Spaces:
Running
Running
changed dockerfile
Browse files- .devcontainer/devcontainer.json +7 -2
- Dockerfile +6 -0
- analyzer/ASR_jp_jp.py +290 -0
- requirements.txt +3 -1
.devcontainer/devcontainer.json
CHANGED
|
@@ -1,6 +1,11 @@
|
|
| 1 |
{
|
| 2 |
"name": "FYP Backend (GPU)",
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
// 這是最最最關鍵的部分!
|
| 6 |
"runArgs": [
|
|
@@ -18,7 +23,7 @@
|
|
| 18 |
"shutdownAction": "none",
|
| 19 |
|
| 20 |
// 在容器創建後運行的命令 (可選,但推薦)
|
| 21 |
-
"postCreateCommand": "pip install -r requirements.txt",
|
| 22 |
|
| 23 |
// VS Code 擴展推薦 (可選)
|
| 24 |
"customizations": {
|
|
|
|
| 1 |
{
|
| 2 |
"name": "FYP Backend (GPU)",
|
| 3 |
+
|
| 4 |
+
"build": {
|
| 5 |
+
// 假設您的 Dockerfile 位於專案根目錄
|
| 6 |
+
"dockerfile": "../Dockerfile",
|
| 7 |
+
"context": ".."
|
| 8 |
+
},
|
| 9 |
|
| 10 |
// 這是最最最關鍵的部分!
|
| 11 |
"runArgs": [
|
|
|
|
| 23 |
"shutdownAction": "none",
|
| 24 |
|
| 25 |
// 在容器創建後運行的命令 (可選,但推薦)
|
| 26 |
+
//"postCreateCommand": "pip install -r requirements.txt",
|
| 27 |
|
| 28 |
// VS Code 擴展推薦 (可選)
|
| 29 |
"customizations": {
|
Dockerfile
CHANGED
|
@@ -11,6 +11,11 @@ WORKDIR /app
|
|
| 11 |
# -y 自動回答 'yes'
|
| 12 |
# --no-install-recommends 避免安裝不必要的建議套件,保持映像檔小巧
|
| 13 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
espeak-ng \
|
| 15 |
libsndfile1 \
|
| 16 |
ffmpeg \
|
|
@@ -20,6 +25,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
| 20 |
|
| 21 |
# 4. 複製 requirements.txt 檔案到容器中並安裝 Python 套件
|
| 22 |
COPY requirements.txt .
|
|
|
|
| 23 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 24 |
|
| 25 |
# 5. 將專案中的所有其他檔案複製到容器中
|
|
|
|
| 11 |
# -y 自動回答 'yes'
|
| 12 |
# --no-install-recommends 避免安裝不必要的建議套件,保持映像檔小巧
|
| 13 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 14 |
+
build-essential \
|
| 15 |
+
cmake \
|
| 16 |
+
mecab \
|
| 17 |
+
libmecab-dev \
|
| 18 |
+
mecab-ipadic-utf8 \
|
| 19 |
espeak-ng \
|
| 20 |
libsndfile1 \
|
| 21 |
ffmpeg \
|
|
|
|
| 25 |
|
| 26 |
# 4. 複製 requirements.txt 檔案到容器中並安裝 Python 套件
|
| 27 |
COPY requirements.txt .
