Spaces:
Running
on
T4
Running
on
T4
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .ipynb_checkpoints/README-checkpoint.md +13 -0
- .ipynb_checkpoints/app-checkpoint.py +664 -0
- .ipynb_checkpoints/packages-checkpoint.txt +4 -0
- .ipynb_checkpoints/requirements-checkpoint.txt +39 -0
- .ipynb_checkpoints/test_demo-checkpoint.py +581 -0
- EMAGE/emage_audio_175.bin +3 -0
- EMAGE/pretrained_vq/.DS_Store +0 -0
- EMAGE/pretrained_vq/hands_vertex_1layer_710.bin +3 -0
- EMAGE/pretrained_vq/last_1700_foot.bin +3 -0
- EMAGE/pretrained_vq/last_790_face_v2.bin +3 -0
- EMAGE/pretrained_vq/lower_foot_600.bin +3 -0
- EMAGE/pretrained_vq/upper_vertex_1layer_710.bin +3 -0
- EMAGE/smplx_models/.DS_Store +0 -0
- EMAGE/smplx_models/smplx/SMPLX_NEUTRAL_2020.npz +3 -0
- EMAGE/test_sequences/smplxflame_30/2_scott_0_1_1.npz +3 -0
- EMAGE/test_sequences/smplxflame_30/2_scott_0_2_2.npz +3 -0
- EMAGE/test_sequences/smplxflame_30/2_scott_0_3_3.npz +3 -0
- EMAGE/test_sequences/smplxflame_30/2_scott_0_4_4.npz +3 -0
- EMAGE/test_sequences/test.csv +5 -0
- EMAGE/test_sequences/textgrid/2_scott_0_1_1.TextGrid +3636 -0
- EMAGE/test_sequences/textgrid/2_scott_0_2_2.TextGrid +3716 -0
- EMAGE/test_sequences/textgrid/2_scott_0_3_3.TextGrid +3676 -0
- EMAGE/test_sequences/textgrid/2_scott_0_4_4.TextGrid +3844 -0
- EMAGE/test_sequences/wave16k/2_scott_0_1_1.wav +0 -0
- EMAGE/test_sequences/wave16k/2_scott_0_2_2.wav +0 -0
- EMAGE/test_sequences/wave16k/2_scott_0_3_3.wav +0 -0
- EMAGE/test_sequences/wave16k/2_scott_0_4_4.wav +0 -0
- EMAGE/test_sequences/weights/AESKConv_240_100.bin +3 -0
- EMAGE/test_sequences/weights/mean_vel_smplxflame_30.npy +3 -0
- EMAGE/test_sequences/weights/vocab.pkl +3 -0
- README.md +3 -2
- ae_trainer.py +375 -0
- aeface_trainer.py +388 -0
- aelower_trainer.py +494 -0
- aelowerfoot_trainer.py +491 -0
- app.py +664 -0
- camn_trainer.py +361 -0
- configs/.ipynb_checkpoints/emage_test_hf-checkpoint.yaml +101 -0
- configs/camn.yaml +101 -0
- configs/cnn_vqvae_face_30.yaml +82 -0
- configs/cnn_vqvae_hands_30.yaml +81 -0
- configs/cnn_vqvae_lower_30.yaml +81 -0
- configs/cnn_vqvae_lower_foot_30.yaml +81 -0
- configs/cnn_vqvae_upper_30.yaml +82 -0
- configs/emage.yaml +101 -0
- configs/emage_test.yaml +101 -0
- configs/emage_test_colab.yaml +101 -0
- configs/emage_test_hf.yaml +101 -0
- configs/skcnn_ae.yaml +80 -0
- dataloaders/.ipynb_checkpoints/beat_testonly_hf-checkpoint.py +740 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: EMAGE
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.24.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
.ipynb_checkpoints/app-checkpoint.py
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
# os.system("Xvfb :99 -ac &")
|
4 |
+
# os.environ["DISPLAY"] = ":99"
|
5 |
+
import OpenGL.GL as gl
|
6 |
+
os.environ["PYOPENGL_PLATFORM"] = "egl"
|
7 |
+
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
|
8 |
+
import signal
|
9 |
+
import time
|
10 |
+
import csv
|
11 |
+
import sys
|
12 |
+
import warnings
|
13 |
+
import random
|
14 |
+
import gradio as gr
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torch.distributed as dist
|
19 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
20 |
+
import torch.multiprocessing as mp
|
21 |
+
import numpy as np
|
22 |
+
import time
|
23 |
+
import pprint
|
24 |
+
from loguru import logger
|
25 |
+
import smplx
|
26 |
+
from torch.utils.tensorboard import SummaryWriter
|
27 |
+
import wandb
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
from utils import config, logger_tools, other_tools_hf, metric, data_transfer
|
30 |
+
from dataloaders import data_tools
|
31 |
+
from dataloaders.build_vocab import Vocab
|
32 |
+
from optimizers.optim_factory import create_optimizer
|
33 |
+
from optimizers.scheduler_factory import create_scheduler
|
34 |
+
from optimizers.loss_factory import get_loss_func
|
35 |
+
from dataloaders.data_tools import joints_list
|
36 |
+
from utils import rotation_conversions as rc
|
37 |
+
import soundfile as sf
|
38 |
+
import librosa
|
39 |
+
|
40 |
+
def inverse_selection_tensor(filtered_t, selection_array, n):
|
41 |
+
selection_array = torch.from_numpy(selection_array).cuda()
|
42 |
+
original_shape_t = torch.zeros((n, 165)).cuda()
|
43 |
+
selected_indices = torch.where(selection_array == 1)[0]
|
44 |
+
for i in range(n):
|
45 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
46 |
+
return original_shape_t
|
47 |
+
|
48 |
+
@spaces.GPU(duration=120)
|
49 |
+
def test_demo_gpu(
|
50 |
+
model, vq_model_face, vq_model_upper, vq_model_hands, vq_model_lower, global_motion, smplx_model,
|
51 |
+
dict_data,
|
52 |
+
args,
|
53 |
+
joints, joint_mask_upper, joint_mask_lower, joint_mask_hands,
|
54 |
+
log_softmax,
|
55 |
+
):
|
56 |
+
rank = 0
|
57 |
+
other_tools_hf.load_checkpoints(vq_model_face, args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name)
|
58 |
+
other_tools_hf.load_checkpoints(vq_model_upper, args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name)
|
59 |
+
other_tools_hf.load_checkpoints(vq_model_hands, args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name)
|
60 |
+
other_tools_hf.load_checkpoints(vq_model_lower, args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name)
|
61 |
+
other_tools_hf.load_checkpoints(global_motion, args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name)
|
62 |
+
other_tools_hf.load_checkpoints(model, args.test_ckpt, args.g_name)
|
63 |
+
model.to(rank).eval()
|
64 |
+
smplx_model.to(rank).eval()
|
65 |
+
vq_model_face.to(rank).eval()
|
66 |
+
vq_model_upper.to(rank).eval()
|
67 |
+
vq_model_hands.to(rank).eval()
|
68 |
+
vq_model_lower.to(rank).eval()
|
69 |
+
global_motion.to(rank).eval()
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
tar_pose_raw = dict_data["pose"]
|
73 |
+
tar_pose = tar_pose_raw[:, :, :165].to(rank)
|
74 |
+
tar_contact = tar_pose_raw[:, :, 165:169].to(rank)
|
75 |
+
tar_trans = dict_data["trans"].to(rank)
|
76 |
+
tar_exps = dict_data["facial"].to(rank)
|
77 |
+
in_audio = dict_data["audio"].to(rank)
|
78 |
+
in_word = None# dict_data["word"].to(rank)
|
79 |
+
tar_beta = dict_data["beta"].to(rank)
|
80 |
+
tar_id = dict_data["id"].to(rank).long()
|
81 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints
|
82 |
+
|
83 |
+
tar_pose_jaw = tar_pose[:, :, 66:69]
|
84 |
+
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
|
85 |
+
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
|
86 |
+
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
|
87 |
+
|
88 |
+
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
|
89 |
+
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
|
90 |
+
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
|
91 |
+
|
92 |
+
tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)]
|
93 |
+
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
|
94 |
+
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
|
95 |
+
|
96 |
+
tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)]
|
97 |
+
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
|
98 |
+
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
|
99 |
+
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
|
100 |
+
|
101 |
+
# tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
102 |
+
# tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
103 |
+
tar4dis = torch.cat([tar_pose_jaw, tar_pose_upper, tar_pose_hands, tar_pose_leg], dim=2)
|
104 |
+
|
105 |
+
tar_index_value_face_top = vq_model_face.map2index(tar_pose_face) # bs*n/4
|
106 |
+
tar_index_value_upper_top = vq_model_upper.map2index(tar_pose_upper) # bs*n/4
|
107 |
+
tar_index_value_hands_top = vq_model_hands.map2index(tar_pose_hands) # bs*n/4
|
108 |
+
