Spaces:
Running
Running
File size: 12,288 Bytes
5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 a6526f0 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb a6526f0 5d4c1d3 7111ecb a6526f0 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb a6526f0 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb a6526f0 5d4c1d3 a6526f0 5d4c1d3 a6526f0 5d4c1d3 a6526f0 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 a6526f0 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 4701923 5d4c1d3 4701923 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 4701923 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 7111ecb 5d4c1d3 a6526f0 7111ecb 5d4c1d3 7111ecb 5d4c1d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# =======================================================================
# 1. 匯入區 (Imports)
# - 新增了 pyopenjtalk 和 MeCab
# =======================================================================
import torch
import soundfile as sf
import librosa
from transformers import Wav2Vec2Processor, HubertForCTC
import os
import pyopenjtalk
import MeCab
import numpy as np
from datetime import datetime, timezone
import re
# =======================================================================
# 2. 全域變數與配置區 (Global Variables & Config)
# 【已修改】移除了全域的 processor 和 model 變數。
# =======================================================================
# 自動檢測可用設備
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"INFO: ASR_jp_jp.py is configured to use device: {DEVICE}")
# 設定為日語 ASR 模型
MODEL_NAME = "prj-beatrice/japanese-hubert-base-phoneme-ctc-v3"
# 初始化 MeCab 分詞器
# -Owakati 選項能直接輸出以空格分隔的單詞,非常方便
try:
mecab_tagger = MeCab.Tagger("-Owakati")
except RuntimeError:
print("ERROR: MeCab Tagger 初始化失敗。請確保 mecab 和 mecab-ipadic-utf8 已正確安裝。")
mecab_tagger = None
# =======================================================================
# 3. 核心業務邏輯區 (Core Business Logic)
# =======================================================================
# -----------------------------------------------------------------------
# 3.1. 模型載入函數
# 【已刪除】舊的 load_model() 函數已被移除。
# -----------------------------------------------------------------------
# -----------------------------------------------------------------------
# 3.2. 日語 G2P 輔助函數 (此檔案最核心的修改)
# 【保持不變】
# -----------------------------------------------------------------------
def _get_target_phonemes_by_word(text: str) -> tuple[list[str], list[list[str]]]:
if not mecab_tagger:
raise RuntimeError("MeCab Tagger 未初始化,無法處理日語文本。")
words = mecab_tagger.parse(text).strip().split()
target_words_original = []
target_ipa_by_word = []
for word in words:
if not word:
continue
phonemes_str = pyopenjtalk.g2p(word, kana=False)
cleaned_phonemes = re.sub(r'\s+', ' ', phonemes_str).strip()
phoneme_list = cleaned_phonemes.split()
if word and phoneme_list:
target_words_original.append(word)
target_ipa_by_word.append(phoneme_list)
return target_words_original, target_ipa_by_word
# -----------------------------------------------------------------------
# 3.3. 音素切分函數 (用於處理 ASR 的輸出)
# 【保持不變】
# -----------------------------------------------------------------------
def _tokenize_asr_output(phoneme_string: str) -> list:
"""
將 ASR 模型輸出的音素字串切分為列表。
此模型的輸出是單字元音素,以空格分隔。
"""
return phoneme_string.split()
# -----------------------------------------------------------------------
# 3.4. 核心分析函數 (主入口)
# 【已修改】將模型載入和快取邏輯合併至此。
# -----------------------------------------------------------------------
def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dict:
"""
接收音訊檔案路徑和目標日語句子,回傳詳細的發音分析字典。
模型會被載入並儲存在此函數獨立的 'cache' 中,實現狀態隔離。
"""
# 檢查快取中是否已有模型,如果沒有則載入
if "model" not in cache:
print(f"快取未命中 (ASR_jp_jp)。正在載入模型 '{MODEL_NAME}'...")