|
| 28 |
+
RUN pip install --upgrade pip
|
| 29 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 30 |
|
| 31 |
# 5. 將專案中的所有其他檔案複製到容器中
|
analyzer/ASR_jp_jp.py
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =======================================================================
|
| 2 |
+
# 1. 匯入區 (Imports)
|
| 3 |
+
# 【關鍵修改】新增了 pyopenjtalk 和 MeCab 的匯入
|
| 4 |
+
# =======================================================================
|
| 5 |
+
import torch
|
| 6 |
+
import soundfile as sf
|
| 7 |
+
import librosa
|
| 8 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 9 |
+
import os
|
| 10 |
+
import pyopenjtalk
|
| 11 |
+
import MeCab
|
| 12 |
+
import numpy as np
|
| 13 |
+
from datetime import datetime, timezone
|
| 14 |
+
import re
|
| 15 |
+
|
| 16 |
+
# =======================================================================
|
| 17 |
+
# 2. 全域變數與配置區 (Global Variables & Config)
|
| 18 |
+
# =======================================================================
|
| 19 |
+
# 【關鍵修改】自動檢測可用設備
|
| 20 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
print(f"INFO: ASR_jp_jp.py is configured to use device: {DEVICE}")
|
| 22 |
+
|
| 23 |
+
# 【關鍵修改】設定為日語 ASR 模型
|
| 24 |
+
MODEL_NAME = "prj-beatrice/japanese-hubert-base-phoneme-ctc-v3"
|
| 25 |
+
|
| 26 |
+
processor = None
|
| 27 |
+
model = None
|
| 28 |
+
|
| 29 |
+
# 【關鍵修改】初始化 MeCab 分詞器
|
| 30 |
+
# 我們使用 -Owakati 選項來獲得以空格分隔的單詞列表
|
| 31 |
+
mecab_tagger = MeCab.Tagger("-Owakati")
|
| 32 |
+
|
| 33 |
+
# =======================================================================
|
| 34 |
+
# 3. 核心業務邏輯區 (Core Business Logic)
|
| 35 |
+
# =======================================================================
|
| 36 |
+
|
| 37 |
+
# -----------------------------------------------------------------------
|
| 38 |
+
# 3.1. 模型載入函數 (與其他版本邏輯相同)
|
| 39 |
+
# -----------------------------------------------------------------------
|
| 40 |
+
def load_model():
|
| 41 |
+
"""
|
| 42 |
+
載入日語 ASR 模型和對應的處理器。
|
| 43 |
+
"""
|
| 44 |
+
global processor, model
|
| 45 |
+
if processor and model:
|
| 46 |
+
print(f"模型 '{MODEL_NAME}' 已載入,跳過。")
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
print(f"正在準備 ASR 模型 '{MODEL_NAME}'...")
|
| 50 |
+
try:
|
| 51 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
| 52 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
|
| 53 |
+
model.to(DEVICE)
|
| 54 |
+
print(f"模型 '{MODEL_NAME}' 和處理器載入成功!")
|
| 55 |
+
return True
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"處理或載入模型 '{MODEL_NAME}' 時發生錯誤: {e}")
|
| 58 |
+
raise RuntimeError(f"Failed to load model '{MODEL_NAME}': {e}")
|
| 59 |
+
|
| 60 |
+
# -----------------------------------------------------------------------
|
| 61 |
+
# 3.2. 日語 G2P 輔助函數 (這是此檔案最核心的新增部分)
|
| 62 |
+
# -----------------------------------------------------------------------
|
| 63 |
+
def japanese_g2p(text: str) -> list[tuple[str, str]]:
|
| 64 |
+
"""
|
| 65 |
+
將日語句子轉換為 (單詞, 對應音素) 的元組列表。
|
| 66 |
+
這是我們為日語定製的 G2P 核心。
|
| 67 |
+
"""
|
| 68 |
+
# 1. 使用 MeCab 進行分詞
|
| 69 |
+
words = mecab_tagger.parse(text).strip().split(' ')
|
| 70 |
+
|
| 71 |
+
# 2. 對整個句子使用 PyOpenJTalk 獲取完整的音素序列
|
| 72 |
+