tar_index_value_lower_top = vq_model_lower.map2index(tar_pose_lower) # bs*n/4
|
109 |
+
|
110 |
+
latent_face_top = vq_model_face.map2latent(tar_pose_face) # bs*n/4
|
111 |
+
latent_upper_top = vq_model_upper.map2latent(tar_pose_upper) # bs*n/4
|
112 |
+
latent_hands_top = vq_model_hands.map2latent(tar_pose_hands) # bs*n/4
|
113 |
+
latent_lower_top = vq_model_lower.map2latent(tar_pose_lower) # bs*n/4
|
114 |
+
|
115 |
+
latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2)
|
116 |
+
|
117 |
+
index_in = torch.stack([tar_index_value_upper_top, tar_index_value_hands_top, tar_index_value_lower_top], dim=-1).long()
|
118 |
+
|
119 |
+
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
|
120 |
+
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
|
121 |
+
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
|
122 |
+
|
123 |
+
loaded_data = {
|
124 |
+
"tar_pose_jaw": tar_pose_jaw,
|
125 |
+
"tar_pose_face": tar_pose_face,
|
126 |
+
"tar_pose_upper": tar_pose_upper,
|
127 |
+
"tar_pose_lower": tar_pose_lower,
|
128 |
+
"tar_pose_hands": tar_pose_hands,
|
129 |
+
'tar_pose_leg': tar_pose_leg,
|
130 |
+
"in_audio": in_audio,
|
131 |
+
"in_word": in_word,
|
132 |
+
"tar_trans": tar_trans,
|
133 |
+
"tar_exps": tar_exps,
|
134 |
+
"tar_beta": tar_beta,
|
135 |
+
"tar_pose": tar_pose,
|
136 |
+
"tar4dis": tar4dis,
|
137 |
+
"tar_index_value_face_top": tar_index_value_face_top,
|
138 |
+
"tar_index_value_upper_top": tar_index_value_upper_top,
|
139 |
+
"tar_index_value_hands_top": tar_index_value_hands_top,
|
140 |
+
"tar_index_value_lower_top": tar_index_value_lower_top,
|
141 |
+
"latent_face_top": latent_face_top,
|
142 |
+
"latent_upper_top": latent_upper_top,
|
143 |
+
"latent_hands_top": latent_hands_top,
|
144 |
+
"latent_lower_top": latent_lower_top,
|
145 |
+
"latent_in": latent_in,
|
146 |
+
"index_in": index_in,
|
147 |
+
"tar_id": tar_id,
|
148 |
+
"latent_all": latent_all,
|
149 |
+
"tar_pose_6d": tar_pose_6d,
|
150 |
+
"tar_contact": tar_contact,
|
151 |
+
}
|
152 |
+
|
153 |
+
mode = 'test'
|
154 |
+
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], joints
|
155 |
+
tar_pose = loaded_data["tar_pose"]
|
156 |
+
tar_beta = loaded_data["tar_beta"]
|
157 |
+
in_word =None# loaded_data["in_word"]
|
158 |
+
tar_exps = loaded_data["tar_exps"]
|
159 |
+
tar_contact = loaded_data["tar_contact"]
|
160 |
+
in_audio = loaded_data["in_audio"]
|
161 |
+
tar_trans = loaded_data["tar_trans"]
|
162 |
+
|
163 |
+
remain = n%8
|
164 |
+
if remain != 0:
|
165 |
+
tar_pose = tar_pose[:, :-remain, :]
|
166 |
+
tar_beta = tar_beta[:, :-remain, :]
|
167 |
+
tar_trans = tar_trans[:, :-remain, :]
|
168 |
+
# in_word = in_word[:, :-remain]
|
169 |
+
tar_exps = tar_exps[:, :-remain, :]
|
170 |
+
tar_contact = tar_contact[:, :-remain, :]
|
171 |
+
n = n - remain
|
172 |
+
|
173 |
+
tar_pose_jaw = tar_pose[:, :, 66:69]
|
174 |
+
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
|
175 |
+
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
|
176 |
+
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
|
177 |
+
|
178 |
+
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
|
179 |
+
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
|
180 |
+
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
|
181 |
+
|
182 |
+
tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)]
|
183 |
+
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
|
184 |
+
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
|
185 |
+
|
186 |
+
tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)]
|
187 |
+
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
|
188 |
+
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
|
189 |
+
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
|
190 |
+
|
191 |
+
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
|
192 |
+
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
|
193 |
+
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
|
194 |
+
|
195 |
+
rec_index_all_face = []
|
196 |
+
rec_index_all_upper = []
|
197 |
+
rec_index_all_lower = []
|
198 |
+
rec_index_all_hands = []
|
199 |
+
|
200 |
+
roundt = (n - args.pre_frames) // (args.pose_length - args.pre_frames)
|
201 |
+
remain = (n - args.pre_frames) % (args.pose_length - args.pre_frames)
|
202 |
+
round_l = args.pose_length - args.pre_frames
|
203 |
+
|
204 |
+
for i in range(0, roundt):
|
205 |
+
# in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+args.pre_frames]
|
206 |
+
# audio fps is 16000 and pose fps is 30
|
207 |
+
in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*args.pre_frames]
|
208 |
+
in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+args.pre_frames]
|
209 |
+
mask_val = torch.ones(bs, args.pose_length, args.pose_dims+3+4).float().cuda()
|
210 |
+
mask_val[:, :args.pre_frames, :] = 0.0
|
211 |
+
if i == 0:
|
212 |
+
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :]
|
213 |
+
else:
|
214 |
+
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :]
|
215 |
+
# print(latent_all_tmp.shape, latent_last.shape)
|
216 |
+
latent_all_tmp[:, :args.pre_frames, :] = latent_last[:, -args.pre_frames:, :]
|
217 |
+
|
218 |
+
net_out_val = model(
|
219 |
+
in_audio = in_audio_tmp,
|
220 |
+
in_word=None, #in_word_tmp,
|
221 |
+
mask=mask_val,
|
222 |
+
in_motion = latent_all_tmp,
|
223 |
+
in_id = in_id_tmp,
|
224 |
+
use_attentions=True,)
|
225 |
+
|
226 |
+
if args.cu != 0:
|
227 |
+
rec_index_upper = log_softmax(net_out_val["cls_upper"]).reshape(-1, args.vae_codebook_size)
|
228 |
+
_, rec_index_upper = torch.max(rec_index_upper.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
|
229 |
+
#rec_upper = vq_model_upper.decode(rec_index_upper)
|
230 |
+
else:
|
231 |
+
_, rec_index_upper, _, _ = vq_model_upper.quantizer(net_out_val["rec_upper"])
|
232 |
+
#rec_upper = vq_model_upper.decoder(rec_index_upper)
|
233 |
+
if args.cl != 0:
|
234 |
+
rec_index_lower = log_softmax(net_out_val["cls_lower"]).reshape(-1, args.vae_codebook_size)
|
235 |
+
_, rec_index_lower = torch.max(rec_index_lower.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
|
236 |
+
#rec_lower = vq_model_lower.decode(rec_index_lower)
|
237 |
+
else:
|
238 |
+
_, rec_index_lower, _, _ = vq_model_lower.quantizer(net_out_val["rec_lower"])
|
239 |
+
#rec_lower = vq_model_lower.decoder(rec_index_lower)
|
240 |
+
if args.ch != 0:
|
241 |
+
rec_index_hands = log_softmax(net_out_val["cls_hands"]).reshape(-1, args.vae_codebook_size)
|
242 |
+
_, rec_index_hands = torch.max(rec_index_hands.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
|
243 |
+
#rec_hands = vq_model_hands.decode(rec_index_hands)
|
244 |
+
else:
|
245 |
+
_, rec_index_hands, _, _ = vq_model_hands.quantizer(net_out_val["rec_hands"])
|
246 |
+
#rec_hands = vq_model_hands.decoder(rec_index_hands)
|
247 |
+
if args.cf != 0:
|
248 |
+
rec_index_face = log_softmax(net_out_val["cls_face"]).reshape(-1, args.vae_codebook_size)
|
249 |
+
_, rec_index_face = torch.max(rec_index_face.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
|
250 |
+
#rec_face = vq_model_face.decoder(rec_index_face)
|
251 |
+
else:
|
252 |
+
_, rec_index_face, _, _ = vq_model_face.quantizer(net_out_val["rec_face"])
|
253 |
+
#rec_face = vq_model_face.decoder(rec_index_face)
|
254 |
+
|
255 |
+
if i == 0:
|
256 |
+
rec_index_all_face.append(rec_index_face)
|
257 |
+
rec_index_all_upper.append(rec_index_upper)
|
258 |
+
rec_index_all_lower.append(rec_index_lower)
|
259 |
+
rec_index_all_hands.append(rec_index_hands)
|
260 |
+
else:
|
261 |
+
rec_index_all_face.append(rec_index_face[:, args.pre_frames:])
|
262 |
+
rec_index_all_upper.append(rec_index_upper[:, args.pre_frames:])
|
263 |
+
rec_index_all_lower.append(rec_index_lower[:, args.pre_frames:])
|
264 |
+
