Spaces:
Running
on
T4
Running
on
T4
File size: 6,815 Bytes
2d47d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
""" Optimizer Factory w/ Custom Weight Decay
Hacked together by / Copyright 2020 Ross Wightman
"""
from typing import Optional
import torch
import torch.nn as nn
import torch.optim as optim
from .timm.adafactor import Adafactor
from .timm.adahessian import Adahessian
from .timm.adamp import AdamP
from .timm.lookahead import Lookahead
from .timm.nadam import Nadam
from .timm.novograd import NovoGrad
from .timm.nvnovograd import NvNovoGrad
from .timm.radam import RAdam
from .timm.rmsprop_tf import RMSpropTF
from .timm.sgdp import SGDP
from .timm.adabelief import AdaBelief
try:
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD
has_apex = True
except ImportError:
has_apex = False
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
no_decay.append(param)
else:
decay.append(param)
return [
{"params": no_decay, "weight_decay": 0.},
{"params": decay, "weight_decay": weight_decay}]
def optimizer_kwargs(args, lr_weight):
""" args/argparse to kwargs helper
Convert optimizer args in argparse args or args like object to keyword args for updated create fn.
"""
kwargs = dict(
optimizer_name=args.opt,
learning_rate=args.lr_base*args.batch_size/128*lr_weight,
weight_decay=args.weight_decay,
momentum=args.momentum)
if getattr(args, "opt_eps", None) is not None:
kwargs["eps"] = args.opt_eps
if getattr(args, "opt_betas", None) is not None:
kwargs["betas"] = args.opt_betas
if getattr(args, "opt_args", None) is not None:
kwargs.update(args.opt_args)
return kwargs
def create_optimizer(args, model, filter_bias_and_bn=True, lr_weight=1):
""" Legacy optimizer factory for backwards compatibility.
NOTE: Use create_optimizer_v2 for new code.
"""
return create_optimizer_v2(
model,
**optimizer_kwargs(args, lr_weight),
filter_bias_and_bn=filter_bias_and_bn,
)
def create_optimizer_v2(
model: nn.Module,
optimizer_name: str = "sgd",
learning_rate: Optional[float] = None,
weight_decay: float = 0.,
momentum: float = 0.9,
filter_bias_and_bn: bool = True,
**kwargs):
""" Create an optimizer.
TODO currently the model is passed in and all parameters are selected for optimization.
For more general use an interface that allows selection of parameters to optimize and lr groups, one of:
* a filter fn interface that further breaks params into groups in a weight_decay compatible fashion
* expose the parameters interface and leave it up to caller
Args:
model (nn.Module): model containing parameters to optimize
optimizer_name: name of optimizer to create
learning_rate: initial learning rate
weight_decay: weight decay to apply in optimizer
momentum: momentum for momentum based optimizers (others may use betas via kwargs)
filter_bias_and_bn: filter out bias, bn and other 1d params from weight decay
**kwargs: extra optimizer specific kwargs to pass through
Returns:
Optimizer
"""
opt_lower = optimizer_name.lower()
if weight_decay and filter_bias_and_bn:
skip = {}
if hasattr(model, "no_weight_decay"):
skip = model.no_weight_decay()
parameters = add_weight_decay(model, weight_decay, skip)
weight_decay = 0.
else:
parameters = model.parameters()
if "fused" in opt_lower:
assert has_apex and torch.cuda.is_available(), "APEX and CUDA required for fused optimizers"
opt_args = dict(lr=learning_rate, weight_decay=weight_decay, **kwargs)
opt_split = opt_lower.split("_")
opt_lower = opt_split[-1]
if opt_lower == "sgd" or opt_lower == "nesterov":
opt_args.pop("eps", None)
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args)
elif opt_lower == "momentum":
opt_args.pop("eps", None)
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=False, **opt_args)
elif opt_lower == "adam":
optimizer = optim.Adam(parameters, **opt_args)
elif opt_lower == "adabelief":
optimizer = AdaBelief(parameters, rectify=False, **opt_args)
elif opt_lower == "adamw":
optimizer = optim.AdamW(parameters, lr=learning_rate, weight_decay=weight_decay)
elif opt_lower == "nadam":
optimizer = Nadam(parameters, **opt_args)
elif opt_lower == "radam":
optimizer = RAdam(parameters, **opt_args)
elif opt_lower == "adamp":
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args)
elif opt_lower == "sgdp":
optimizer = SGDP(parameters, momentum=momentum, nesterov=True, **opt_args)
elif opt_lower == "adadelta":
optimizer = optim.Adadelta(parameters, **opt_args)
elif opt_lower == "adafactor":
if not learning_rate:
opt_args["lr"] = None
optimizer = Adafactor(parameters, **opt_args)
elif opt_lower == "adahessian":
optimizer = Adahessian(parameters, **opt_args)
elif opt_lower == "rmsprop":
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=momentum, **opt_args)
elif opt_lower == "rmsproptf":
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=momentum, **opt_args)
elif opt_lower == "novograd":
optimizer = NovoGrad(parameters, **opt_args)
elif opt_lower == "nvnovograd":
optimizer = NvNovoGrad(parameters, **opt_args)
elif opt_lower == "fusedsgd":
opt_args.pop("eps", None)
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=True, **opt_args)
elif opt_lower == "fusedmomentum":
opt_args.pop("eps", None)
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=False, **opt_args)
elif opt_lower == "fusedadam":
optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args)
elif opt_lower == "fusedadamw":
optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args)
elif opt_lower == "fusedlamb":
optimizer = FusedLAMB(parameters, **opt_args)
elif opt_lower == "fusednovograd":
opt_args.setdefault("betas", (0.95, 0.98))
optimizer = FusedNovoGrad(parameters, **opt_args)
else:
assert False and "Invalid optimizer"
raise ValueError
if len(opt_split) > 1:
if opt_split[0] == "lookahead":
optimizer = Lookahead(optimizer)
return optimizer
|