# 我們直接使用 pyopenjtalk.g2p,它輸出的就是以空格分隔的音素
|
| 73 |
+
full_phonemes_str = pyopenjtalk.g2p(text)
|
| 74 |
+
|
| 75 |
+
# 3. 進行音素清理,以匹配 ASR 模型的輸出
|
| 76 |
+
# ASR 模型輸出的是清音,所以我們移除濁音、半濁音、長音等符號
|
| 77 |
+
cleaned_phonemes = full_phonemes_str.replace('pau', ' ').replace(' ', '').replace('N', 'n').replace('cl', '')
|
| 78 |
+
|
| 79 |
+
# 4. 將單詞和音素進行配對
|
| 80 |
+
# 這是一個簡化的配對邏輯:我們假設音素的數量和假名的數量大致對應
|
| 81 |
+
# 這在大多數情況下是有效的,因為日語是音節語言
|
| 82 |
+
result = []
|
| 83 |
+
phoneme_idx = 0
|
| 84 |
+
for word in words:
|
| 85 |
+
# 計算當前單詞大致對應多少個音素 (假名數量)
|
| 86 |
+
num_mora = len(word)
|
| 87 |
+
|
| 88 |
+
# 提取對應的音素片段
|
| 89 |
+
word_phonemes = cleaned_phonemes[phoneme_idx : phoneme_idx + num_mora]
|
| 90 |
+
|
| 91 |
+
# 檢查提取的音素是否為空,避免無效單詞的影響
|
| 92 |
+
if word_phonemes:
|
| 93 |
+
result.append((word, word_phonemes))
|
| 94 |
+
|
| 95 |
+
phoneme_idx += num_mora
|
| 96 |
+
|
| 97 |
+
return result
|
| 98 |
+
|
| 99 |
+
# -----------------------------------------------------------------------
|
| 100 |
+
# 3.3. 音素切分函數 (與其他版本邏輯相同,但更通用)
|
| 101 |
+
# -----------------------------------------------------------------------
|
| 102 |
+
def _tokenize_ipa(ipa_string: str) -> list:
|
| 103 |
+
"""
|
| 104 |
+
將音素字串切分為列表。對於日語,直接按字元切分即可。
|
| 105 |
+
"""
|
| 106 |
+
# 日語 ASR 模型的輸出是單字元音素,所以直接轉換為列表
|
| 107 |
+
return list(ipa_string)
|
| 108 |
+
|
| 109 |
+
# -----------------------------------------------------------------------
|
| 110 |
+
# 3.4. 核心分析函數 (主入口,已修改為日語邏輯)
|
| 111 |
+
# -----------------------------------------------------------------------
|
| 112 |
+
def analyze(audio_file_path: str, target_sentence: str) -> dict:
|
| 113 |
+
"""
|
| 114 |
+
接收音訊檔案路徑和目標日語句子,回傳詳細的發音分析字典。
|
| 115 |
+
"""
|
| 116 |
+
if not processor or not model:
|
| 117 |
+
raise RuntimeError("模型尚未載入。請確保在呼叫 analyze 之前已成功執行 load_model()。")
|
| 118 |
+
|
| 119 |
+
# 【關鍵修改】使用我們新的日語 G2P 函數
|
| 120 |
+
g2p_result = japanese_g2p(target_sentence)
|
| 121 |
+
|
| 122 |
+
# 從 G2P 結果中提取原始單詞列表和按單詞劃分的音素列表
|
| 123 |
+
target_words_original = [item[0] for item in g2p_result]
|
| 124 |
+
target_ipa_by_word = [_tokenize_ipa(item[1]) for item in g2p_result]
|
| 125 |
+
|
| 126 |
+
# 載入並處理音訊 (與其他版本邏輯相同)
|
| 127 |
+
try:
|
| 128 |
+
speech, sample_rate = sf.read(audio_file_path)
|
| 129 |
+
if sample_rate != 16000:
|
| 130 |
+
speech = librosa.resample(y=speech, orig_sr=sample_rate, target_sr=16000)
|
| 131 |
+
except Exception as e:
|
| 132 |
+
raise IOError(f"讀取或處理音訊時發生錯誤: {e}")
|
| 133 |
+
|
| 134 |
+
# 進行 ASR 推論 (與其他版本邏輯相同)
|
| 135 |
+
input_values = processor(speech, sampling_rate=16000, return_tensors="pt").input_values
|
| 136 |
+
input_values = input_values.to(DEVICE)
|
| 137 |
+
with torch.no_grad():
|
| 138 |
+
logits = model(input_values).logits
|
| 139 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 140 |
+
user_ipa_full = processor.decode(predicted_ids[0])
|
| 141 |
+
|
| 142 |
+
# 進行對齊 (與其他版本邏輯相同)
|
| 143 |
+
word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)
|
| 144 |
+
|
| 145 |
+
# 格式化輸出 (與其他版本邏輯相同)
|
| 146 |
+
return _format_to_json_structure(word_alignments, target_sentence, target_words_original)
|
| 147 |
+
|
| 148 |
+