rec_index_all_hands.append(rec_index_hands[:, args.pre_frames:])
|
265 |
+
|
266 |
+
if args.cu != 0:
|
267 |
+
rec_upper_last = vq_model_upper.decode(rec_index_upper)
|
268 |
+
else:
|
269 |
+
rec_upper_last = vq_model_upper.decoder(rec_index_upper)
|
270 |
+
if args.cl != 0:
|
271 |
+
rec_lower_last = vq_model_lower.decode(rec_index_lower)
|
272 |
+
else:
|
273 |
+
rec_lower_last = vq_model_lower.decoder(rec_index_lower)
|
274 |
+
if args.ch != 0:
|
275 |
+
rec_hands_last = vq_model_hands.decode(rec_index_hands)
|
276 |
+
else:
|
277 |
+
rec_hands_last = vq_model_hands.decoder(rec_index_hands)
|
278 |
+
# if args.cf != 0:
|
279 |
+
# rec_face_last = vq_model_face.decode(rec_index_face)
|
280 |
+
# else:
|
281 |
+
# rec_face_last = vq_model_face.decoder(rec_index_face)
|
282 |
+
|
283 |
+
rec_pose_legs = rec_lower_last[:, :, :54]
|
284 |
+
bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1]
|
285 |
+
rec_pose_upper = rec_upper_last.reshape(bs, n, 13, 6)
|
286 |
+
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
|
287 |
+
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
|
288 |
+
rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n)
|
289 |
+
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
|
290 |
+
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
|
291 |
+
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
|
292 |
+
rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n)
|
293 |
+
rec_pose_hands = rec_hands_last.reshape(bs, n, 30, 6)
|
294 |
+
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
|
295 |
+
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
|
296 |
+
rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n)
|
297 |
+
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
|
298 |
+
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, j, 3))
|
299 |
+
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
|
300 |
+
rec_trans_v_s = rec_lower_last[:, :, 54:57]
|
301 |
+
rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1])
|
302 |
+
rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3])
|
303 |
+
rec_y_trans = rec_trans_v_s[:,:,1:2]
|
304 |
+
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
305 |
+
latent_last = torch.cat([rec_pose, rec_trans, rec_lower_last[:, :, 57:61]], dim=-1)
|
306 |
+
|
307 |
+
rec_index_face = torch.cat(rec_index_all_face, dim=1)
|
308 |
+
rec_index_upper = torch.cat(rec_index_all_upper, dim=1)
|
309 |
+
rec_index_lower = torch.cat(rec_index_all_lower, dim=1)
|
310 |
+
rec_index_hands = torch.cat(rec_index_all_hands, dim=1)
|
311 |
+
if args.cu != 0:
|
312 |
+
rec_upper = vq_model_upper.decode(rec_index_upper)
|
313 |
+
else:
|
314 |
+
rec_upper = vq_model_upper.decoder(rec_index_upper)
|
315 |
+
if args.cl != 0:
|
316 |
+
rec_lower = vq_model_lower.decode(rec_index_lower)
|
317 |
+
else:
|
318 |
+
rec_lower = vq_model_lower.decoder(rec_index_lower)
|
319 |
+
if args.ch != 0:
|
320 |
+
rec_hands = vq_model_hands.decode(rec_index_hands)
|
321 |
+
else:
|
322 |
+
rec_hands = vq_model_hands.decoder(rec_index_hands)
|
323 |
+
if args.cf != 0:
|
324 |
+
rec_face = vq_model_face.decode(rec_index_face)
|
325 |
+
else:
|
326 |
+
rec_face = vq_model_face.decoder(rec_index_face)
|
327 |
+
|
328 |
+
rec_exps = rec_face[:, :, 6:]
|
329 |
+
rec_pose_jaw = rec_face[:, :, :6]
|
330 |
+
rec_pose_legs = rec_lower[:, :, :54]
|
331 |
+
bs, n = rec_pose_jaw.shape[0], rec_pose_jaw.shape[1]
|
332 |
+
rec_pose_upper = rec_upper.reshape(bs, n, 13, 6)
|
333 |
+
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
|
334 |
+
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
|
335 |
+
rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n)
|
336 |
+
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
|
337 |
+
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
|
338 |
+
rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6)
|
339 |
+
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
|
340 |
+
rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n)
|
341 |
+
rec_pose_hands = rec_hands.reshape(bs, n, 30, 6)
|
342 |
+
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
|
343 |
+
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
|
344 |
+
rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n)
|
345 |
+
rec_pose_jaw = rec_pose_jaw.reshape(bs*n, 6)
|
346 |
+
rec_pose_jaw = rc.rotation_6d_to_matrix(rec_pose_jaw)
|
347 |
+
rec_pose_jaw = rc.matrix_to_axis_angle(rec_pose_jaw).reshape(bs*n, 1*3)
|
348 |
+
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
|
349 |
+
rec_pose[:, 66:69] = rec_pose_jaw
|
350 |
+
|
351 |
+
to_global = rec_lower
|
352 |
+
to_global[:, :, 54:57] = 0.0
|
353 |
+
to_global[:, :, :54] = rec_lower2global
|
354 |
+
rec_global = global_motion(to_global)
|
355 |
+
|
356 |
+
rec_trans_v_s = rec_global["rec_pose"][:, :, 54:57]
|
357 |
+
rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1])
|
358 |
+
rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3])
|
359 |
+
rec_y_trans = rec_trans_v_s[:,:,1:2]
|
360 |
+
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
361 |
+
tar_pose = tar_pose[:, :n, :]
|
362 |
+
tar_exps = tar_exps[:, :n, :]
|
363 |
+
tar_trans = tar_trans[:, :n, :]
|
364 |
+
tar_beta = tar_beta[:, :n, :]
|
365 |
+
|
366 |
+
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3))
|
367 |
+
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
|
368 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3))
|
369 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
370 |
+
|
371 |
+
net_out = {
|
372 |
+
'rec_pose': rec_pose,
|
373 |
+
'rec_trans': rec_trans,
|
374 |
+
'tar_pose': tar_pose,
|
375 |
+
'tar_exps': tar_exps,
|
376 |
+
'tar_beta': tar_beta,
|
377 |
+
'tar_trans': tar_trans,
|
378 |
+
'rec_exps': rec_exps,
|
379 |
+
}
|
380 |
+
|
381 |
+
|
382 |
+
tar_pose = net_out['tar_pose']
|
383 |
+
rec_pose = net_out['rec_pose']
|
384 |
+
tar_exps = net_out['tar_exps']
|
385 |
+
tar_beta = net_out['tar_beta']
|
386 |
+
rec_trans = net_out['rec_trans']
|
387 |
+
tar_trans = net_out['tar_trans']
|
388 |
+
rec_exps = net_out['rec_exps']
|
389 |
+
# print(rec_pose.shape, tar_pose.shape)
|
390 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints
|
391 |
+
# interpolate to 30fps
|
392 |
+
if (30/args.pose_fps) != 1:
|
393 |
+
assert 30%args.pose_fps == 0
|
394 |
+
n *= int(30/args.pose_fps)
|
395 |
+
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1)
|
396 |
+
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1)
|
397 |
+
|
398 |
+
# print(rec_pose.shape, tar_pose.shape)
|
399 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
|
400 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
401 |
+
|
402 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
|
403 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
404 |
+
|
405 |
+
return tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j
|
406 |
+
|
407 |
+
|
408 |
+
class BaseTrainer(object):
|
409 |
+
def __init__(self, args, sp, ap, tp):
|
410 |
+
hf_dir = "hf"
|
411 |
+
if not os.path.exists(args.out_path + "custom/" + hf_dir + "/"):
|
412 |
+
os.makedirs(args.out_path + "custom/" + hf_dir + "/")
|
413 |
+
sf.write(args.out_path + "custom/" + hf_dir + "/tmp.wav", ap[1][:ap[0]*8], ap[0])
|
414 |
+
self.audio_path = args.out_path + "custom/" + hf_dir + "/tmp.wav"
|
415 |
+
audio, ssr = librosa.load(self.audio_path)
|
416 |
+
ap = (ssr, audio)
|
417 |
+
self.args = args
|
418 |
+
self.rank = 0 # dist.get_rank()
|
419 |
+
|
420 |
+
#self.checkpoint_path = args.out_path + "custom/" + args.name + args.notes + "/" #wandb.run.dir #args.cache_path+args.out_path+"/"+args.name
|
421 |
+
self.checkpoint_path = args.out_path + "custom/" + hf_dir + "/"
|
422 |
+
if self.rank == 0:
|
423 |
+
