markdown("# مقارنة بين نماذج التعرف على الصوت")
|
22 |
+
gr.Markdown("قارن بين نموذج Whisper و Wav2Vec2")
|
23 |
+
|
24 |
+
audio_input = gr.Audio(type="filepath", label="ملف صوتي")
|
25 |
+
|
26 |
+
transcribe_btn = gr.Button("تحويل النص")
|
27 |
+
|
28 |
+
with gr.Row():
|
29 |
+
with gr.Column():
|
30 |
+
gr.Markdown("### Whisper Small (OpenAI)")
|
31 |
+
whisper_output = gr.Textbox(label="نتيجة Whisper")
|
32 |
+
with gr.Column():
|
33 |
+
gr.Markdown("### Wav2Vec2 (Facebook)")
|
34 |
+
wav2vec_output = gr.Textbox(label="نتيجة Wav2Vec2")
|
35 |
+
|
36 |
+
transcribe_btn.click(
|
37 |
+
fn=transcribe_with_all,
|
38 |
+
inputs=audio_input,
|
39 |
+
outputs=[whisper_output, wav2vec_output]
|
40 |
+
)
|
41 |
+
|
42 |
+
demo.launch()
|