# =======================================================================
|
| 149 |
+
# 4. 對齊與格式化函數區 (Alignment & Formatting)
|
| 150 |
+
# 【注意】這些函數是語言無關的,直接從英文版複製,無需修改
|
| 151 |
+
# =======================================================================
|
| 152 |
+
|
| 153 |
+
# -----------------------------------------------------------------------
|
| 154 |
+
# 4.1. 對齊函數
|
| 155 |
+
# -----------------------------------------------------------------------
|
| 156 |
+
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
|
| 157 |
+
"""
|
| 158 |
+
執行音素對齊。此函數是語言無關的。
|
| 159 |
+
"""
|
| 160 |
+
user_phonemes = _tokenize_ipa(user_phoneme_str)
|
| 161 |
+
|
| 162 |
+
target_phonemes_flat = []
|
| 163 |
+
word_boundaries_indices = []
|
| 164 |
+
current_idx = 0
|
| 165 |
+
for word_ipa_tokens in target_words_ipa_tokenized:
|
| 166 |
+
target_phonemes_flat.extend(word_ipa_tokens)
|
| 167 |
+
current_idx += len(word_ipa_tokens)
|
| 168 |
+
word_boundaries_indices.append(current_idx - 1)
|
| 169 |
+
|
| 170 |
+
dp = np.zeros((len(user_phonemes) + 1, len(target_phonemes_flat) + 1))
|
| 171 |
+
for i in range(1, len(user_phonemes) + 1): dp[i][0] = i
|
| 172 |
+
for j in range(1, len(target_phonemes_flat) + 1): dp[0][j] = j
|
| 173 |
+
for i in range(1, len(user_phonemes) + 1):
|
| 174 |
+
for j in range(1, len(target_phonemes_flat) + 1):
|
| 175 |
+
cost = 0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1
|
| 176 |
+
dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][j-1] + cost)
|
| 177 |
+
|
| 178 |
+
i, j = len(user_phonemes), len(target_phonemes_flat)
|
| 179 |
+
user_path, target_path = [], []
|
| 180 |
+
while i > 0 or j > 0:
|
| 181 |
+
cost = float('inf') if i == 0 or j == 0 else (0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1)
|
| 182 |
+
if i > 0 and j > 0 and dp[i][j] == dp[i-1][j-1] + cost:
|
| 183 |
+
user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, target_phonemes_flat[j-1]); i -= 1; j -= 1
|
| 184 |
+
elif i > 0 and dp[i][j] == dp[i-1][j] + 1:
|
| 185 |
+
user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, '-'); i -= 1
|
| 186 |
+
else:
|
| 187 |
+
user_path.insert(0, '-'); target_path.insert(0, target_phonemes_flat[j-1]); j -= 1
|
| 188 |
+
|
| 189 |
+
alignments_by_word = []
|
| 190 |
+
word_start_idx_in_path = 0
|
| 191 |
+
target_phoneme_counter_in_path = 0
|
| 192 |
+
|
| 193 |
+
for path_idx, p in enumerate(target_path):
|
| 194 |
+
if p != '-':
|
| 195 |
+
if target_phoneme_counter_in_path in word_boundaries_indices:
|
| 196 |
+
target_alignment = target_path[word_start_idx_in_path : path_idx + 1]
|
| 197 |
+
user_alignment = user_path[word_start_idx_in_path : path_idx + 1]
|
| 198 |
+
|
| 199 |
+
alignments_by_word.append({
|
| 200 |
+
"target": target_alignment,
|
| 201 |
+
"user": user_alignment
|
| 202 |
+
})
|
| 203 |
+
|
| 204 |
+
word_start_idx_in_path = path_idx + 1
|
| 205 |
+
|
| 206 |
+
target_phoneme_counter_in_path += 1
|
| 207 |
+
|
| 208 |
+
return alignments_by_word
|
| 209 |
+
|
| 210 |
+
# -----------------------------------------------------------------------
|
| 211 |
+
# 4.2. 格式化函數
|
| 212 |
+
# -----------------------------------------------------------------------
|
| 213 |