self.test_data = __import__(f"dataloaders.{args.dataset}", fromlist=["something"]).CustomDataset(args, "test", smplx_path=sp, audio_path=ap, text_path=tp)
|
424 |
+
self.test_loader = torch.utils.data.DataLoader(
|
425 |
+
self.test_data,
|
426 |
+
batch_size=1,
|
427 |
+
shuffle=False,
|
428 |
+
num_workers=args.loader_workers,
|
429 |
+
drop_last=False,
|
430 |
+
)
|
431 |
+
logger.info(f"Init test dataloader success")
|
432 |
+
model_module = __import__(f"models.{args.model}", fromlist=["something"])
|
433 |
+
|
434 |
+
if args.ddp:
|
435 |
+
self.model = getattr(model_module, args.g_name)(args).to(self.rank)
|
436 |
+
process_group = torch.distributed.new_group()
|
437 |
+
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model, process_group)
|
438 |
+
self.model = DDP(self.model, device_ids=[self.rank], output_device=self.rank,
|
439 |
+
broadcast_buffers=False, find_unused_parameters=False)
|
440 |
+
else:
|
441 |
+
self.model = torch.nn.DataParallel(getattr(model_module, args.g_name)(args), args.gpus).cpu()
|
442 |
+
|
443 |
+
if self.rank == 0:
|
444 |
+
logger.info(self.model)
|
445 |
+
logger.info(f"init {args.g_name} success")
|
446 |
+
|
447 |
+
self.smplx = smplx.create(
|
448 |
+
self.args.data_path_1+"smplx_models/",
|
449 |
+
model_type='smplx',
|
450 |
+
gender='NEUTRAL_2020',
|
451 |
+
use_face_contour=False,
|
452 |
+
num_betas=300,
|
453 |
+
num_expression_coeffs=100,
|
454 |
+
ext='npz',
|
455 |
+
use_pca=False,
|
456 |
+
)
|
457 |
+
|
458 |
+
self.args = args
|
459 |
+
self.joints = self.test_data.joints
|
460 |
+
self.ori_joint_list = joints_list[self.args.ori_joints]
|
461 |
+
self.tar_joint_list_face = joints_list["beat_smplx_face"]
|
462 |
+
self.tar_joint_list_upper = joints_list["beat_smplx_upper"]
|
463 |
+
self.tar_joint_list_hands = joints_list["beat_smplx_hands"]
|
464 |
+
self.tar_joint_list_lower = joints_list["beat_smplx_lower"]
|
465 |
+
|
466 |
+
self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
467 |
+
self.joints = 55
|
468 |
+
for joint_name in self.tar_joint_list_face:
|
469 |
+
self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
470 |
+
self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
471 |
+
for joint_name in self.tar_joint_list_upper:
|
472 |
+
self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
473 |
+
self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
474 |
+
for joint_name in self.tar_joint_list_hands:
|
475 |
+
self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
476 |
+
self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
477 |
+
for joint_name in self.tar_joint_list_lower:
|
478 |
+
self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
479 |
+
|
480 |
+
self.tracker = other_tools_hf.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False,False,False])
|
481 |
+
|
482 |
+
vq_model_module = __import__(f"models.motion_representation", fromlist=["something"])
|
483 |
+
self.args.vae_layer = 2
|
484 |
+
self.args.vae_length = 256
|
485 |
+
self.args.vae_test_dim = 106
|
486 |
+
self.vq_model_face = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
|
487 |
+
# print(self.vq_model_face)
|
488 |
+
# other_tools_hf.load_checkpoints(self.vq_model_face, self.args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name)
|
489 |
+
self.args.vae_test_dim = 78
|
490 |
+
self.vq_model_upper = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
|
491 |
+
# other_tools_hf.load_checkpoints(self.vq_model_upper, self.args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name)
|
492 |
+
self.args.vae_test_dim = 180
|
493 |
+
self.vq_model_hands = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
|
494 |
+
# other_tools_hf.load_checkpoints(self.vq_model_hands, self.args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name)
|
495 |
+
self.args.vae_test_dim = 61
|
496 |
+
self.args.vae_layer = 4
|
497 |
+
self.vq_model_lower = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
|
498 |
+
# other_tools_hf.load_checkpoints(self.vq_model_lower, self.args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name)
|
499 |
+
self.args.vae_test_dim = 61
|
500 |
+
self.args.vae_layer = 4
|
501 |
+
self.global_motion = getattr(vq_model_module, "VAEConvZero")(self.args).cpu()
|
502 |
+
# other_tools_hf.load_checkpoints(self.global_motion, self.args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name)
|
503 |
+
self.args.vae_test_dim = 330
|
504 |
+
self.args.vae_layer = 4
|
505 |
+
self.args.vae_length = 240
|
506 |
+
|
507 |
+
# self.cls_loss = nn.NLLLoss().to(self.rank)
|
508 |
+
# self.reclatent_loss = nn.MSELoss().to(self.rank)
|
509 |
+
# self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank)
|
510 |
+
# self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank)
|
511 |
+
self.log_softmax = nn.LogSoftmax(dim=2)
|
512 |
+
|
513 |
+
|
514 |
+
def inverse_selection(self, filtered_t, selection_array, n):
|
515 |
+
original_shape_t = np.zeros((n, selection_array.size))
|
516 |
+
selected_indices = np.where(selection_array == 1)[0]
|
517 |
+
for i in range(n):
|
518 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
519 |
+
return original_shape_t
|
520 |
+
|
521 |
+
def inverse_selection_tensor(self, filtered_t, selection_array, n):
|
522 |
+
selection_array = torch.from_numpy(selection_array).cuda()
|
523 |
+
original_shape_t = torch.zeros((n, 165)).cuda()
|
524 |
+
selected_indices = torch.where(selection_array == 1)[0]
|
525 |
+
for i in range(n):
|
526 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
527 |
+
return original_shape_t
|
528 |
+
|
529 |
+
|
530 |
+
def test_demo(self, epoch):
|
531 |
+
'''
|
532 |
+
input audio and text, output motion
|
533 |
+
do not calculate loss and metric
|
534 |
+
save video
|
535 |
+
'''
|
536 |
+
results_save_path = self.checkpoint_path + f"/{epoch}/"
|
537 |
+
if os.path.exists(results_save_path):
|
538 |
+
import shutil
|
539 |
+
shutil.rmtree(results_save_path)
|
540 |
+
os.makedirs(results_save_path)
|
541 |
+
start_time = time.time()
|
542 |
+
total_length = 0
|
543 |
+
test_seq_list = self.test_data.selected_file
|
544 |
+
align = 0
|
545 |
+
latent_out = []
|
546 |
+
latent_ori = []
|
547 |
+
l2_all = 0
|
548 |
+
lvel = 0
|
549 |
+
for its, batch_data in enumerate(self.test_loader):
|
550 |
+
tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j = test_demo_gpu(
|
551 |
+
self.model, self.vq_model_face, self.vq_model_upper, self.vq_model_hands, self.vq_model_lower, self.global_motion, self.smplx,
|
552 |
+
batch_data,
|
553 |
+
self.args,
|
554 |
+
self.joints, self.joint_mask_upper, self.joint_mask_lower, self.joint_mask_hands,
|
555 |
+
self.log_softmax,
|
556 |
+
)
|
557 |
+
|
558 |
+
tar_pose_np = tar_pose.detach().cpu().numpy()
|
559 |
+
rec_pose_np = rec_pose.detach().cpu().numpy()
|
560 |
+
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
|
561 |
+
rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100)
|
562 |
+
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
|
563 |
+
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
|
564 |
+
#'''
|
565 |
+
# its = 0
|
566 |
+
gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True)
|
567 |
+
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
568 |
+
betas=gt_npz["betas"],
|
569 |
+
poses=tar_pose_np,
|
570 |
+
expressions=tar_exp_np,
|
571 |
+
trans=tar_trans_np,
|
572 |
+
model='smplx2020',
|
573 |
+
gender='neutral',
|
574 |
+
mocap_frame_rate = 30,
|
575 |
+
)
|
576 |
+
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
577 |
+
betas=gt_npz["betas"],
|
578 |
+
poses=rec_pose_np,
|
579 |
+
expressions=rec_exp_np,
|
580 |
+
trans=rec_trans_np,
|
581 |
+
model='smplx2020',
|
582 |
+
gender='neutral',
|
583 |
+
mocap_frame_rate = 30,