try:
# 載入模型並存入此函數的快取字典
cache["processor"] = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
cache["model"] = HubertForCTC.from_pretrained(MODEL_NAME) # <-- 使用 HubertForCTC
cache["model"].to(DEVICE)
print(f"模型 '{MODEL_NAME}' 已載入並快取。")
except Exception as e:
print(f"處理或載入模型 '{MODEL_NAME}' 時發生錯誤: {e}")
raise RuntimeError(f"Failed to load model '{MODEL_NAME}': {e}")
# 從此函數的獨立快取中獲取模型和處理器
processor = cache["processor"]
model = cache["model"]
# --- 以下為原始分析邏輯,保持不變 ---
# 【關鍵步驟 1: G2P】
target_words_original, target_ipa_by_word = _get_target_phonemes_by_word(target_sentence)
if not target_words_original:
print("警告: G2P 處理後目標句子為空。")
return _format_to_json_structure([], target_sentence, [])
# 【關鍵步驟 2: ASR】
try:
speech, sample_rate = sf.read(audio_file_path)
if len(speech) == 0:
print("警告: 音訊檔案為空。")
user_ipa_full = ""
else:
if sample_rate != 16000:
speech = librosa.resample(y=speech, orig_sr=sample_rate, target_sr=16000)
input_values = processor(speech, sampling_rate=16000, return_tensors="pt").input_values
input_values = input_values.to(DEVICE)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
user_ipa_full = processor.decode(predicted_ids[0])
except Exception as e:
raise IOError(f"讀取或處理音訊時發生錯誤: {e}")
# 【關鍵步驟 3: 對齊】
word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)
# 【關鍵步驟 4: 格式化】
return _format_to_json_structure(word_alignments, target_sentence, target_words_original)
# =======================================================================
# 4. 對齊與格式化函數區 (Alignment & Formatting)
# 【保持不變】
# =======================================================================
# -----------------------------------------------------------------------
# 4.1. 對齊函數 (語言無關)
# -----------------------------------------------------------------------
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
"""
使用動態規劃執行音素對齊。此函數是語言無關的。
"""
user_phonemes = [char for word in user_phoneme_str.split() for char in word]
target_phonemes_flat = []
word_boundaries_indices = []
current_idx = 0
for word_ipa_tokens in target_words_ipa_tokenized:
flat_tokens = [char for word in word_ipa_tokens for char in word]
target_phonemes_flat.extend(flat_tokens)
current_idx += len(flat_tokens)
word_boundaries_indices.append(current_idx - 1)
if not target_phonemes_flat:
return []
dp = np.zeros((len(user_phonemes) + 1, len(target_phonemes_flat) + 1))
for i in range(1, len(user_phonemes) + 1): dp[i][0] = i
for j in range(1, len(target_phonemes_flat) + 1): dp[0][j] = j
for i in range(1, len(user_phonemes) + 1):
for j in range(1, len(target_phonemes_flat) + 1):
cost = 0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1
dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][j-1] + cost)
i, j = len(user_phonemes), len(target_phonemes_flat)
user_path, target_path = [], []
while i > 0 or j > 0:
cost = float('inf')
if i > 0 and j > 0:
cost = 0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1
if i > 0 and j > 0 and dp[i][j] == dp[i-1][j-1] + cost:
user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, target_phonemes_flat[j-1]); i -= 1; j -= 1
elif i > 0 and (j == 0 or dp[i][j] == dp[i-1][j] + 1):
user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, '-'); i -= 1
elif j > 0 and (i == 0 or dp[i][j] == dp[i][j-1] + 1):
user_path.insert(0, '-'); target_path.insert(0, target_phonemes_flat[j-1]); j -= 1
else:
break
alignments_by_word = []
word_start_idx_in_path = 0
target_phoneme_counter_in_path = 0
word_boundary_iter = iter(word_boundaries_indices)
current_word_boundary = next(word_boundary_iter, -1)
for path_idx, p in enumerate(target_path):
if p != '-':
if target_phoneme_counter_in_path == current_word_boundary:
target_alignment = target_path[word_start_idx_in_path : path_idx + 1]
user_alignment = user_path[word_start_idx_in_path : path_idx + 1]
alignments_by_word.append({
"target": target_alignment,
"user": user_alignment
})
word_start_idx_in_path = path_idx + 1
current_word_boundary = next(word_boundary_iter, -1)
target_phoneme_counter_in_path += 1
return alignments_by_word
# -----------------------------------------------------------------------
# 4.2. 格式化函數 (語言無關)
# -----------------------------------------------------------------------
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
"""
將對齊結果格式化為最終的 JSON 結構。此函數是語言無關的。
"""
total_phonemes = 0
total_errors = 0
correct_words_count = 0
words_data = []
num_words_to_process = min(len(alignments), len(original_words))
for i in range(num_words_to_process):
alignment = alignments[i]
word_is_correct = True
phonemes_data = []
min_len = min(len(alignment['target']), len(alignment['user']))
for j in range(min_len):
target_phoneme = alignment['target'][j]
user_phoneme = alignment['user'][j]
is_match = (user_phoneme == target_phoneme)
phonemes_data.append({
"target": target_phoneme,
"user": user_phoneme,
"isMatch": is_match
})
if not is_match:
word_is_correct = False
if not (user_phoneme == '-' and target_phoneme == '-'):
total_errors += 1
if word_is_correct:
correct_words_count += 1
words_data.append({
"word": original_words[i],
"isCorrect": word_is_correct,
"phonemes": phonemes_data
})
total_phonemes += sum(1 for p in alignment['target'] if p != '-')
if len(alignments) < len(original_words):
for i in range(len(alignments), len(original_words)):
_, missed_word_ipa_list = _get_target_phonemes_by_word(original_words[i])
phonemes_data = []
if missed_word_ipa_list:
for p_ipa in missed_word_ipa_list[0]:
phonemes_data.append({"target": p_ipa, "user": "-", "isMatch": False})
total_errors += 1
total_phonemes += 1
words_data.append({
"word": original_words[i],
"isCorrect": False,
"phonemes": phonemes_data
})
total_words = len(original_words)
overall_score = (correct_words_count / total_words) * 100 if total_words > 0 else 0
phoneme_error_rate = (total_errors / total_phonemes) * 100 if total_phonemes > 0 else 0
final_result = {
"sentence": sentence,
"analysisTimestampUTC": datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S (UTC)'),
"summary": {
"overallScore": round(overall_score, 1),
"totalWords": total_words,
"correctWords": correct_words_count,
"phonemeErrorRate": round(phoneme_error_rate, 2),
"total_errors": total_errors,
"total_target_phonemes": total_phonemes
},
"words": words_data
}
return final_result
|