+
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
| 214 |
+
"""
|
| 215 |
+
將對齊結果格式化為最終的 JSON 結構。此函數是語言無關的。
|
| 216 |
+
"""
|
| 217 |
+
total_phonemes = 0
|
| 218 |
+
total_errors = 0
|
| 219 |
+
correct_words_count = 0
|
| 220 |
+
words_data = []
|
| 221 |
+
|
| 222 |
+
num_words_to_process = min(len(alignments), len(original_words))
|
| 223 |
+
|
| 224 |
+
for i in range(num_words_to_process):
|
| 225 |
+
alignment = alignments[i]
|
| 226 |
+
word_is_correct = True
|
| 227 |
+
phonemes_data = []
|
| 228 |
+
|
| 229 |
+
for j in range(len(alignment['target'])):
|
| 230 |
+
target_phoneme = alignment['target'][j]
|
| 231 |
+
user_phoneme = alignment['user'][j]
|
| 232 |
+
is_match = (user_phoneme == target_phoneme)
|
| 233 |
+
|
| 234 |
+
phonemes_data.append({
|
| 235 |
+
"target": target_phoneme,
|
| 236 |
+
"user": user_phoneme,
|
| 237 |
+
"isMatch": is_match
|
| 238 |
+
})
|
| 239 |
+
|
| 240 |
+
if not is_match:
|
| 241 |
+
word_is_correct = False
|
| 242 |
+
if not (user_phoneme == '-' and target_phoneme == '-'):
|
| 243 |
+
total_errors += 1
|
| 244 |
+
|
| 245 |
+
if word_is_correct:
|
| 246 |
+
correct_words_count += 1
|
| 247 |
+
|
| 248 |
+
words_data.append({
|
| 249 |
+
"word": original_words[i],
|
| 250 |
+
"isCorrect": word_is_correct,
|
| 251 |
+
"phonemes": phonemes_data
|
| 252 |
+
})
|
| 253 |
+
|
| 254 |
+
total_phonemes += sum(1 for p in alignment['target'] if p != '-')
|
| 255 |
+
|
| 256 |
+
total_words = len(original_words)
|
| 257 |
+
if len(alignments) < total_words:
|
| 258 |
+
for i in range(len(alignments), total_words):
|
| 259 |
+
# 處理使用者未說出的單詞
|
| 260 |
+
missed_word_ipa = _tokenize_ipa(japanese_g2p(original_words[i])[0][1]) # 重新獲取音素
|
| 261 |
+
phonemes_data = []
|
| 262 |
+
for p_ipa in missed_word_ipa:
|
| 263 |
+
phonemes_data.append({"target": p_ipa, "user": "-", "isMatch": False})
|
| 264 |
+
total_errors += 1
|
| 265 |
+
total_phonemes += 1
|
| 266 |
+
|
| 267 |
+
words_data.append({
|
| 268 |
+
"word": original_words[i],
|
| 269 |
+
"isCorrect": False,
|
| 270 |
+
"phonemes": phonemes_data
|
| 271 |
+
})
|
| 272 |
+
|
| 273 |
+
overall_score = (correct_words_count / total_words) * 100 if total_words > 0 else 0
|
| 274 |
+
phoneme_error_rate = (total_errors / total_phonemes) * 100 if total_phonemes > 0 else 0
|
| 275 |
+
|
| 276 |
+
final_result = {
|
| 277 |
+
"sentence": sentence,
|
| 278 |
+
"analysisTimestampUTC": datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S (UTC)'),
|
| 279 |
+
"summary": {
|
| 280 |
+
"overallScore": round(overall_score, 1),
|
| 281 |
+
"totalWords": total_words,
|
| 282 |
+
"correctWords": correct_words_count,
|
| 283 |
+
"phonemeErrorRate": round(phoneme_error_rate, 2),
|
| 284 |
+
"total_errors": total_errors,
|
| 285 |
+
"total_target_phonemes": total_phonemes
|
| 286 |
+
},
|
| 287 |
+
"words": words_data
|
| 288 |
+
}
|
| 289 |
+
|
| 290 |
+
return final_result
|
requirements.txt
CHANGED
|
@@ -9,4 +9,6 @@ transformers
|
|
| 9 |
phonemizer[espeak]
|
| 10 |
numpy
|
| 11 |
epitran
|
| 12 |
-
g2p
|
|
|
|
|
|
|
|
|
| 9 |
phonemizer[espeak]
|
| 10 |
numpy
|
| 11 |
epitran
|
| 12 |
+
g2p
|
| 13 |
+
pyopenjtalk
|
| 14 |
+
mecab-python3
|