|
584 |
+
)
|
585 |
+
|
586 |
+
total_length += n
|
587 |
+
render_vid_path = other_tools_hf.render_one_sequence_no_gt(
|
588 |
+
results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
589 |
+
# results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
590 |
+
results_save_path,
|
591 |
+
self.audio_path,
|
592 |
+
self.args.data_path_1+"smplx_models/",
|
593 |
+
use_matplotlib = False,
|
594 |
+
args = self.args,
|
595 |
+
)
|
596 |
+
result = gr.Video(value=render_vid_path, visible=True)
|
597 |
+
end_time = time.time() - start_time
|
598 |
+
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
|
599 |
+
return result
|
600 |
+
|
601 |
+
|
602 |
+
@logger.catch
|
603 |
+
def emage(audio_path):
|
604 |
+
smplx_path = None
|
605 |
+
text_path = None
|
606 |
+
rank = 0
|
607 |
+
world_size = 1
|
608 |
+
args = config.parse_args()
|
609 |
+
#os.environ['TRANSFORMERS_CACHE'] = args.data_path_1 + "hub/"
|
610 |
+
if not sys.warnoptions:
|
611 |
+
warnings.simplefilter("ignore")
|
612 |
+
# dist.init_process_group(backend="gloo", rank=rank, world_size=world_size)
|
613 |
+
|
614 |
+
#logger_tools.set_args_and_logger(args, rank)
|
615 |
+
other_tools_hf.set_random_seed(args)
|
616 |
+
other_tools_hf.print_exp_info(args)
|
617 |
+
|
618 |
+
# return one intance of trainer
|
619 |
+
trainer = BaseTrainer(args, sp = smplx_path, ap = audio_path, tp = text_path)
|
620 |
+
result = trainer.test_demo(999)
|
621 |
+
return result
|
622 |
+
|
623 |
+
examples = [
|
624 |
+
["./EMAGE/test_sequences/wave16k/2_scott_0_1_1.wav"],
|
625 |
+
["./EMAGE/test_sequences/wave16k/2_scott_0_2_2.wav"],
|
626 |
+
["./EMAGE/test_sequences/wave16k/2_scott_0_3_3.wav"],
|
627 |
+
]
|
628 |
+
|
629 |
+
demo = gr.Interface(
|
630 |
+
emage, # function
|
631 |
+
inputs=[
|
632 |
+
# gr.File(label="Please upload SMPL-X file with npz format here.", file_types=["npz", "NPZ"]),
|
633 |
+
gr.Audio(),
|
634 |
+
# gr.File(label="Please upload textgrid format file here.", file_types=["TextGrid", "Textgrid", "textgrid"])
|
635 |
+
], # input type
|
636 |
+
outputs=gr.Video(format="mp4", visible=True),
|
637 |
+
title='\
|
638 |
+
<div align="center">\
|
639 |
+
EMAGE: Towards Unified Holistic Co-Speech Gesture Generation via Expressive Masked Audio Gesture Modeling <br/>\
|
640 |
+
CVPR 2024 <br/>\
|
641 |
+
</div>',
|
642 |
+
description='\
|
643 |
+
<div align="center">\
|
644 |
+
Haiyang Liu1*, Zihao Zhu2*, Giorgio Becherini3, Yichen Peng4, Mingyang Su5,<br/>\
|
645 |
+
You Zhou, Xuefei Zhe, Naoya Iwamoto, Bo Zheng, Michael J. Black3 <br/>\
|
646 |
+
(*Equal Contribution) <br/>\
|
647 |
+
1The University of Tokyo, 2Keio University, 4Japan Advanced Institute of Science and Technology, <br/>\
|
648 |
+
3Max Planck Institute for Intelligent Systems, 5Tsinghua University <br/>\
|
649 |
+
</div>\
|
650 |
+
',
|
651 |
+
article="\
|
652 |
+
Due to the limited resources in this space, we process the first 8s of your uploaded audio. <br/>\
|
653 |
+
Try to develop this space locally for longer motion generation, e.g., 60s. <br/>\
|
654 |
+
Relevant links: [Project Page (https://pantomatrix.github.io/EMAGE/)\
|
655 |
+
",
|
656 |
+
examples=examples,
|
657 |
+
)
|
658 |
+
|
659 |
+
|
660 |
+
if __name__ == "__main__":
|
661 |
+
os.environ["MASTER_ADDR"]='127.0.0.1'
|
662 |
+
os.environ["MASTER_PORT"]='8675'
|
663 |
+
#os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
|
664 |
+
demo.launch(share=True)
|
.ipynb_checkpoints/packages-checkpoint.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
libgl1-mesa-dev
|
2 |
+
libglu1-mesa-dev
|
3 |
+
freeglut3-dev
|
4 |
+
mesa-common-dev
|
.ipynb_checkpoints/requirements-checkpoint.txt
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
ConfigArgParse==1.7
|
3 |
+
fasttext==0.9.2
|
4 |
+
h5py==3.10.0
|
5 |
+
imageio==2.31.4
|
6 |
+
ipython==8.12.3
|
7 |
+
joblib==1.3.2
|
8 |
+
librosa==0.10.1
|
9 |
+
lmdb==1.4.1
|
10 |
+
loguru==0.7.2
|
11 |
+
matplotlib==3.7.3
|
12 |
+
moviepy==1.0.3
|
13 |
+
gradio
|
14 |
+
fasttext-wheel
|
15 |
+
opencv_contrib_python==4.8.1.78
|
16 |
+
opencv_python==4.8.1.78
|
17 |
+
pandas==1.5.3
|
18 |
+
peakutils==1.3.4
|
19 |
+
ptflops==0.7.1.2
|
20 |
+
python_igraph==0.11.3
|
21 |
+
pyvirtualdisplay==3.0
|
22 |
+
PyYAML==6.0.1
|
23 |
+
replicate==0.15.4
|
24 |
+
scikit_learn==1.3.2
|
25 |
+
scipy
|
26 |
+
soundfile==0.12.1
|
27 |
+
termcolor==2.4.0
|
28 |
+
textgrid==1.5
|
29 |
+
torch==2.1.0
|
30 |
+
torchvision
|
31 |
+
tqdm==4.66.1
|
32 |
+
transformers==4.35.2
|
33 |
+
trimesh==3.23.5
|
34 |
+
wandb==0.16.0
|
35 |
+
pyglet<2
|
36 |
+
smplx
|
37 |
+
tensorboard
|
38 |
+
pyrender
|
39 |
+
pyarrow
|
.ipynb_checkpoints/test_demo-checkpoint.py
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import signal
|
3 |
+
import time
|
4 |
+
import csv
|
5 |
+
import sys
|
6 |
+
import warnings
|
7 |
+
import random
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.distributed as dist
|
12 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
13 |
+
import torch.multiprocessing as mp
|
14 |
+
import numpy as np
|
15 |
+
import time
|
16 |
+
import pprint
|
17 |
+
from loguru import logger
|
18 |
+
import smplx
|
19 |
+
from torch.utils.tensorboard import SummaryWriter
|
20 |
+
import wandb
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
from utils import config, logger_tools, other_tools, metric, data_transfer
|
23 |
+
from dataloaders import data_tools
|
24 |
+
from dataloaders.build_vocab import Vocab
|
25 |
+
from optimizers.optim_factory import create_optimizer
|
26 |
+
from optimizers.scheduler_factory import create_scheduler
|
27 |
+
from optimizers.loss_factory import get_loss_func
|
28 |
+
from dataloaders.data_tools import joints_list
|
29 |
+
from utils import rotation_conversions as rc
|
30 |
+
|
31 |
+
class BaseTrainer(object):
|
32 |
+
def __init__(self, args):
|
33 |
+
self.args = args
|
34 |
+
self.rank = dist.get_rank()
|
35 |
+
self.checkpoint_path = args.out_path + "custom/" + args.name + args.notes + "/" #wandb.run.dir #args.cache_path+args.out_path+"/"+args.name
|
36 |
+
if self.rank == 0:
|
37 |
+
self.test_data = __import__(f"dataloaders.{args.dataset}", fromlist=["something"]).CustomDataset(args, "test")
|
38 |
+
self.test_loader = torch.utils.data.DataLoader(
|
39 |
+
self.test_data,
|
40 |
+
batch_size=1,
|
41 |
+
shuffle=False,
|
42 |
+
num_workers=args.loader_workers,
|
43 |
+
drop_last=False,
|
44 |
+
)
|
45 |
+
logger.info(f"Init test dataloader success")
|
46 |
+
model_module = __import__(f"models.{args.model}", fromlist=["something"])
|
47 |
+
|
48 |
+
if args.ddp:
|
49 |
+
self.model = getattr(model_module, args.g_name)(args).to(self.rank)
|
50 |
+
process_group = torch.distributed.new_group()
|
51 |
+
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model, process_group)
|
52 |
+
self.model = DDP(self.model, device_ids=[self.rank], output_device=self.rank,
|
53 |
+
broadcast_buffers=False, find_unused_parameters=False)
|
54 |
+
else:
|
55 |
+
self.model = torch.nn.DataParallel(getattr(model_module, args.g_name)(args), args.gpus).cuda()
|
56 |
+
|
57 |
+
if self.rank == 0:
|
58 |
+
logger.info(self.model)
|
59 |
+
logger.info(f"init {args.g_name} success")
|
60 |
+
|
61 |
+
self.smplx = smplx.create(
|
62 |
+
self.args.data_path_1+"smplx_models/",
|
63 |
+
model_type='smplx',
|
64 |
+
gender='NEUTRAL_2020',
|
65 |
+
use_face_contour=False,
|
66 |
+
num_betas=300,
|
67 |
+
num_expression_coeffs=100,
|
68 |
+
ext='npz',
|
69 |
+
use_pca=False,
|
70 |
+
).to(self.rank).eval()
|
71 |
+
|
72 |
+
self.args = args
|
73 |
+
self.joints = self.test_data.joints
|
74 |
+
self.ori_joint_list = joints_list[self.args.ori_joints]
|
75 |
+
self.tar_joint_list_face = joints_list["beat_smplx_face"]
|
76 |
+
self.tar_joint_list_upper = joints_list["beat_smplx_upper"]
|
77 |
+
self.tar_joint_list_hands = joints_list["beat_smplx_hands"]
|
78 |
+
self.tar_joint_list_lower = joints_list["beat_smplx_lower"]
|
79 |
+
|
80 |
+
self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
81 |
+
self.joints = 55
|
82 |
+
for joint_name in self.tar_joint_list_face:
|
83 |
+
self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
84 |
+
self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
85 |
+
for joint_name in self.tar_joint_list_upper:
|
86 |
+
self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
87 |
+
self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
88 |
+
for joint_name in self.tar_joint_list_hands:
|
89 |
+
self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
90 |
+
self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
91 |
+
for joint_name in self.tar_joint_list_lower:
|
92 |
+
self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
93 |
+
|
94 |
+
self.tracker = other_tools.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False,False,False])
|
95 |
+
|
96 |
+
vq_model_module = __import__(f"models.motion_representation", fromlist=["something"])
|
97 |
+
self.args.vae_layer = 2
|
98 |
+
self.args.vae_length = 256
|
99 |
+
self.args.vae_test_dim = 106
|
100 |
+
self.vq_model_face = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank)
|
101 |
+
# print(self.vq_model_face)
|
102 |
+
other_tools.load_checkpoints(self.vq_model_face, self.args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name)
|
103 |
+
self.args.vae_test_dim = 78
|
104 |
+
self.vq_model_upper = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank)
|
105 |
+
other_tools.load_checkpoints(self.vq_model_upper, self.args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name)
|
106 |
+
self.args.vae_test_dim = 180
|
107 |
+
self.vq_model_hands = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank)
|
108 |
+
other_tools.load_checkpoints(self.vq_model_hands, self.args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name)
|
109 |
+
self.args.vae_test_dim = 61
|
110 |
+
self.args.vae_layer = 4
|
111 |
+
self.vq_model_lower = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank)
|
112 |
+
other_tools.load_checkpoints(self.vq_model_lower, self.args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name)
|
113 |
+
self.args.vae_test_dim = 61
|
114 |
+
self.args.vae_layer = 4
|
115 |
+
self.global_motion = getattr(vq_model_module, "VAEConvZero")(self.args).to(self.rank)
|
116 |
+
other_tools.load_checkpoints(self.global_motion, self.args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name)
|
117 |
+
self.args.vae_test_dim = 330
|
118 |
+
self.args.vae_layer = 4
|
119 |
+
self.args.vae_length = 240
|
120 |
+
|
121 |
+
self.vq_model_face.eval()
|
122 |
+
self.vq_model_upper.eval()
|
123 |
+
self.vq_model_hands.eval()
|
124 |
+
self.vq_model_lower.eval()
|
125 |
+
self.global_motion.eval()
|
126 |
+
|
127 |
+
self.cls_loss = nn.NLLLoss().to(self.rank)
|
128 |
+
self.reclatent_loss = nn.MSELoss().to(self.rank)
|
129 |
+
self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank)
|
130 |
+
self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank)
|
131 |
+
self.log_softmax = nn.LogSoftmax(dim=2).to(self.rank)
|
132 |
+
|
133 |
+
|
134 |
+
def inverse_selection(self, filtered_t, selection_array, n):
|
135 |
+
original_shape_t = np.zeros((n, selection_array.size))
|
136 |
+
selected_indices = np.where(selection_array == 1)[0]
|
137 |
+
for i in range(n):
|
138 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
139 |
+
return original_shape_t
|
140 |
+
|
141 |
+
def inverse_selection_tensor(self, filtered_t, selection_array, n):
|
142 |
+
selection_array = torch.from_numpy(selection_array).cuda()
|
143 |
+
original_shape_t = torch.zeros((n, 165)).cuda()
|
144 |
+
selected_indices = torch.where(selection_array == 1)[0]
|
145 |
+
for i in range(n):
|
146 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
147 |
+
return original_shape_t
|
148 |
+
|
149 |
+
def _load_data(self, dict_data):
|
150 |
+
tar_pose_raw = dict_data["pose"]
|
151 |
+
tar_pose = tar_pose_raw[:, :, :165].to(self.rank)
|
152 |
+
tar_contact = tar_pose_raw[:, :, 165:169].to(self.rank)
|
153 |
+
tar_trans = dict_data["trans"].to(self.rank)
|
154 |
+
tar_exps = dict_data["facial"].to(self.rank)
|
155 |
+
in_audio = dict_data["audio"].to(self.rank)
|
156 |
+
in_word = dict_data["word"].to(self.rank)
|
157 |
+
tar_beta = dict_data["beta"].to(self.rank)
|
158 |
+
tar_id = dict_data["id"].to(self.rank).long()
|
159 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
160 |
+
|
161 |
+
tar_pose_jaw = tar_pose[:, :, 66:69]
|
162 |
+
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
|
163 |
+
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
|
164 |
+
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
|
165 |
+
|
166 |
+
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
|
167 |
+
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
|
168 |
+
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
|
169 |
+
|
170 |
+
tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)]
|
171 |
+
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
|
172 |
+
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
|
173 |
+
|
174 |
+
tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)]
|
175 |
+
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
|
176 |
+
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
|
177 |
+
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
|
178 |
+
|
179 |
+
# tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
180 |
+
# tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
181 |
+
tar4dis = torch.cat([tar_pose_jaw, tar_pose_upper, tar_pose_hands, tar_pose_leg], dim=2)
|
182 |
+
|
183 |
+
tar_index_value_face_top = self.vq_model_face.map2index(tar_pose_face) # bs*n/4
|
184 |
+
tar_index_value_upper_top = self.vq_model_upper.map2index(tar_pose_upper) # bs*n/4
|
185 |
+
tar_index_value_hands_top = self.vq_model_hands.map2index(tar_pose_hands) # bs*n/4
|
186 |
+
tar_index_value_lower_top = self.vq_model_lower.map2index(tar_pose_lower) # bs*n/4
|
187 |
+
|
188 |
+
latent_face_top = self.vq_model_face.map2latent(tar_pose_face) # bs*n/4
|
189 |
+
latent_upper_top = self.vq_model_upper.map2latent(tar_pose_upper) # bs*n/4
|
190 |
+
latent_hands_top = self.vq_model_hands.map2latent(tar_pose_hands) # bs*n/4
|
191 |
+
latent_lower_top = self.vq_model_lower.map2latent(tar_pose_lower) # bs*n/4
|
192 |
+
|
193 |
+
latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2)
|
194 |
+
|
195 |
+
index_in = torch.stack([tar_index_value_upper_top, tar_index_value_hands_top, tar_index_value_lower_top], dim=-1).long()
|
196 |
+
|
197 |
+
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
|
198 |
+
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
|
199 |
+
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
|
200 |
+
# print(tar_index_value_upper_top.shape, index_in.shape)
|
201 |
+
return {
|
202 |
+
"tar_pose_jaw": tar_pose_jaw,
|
203 |
+
"tar_pose_face": tar_pose_face,
|
204 |
+
"tar_pose_upper": tar_pose_upper,
|
205 |
+
"tar_pose_lower": tar_pose_lower,
|
206 |
+
"tar_pose_hands": tar_pose_hands,
|
207 |
+
'tar_pose_leg': tar_pose_leg,
|
208 |
+
"in_audio": in_audio,
|
209 |
+
"in_word": in_word,
|
210 |
+
"tar_trans": tar_trans,
|
211 |
+
"tar_exps": tar_exps,
|
212 |
+
"tar_beta": tar_beta,
|
213 |
+
"tar_pose": tar_pose,
|
214 |
+
"tar4dis": tar4dis,
|
215 |
+
"tar_index_value_face_top": tar_index_value_face_top,
|
216 |
+
"tar_index_value_upper_top": tar_index_value_upper_top,
|
217 |
+
"tar_index_value_hands_top": tar_index_value_hands_top,
|
218 |
+
"tar_index_value_lower_top": tar_index_value_lower_top,
|
219 |
+
"latent_face_top": latent_face_top,
|
220 |
+
"latent_upper_top": latent_upper_top,
|
221 |
+
"latent_hands_top": latent_hands_top,
|
222 |
+
"latent_lower_top": latent_lower_top,
|
223 |
+
"latent_in": latent_in,
|
224 |
+
"index_in": index_in,
|
225 |
+
"tar_id": tar_id,
|
226 |
+
"latent_all": latent_all,
|
227 |
+
"tar_pose_6d": tar_pose_6d,
|
228 |
+
"tar_contact": tar_contact,
|
229 |
+
}
|
230 |
+
|
231 |
+
def _g_test(self, loaded_data):
|
232 |
+
mode = 'test'
|
233 |
+
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints
|
234 |
+
tar_pose = loaded_data["tar_pose"]
|
235 |
+
tar_beta = loaded_data["tar_beta"]
|
236 |
+
in_word = loaded_data["in_word"]
|
237 |
+
tar_exps = loaded_data["tar_exps"]
|
238 |
+
tar_contact = loaded_data["tar_contact"]
|
239 |
+
in_audio = loaded_data["in_audio"]
|
240 |
+
tar_trans = loaded_data["tar_trans"]
|
241 |
+
|
242 |
+
remain = n%8
|
243 |
+
if remain != 0:
|
244 |
+
tar_pose = tar_pose[:, :-remain, :]
|
245 |
+
tar_beta = tar_beta[:, :-remain, :]
|
246 |
+
tar_trans = tar_trans[:, :-remain, :]
|
247 |
+
in_word = in_word[:, :-remain]
|
248 |
+
tar_exps = tar_exps[:, :-remain, :]
|
249 |
+
tar_contact = tar_contact[:, :-remain, :]
|
250 |
+
n = n - remain
|
251 |
+
|
252 |
+
tar_pose_jaw = tar_pose[:, :, 66:69]
|
253 |
+
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
|
254 |
+
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
|
255 |
+
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
|
256 |
+
|
257 |
+
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
|
258 |
+
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
|
259 |
+
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
|
260 |
+
|
261 |
+
tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)]
|
262 |
+
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
|
263 |
+
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
|
264 |
+
|
265 |
+
tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)]
|
266 |
+
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
|
267 |
+
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
|
268 |
+
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
|
269 |
+
|
270 |
+
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
|
271 |
+
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
|
272 |
+
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
|
273 |
+
|
274 |
+
rec_index_all_face = []
|
275 |
+
rec_index_all_upper = []
|
276 |
+
rec_index_all_lower = []
|
277 |
+
rec_index_all_hands = []
|
278 |
+
|
279 |
+
roundt = (n - self.args.pre_frames) // (self.args.pose_length - self.args.pre_frames)
|
280 |
+
remain = (n - self.args.pre_frames) % (self.args.pose_length - self.args.pre_frames)
|
281 |
+
round_l = self.args.pose_length - self.args.pre_frames
|
282 |
+
|
283 |
+
for i in range(0, roundt):
|
284 |
+
in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames]
|
285 |
+
# audio fps is 16000 and pose fps is 30
|
286 |
+
in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*self.args.pre_frames]
|
287 |
+
in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames]
|
288 |
+
mask_val = torch.ones(bs, self.args.pose_length, self.args.pose_dims+3+4).float().cuda()
|
289 |
+
mask_val[:, :self.args.pre_frames, :] = 0.0
|
290 |
+
if i == 0:
|
291 |
+
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames, :]
|
292 |
+
else:
|
293 |
+
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames, :]
|
294 |
+
# print(latent_all_tmp.shape, latent_last.shape)
|
295 |
+
latent_all_tmp[:, :self.args.pre_frames, :] = latent_last[:, -self.args.pre_frames:, :]
|
296 |
+
|
297 |
+
net_out_val = self.model(
|
298 |
+
in_audio = in_audio_tmp,
|
299 |
+
in_word=in_word_tmp,
|
300 |
+
mask=mask_val,
|
301 |
+
in_motion = latent_all_tmp,
|
302 |
+
in_id = in_id_tmp,
|
303 |
+
use_attentions=True,)
|
304 |
+
|
305 |
+
if self.args.cu != 0:
|
306 |
+
rec_index_upper = self.log_softmax(net_out_val["cls_upper"]).reshape(-1, self.args.vae_codebook_size)
|
307 |
+
_, rec_index_upper = torch.max(rec_index_upper.reshape(-1, self.args.pose_length, self.args.vae_codebook_size), dim=2)
|
308 |
+
#rec_upper = self.vq_model_upper.decode(rec_index_upper)
|
309 |
+
else:
|
310 |
+
_, rec_index_upper, _, _ = self.vq_model_upper.quantizer(net_out_val["rec_upper"])
|
311 |
+
#rec_upper = self.vq_model_upper.decoder(rec_index_upper)
|
312 |
+
if self.args.cl != 0:
|
313 |
+
rec_index_lower = self.log_softmax(net_out_val["cls_lower"]).reshape(-1, self.args.vae_codebook_size)
|
314 |
+
_, rec_index_lower = torch.max(rec_index_lower.reshape(-1, self.args.pose_length, self.args.vae_codebook_size), dim=2)
|
315 |
+
#rec_lower = self.vq_model_lower.decode(rec_index_lower)
|
316 |
+
else:
|
317 |
+
_, rec_index_lower, _, _ = self.vq_model_lower.quantizer(net_out_val["rec_lower"])
|
318 |
+
#rec_lower = self.vq_model_lower.decoder(rec_index_lower)
|
319 |
+
if self.args.ch != 0:
|
320 |
+
rec_index_hands = self.log_softmax(net_out_val["cls_hands"]).reshape(-1, self.args.vae_codebook_size)
|
321 |
+
_, rec_index_hands = torch.max(rec_index_hands.reshape(-1, self.args.pose_length, self.args.vae_codebook_size), dim=2)
|
322 |
+
#rec_hands = self.vq_model_hands.decode(rec_index_hands)
|
323 |
+
else:
|
324 |
+
_, rec_index_hands, _, _ = self.vq_model_hands.quantizer(net_out_val["rec_hands"])
|
325 |
+
#rec_hands = self.vq_model_hands.decoder(rec_index_hands)
|
326 |
+
if self.args.cf != 0:
|
327 |
+
rec_index_face = self.log_softmax(net_out_val["cls_face"]).reshape(-1, self.args.vae_codebook_size)
|
328 |
+
_, rec_index_face = torch.max(rec_index_face.reshape(-1, self.args.pose_length, self.args.vae_codebook_size), dim=2)
|
329 |
+
#rec_face = self.vq_model_face.decoder(rec_index_face)
|
330 |
+
else:
|
331 |
+
_, rec_index_face, _, _ = self.vq_model_face.quantizer(net_out_val["rec_face"])
|
332 |
+
#rec_face = self.vq_model_face.decoder(rec_index_face)
|
333 |
+
|
334 |
+
if i == 0:
|
335 |
+
rec_index_all_face.append(rec_index_face)
|
336 |
+
rec_index_all_upper.append(rec_index_upper)
|
337 |
+
rec_index_all_lower.append(rec_index_lower)
|
338 |
+
rec_index_all_hands.append(rec_index_hands)
|
339 |
+
else:
|
340 |
+
rec_index_all_face.append(rec_index_face[:, self.args.pre_frames:])
|
341 |
+
rec_index_all_upper.append(rec_index_upper[:, self.args.pre_frames:])
|
342 |
+
rec_index_all_lower.append(rec_index_lower[:, self.args.pre_frames:])
|
343 |
+
rec_index_all_hands.append(rec_index_hands[:, self.args.pre_frames:])
|
344 |
+
|
345 |
+
if self.args.cu != 0:
|
346 |
+
rec_upper_last = self.vq_model_upper.decode(rec_index_upper)
|
347 |
+
else:
|
348 |
+
rec_upper_last = self.vq_model_upper.decoder(rec_index_upper)
|
349 |
+
if self.args.cl != 0:
|
350 |
+
rec_lower_last = self.vq_model_lower.decode(rec_index_lower)
|
351 |
+
else:
|
352 |
+
rec_lower_last = self.vq_model_lower.decoder(rec_index_lower)
|
353 |
+
if self.args.ch != 0:
|
354 |
+
rec_hands_last = self.vq_model_hands.decode(rec_index_hands)
|
355 |
+
else:
|
356 |
+
rec_hands_last = self.vq_model_hands.decoder(rec_index_hands)
|
357 |
+
# if self.args.cf != 0:
|
358 |
+
# rec_face_last = self.vq_model_face.decode(rec_index_face)
|
359 |
+
# else:
|
360 |
+
# rec_face_last = self.vq_model_face.decoder(rec_index_face)
|
361 |
+
|
362 |
+
rec_pose_legs = rec_lower_last[:, :, :54]
|
363 |
+
bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1]
|
364 |
+
rec_pose_upper = rec_upper_last.reshape(bs, n, 13, 6)
|
365 |
+
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
|
366 |
+
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
|
367 |
+
rec_pose_upper_recover = self.inverse_selection_tensor(rec_pose_upper, self.joint_mask_upper, bs*n)
|
368 |
+
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
|
369 |
+
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
|
370 |
+
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
|
371 |
+
rec_pose_lower_recover = self.inverse_selection_tensor(rec_pose_lower, self.joint_mask_lower, bs*n)
|
372 |
+
rec_pose_hands = rec_hands_last.reshape(bs, n, 30, 6)
|
373 |
+
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
|
374 |
+
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
|
375 |
+
rec_pose_hands_recover = self.inverse_selection_tensor(rec_pose_hands, self.joint_mask_hands, bs*n)
|
376 |
+
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
|
377 |
+
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, j, 3))
|
378 |
+
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
|
379 |
+
rec_trans_v_s = rec_lower_last[:, :, 54:57]
|
380 |
+
rec_x_trans = other_tools.velocity2position(rec_trans_v_s[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
|
381 |
+
rec_z_trans = other_tools.velocity2position(rec_trans_v_s[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
|
382 |
+
rec_y_trans = rec_trans_v_s[:,:,1:2]
|
383 |
+
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
384 |
+
latent_last = torch.cat([rec_pose, rec_trans, rec_lower_last[:, :, 57:61]], dim=-1)
|
385 |
+
|
386 |
+
rec_index_face = torch.cat(rec_index_all_face, dim=1)
|
387 |
+
rec_index_upper = torch.cat(rec_index_all_upper, dim=1)
|
388 |
+
rec_index_lower = torch.cat(rec_index_all_lower, dim=1)
|
389 |
+
rec_index_hands = torch.cat(rec_index_all_hands, dim=1)
|
390 |
+
if self.args.cu != 0:
|
391 |
+
rec_upper = self.vq_model_upper.decode(rec_index_upper)
|
392 |
+
else:
|
393 |
+
rec_upper = self.vq_model_upper.decoder(rec_index_upper)
|
394 |
+
if self.args.cl != 0:
|
395 |
+
rec_lower = self.vq_model_lower.decode(rec_index_lower)
|
396 |
+
else:
|
397 |
+
rec_lower = self.vq_model_lower.decoder(rec_index_lower)
|
398 |
+
if self.args.ch != 0:
|
399 |
+
rec_hands = self.vq_model_hands.decode(rec_index_hands)
|
400 |
+
else:
|
401 |
+
rec_hands = self.vq_model_hands.decoder(rec_index_hands)
|
402 |
+
if self.args.cf != 0:
|
403 |
+
rec_face = self.vq_model_face.decode(rec_index_face)
|
404 |
+
else:
|
405 |
+
rec_face = self.vq_model_face.decoder(rec_index_face)
|
406 |
+
|
407 |
+
rec_exps = rec_face[:, :, 6:]
|
408 |
+
rec_pose_jaw = rec_face[:, :, :6]
|
409 |
+
rec_pose_legs = rec_lower[:, :, :54]
|
410 |
+
bs, n = rec_pose_jaw.shape[0], rec_pose_jaw.shape[1]
|
411 |
+
rec_pose_upper = rec_upper.reshape(bs, n, 13, 6)
|
412 |
+
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
|
413 |
+
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
|
414 |
+
rec_pose_upper_recover = self.inverse_selection_tensor(rec_pose_upper, self.joint_mask_upper, bs*n)
|
415 |
+
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
|
416 |
+
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
|
417 |
+
rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6)
|
418 |
+
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
|
419 |
+
rec_pose_lower_recover = self.inverse_selection_tensor(rec_pose_lower, self.joint_mask_lower, bs*n)
|
420 |
+
rec_pose_hands = rec_hands.reshape(bs, n, 30, 6)
|
421 |
+
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
|
422 |
+
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
|
423 |
+
rec_pose_hands_recover = self.inverse_selection_tensor(rec_pose_hands, self.joint_mask_hands, bs*n)
|
424 |
+
rec_pose_jaw = rec_pose_jaw.reshape(bs*n, 6)
|
425 |
+
rec_pose_jaw = rc.rotation_6d_to_matrix(rec_pose_jaw)
|
426 |
+
rec_pose_jaw = rc.matrix_to_axis_angle(rec_pose_jaw).reshape(bs*n, 1*3)
|
427 |
+
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
|
428 |
+
rec_pose[:, 66:69] = rec_pose_jaw
|
429 |
+
|
430 |
+
to_global = rec_lower
|
431 |
+
to_global[:, :, 54:57] = 0.0
|
432 |
+
to_global[:, :, :54] = rec_lower2global
|
433 |
+
rec_global = self.global_motion(to_global)
|
434 |
+
|
435 |
+
rec_trans_v_s = rec_global["rec_pose"][:, :, 54:57]
|
436 |
+
rec_x_trans = other_tools.velocity2position(rec_trans_v_s[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
|
437 |
+
rec_z_trans = other_tools.velocity2position(rec_trans_v_s[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
|
438 |
+
rec_y_trans = rec_trans_v_s[:,:,1:2]
|
439 |
+
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
440 |
+
tar_pose = tar_pose[:, :n, :]
|
441 |
+
tar_exps = tar_exps[:, :n, :]
|
442 |
+
tar_trans = tar_trans[:, :n, :]
|
443 |
+
tar_beta = tar_beta[:, :n, :]
|
444 |
+
|
445 |
+
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3))
|
446 |
+
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
|
447 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3))
|
448 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
449 |
+
|
450 |
+
return {
|
451 |
+
'rec_pose': rec_pose,
|
452 |
+
'rec_trans': rec_trans,
|
453 |
+
'tar_pose': tar_pose,
|
454 |
+
'tar_exps': tar_exps,
|
455 |
+
'tar_beta': tar_beta,
|
456 |
+
'tar_trans': tar_trans,
|
457 |
+
'rec_exps': rec_exps,
|
458 |
+
}
|
459 |
+
|
460 |
+
|
461 |
+
def test_demo(self, epoch):
|
462 |
+
'''
|
463 |
+
input audio and text, output motion
|
464 |
+
do not calculate loss and metric
|
465 |
+
save video
|
466 |
+
'''
|
467 |
+
results_save_path = self.checkpoint_path + f"/{epoch}/"
|
468 |
+
if os.path.exists(results_save_path):
|
469 |
+
return 0
|
470 |
+
os.makedirs(results_save_path)
|
471 |
+
start_time = time.time()
|
472 |
+
total_length = 0
|
473 |
+
test_seq_list = self.test_data.selected_file
|
474 |
+
align = 0
|
475 |
+
latent_out = []
|
476 |
+
latent_ori = []
|
477 |
+
l2_all = 0
|
478 |
+
lvel = 0
|
479 |
+
self.model.eval()
|
480 |
+
self.smplx.eval()
|
481 |
+
# self.eval_copy.eval()
|
482 |
+
with torch.no_grad():
|
483 |
+
for its, batch_data in enumerate(self.test_loader):
|
484 |
+
loaded_data = self._load_data(batch_data)
|
485 |
+
net_out = self._g_test(loaded_data)
|
486 |
+
tar_pose = net_out['tar_pose']
|
487 |
+
rec_pose = net_out['rec_pose']
|
488 |
+
tar_exps = net_out['tar_exps']
|
489 |
+
tar_beta = net_out['tar_beta']
|
490 |
+
rec_trans = net_out['rec_trans']
|
491 |
+
tar_trans = net_out['tar_trans']
|
492 |
+
rec_exps = net_out['rec_exps']
|
493 |
+
# print(rec_pose.shape, tar_pose.shape)
|
494 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
495 |
+
|
496 |
+
# interpolate to 30fps
|
497 |
+
if (30/self.args.pose_fps) != 1:
|
498 |
+
assert 30%self.args.pose_fps == 0
|
499 |
+
n *= int(30/self.args.pose_fps)
|
500 |
+
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
|
501 |
+
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
|
502 |
+
|
503 |
+
# print(rec_pose.shape, tar_pose.shape)
|
504 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
|
505 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
506 |
+
|
507 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
|
508 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
509 |
+
|
510 |
+
tar_pose_np = tar_pose.detach().cpu().numpy()
|
511 |
+
rec_pose_np = rec_pose.detach().cpu().numpy()
|
512 |
+
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
|
513 |
+
rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100)
|
514 |
+
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
|
515 |
+
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
|
516 |
+
|
517 |
+
gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True)
|
518 |
+
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
519 |
+
betas=gt_npz["betas"],
|
520 |
+
poses=tar_pose_np,
|
521 |
+
expressions=tar_exp_np,
|
522 |
+
trans=tar_trans_np,
|
523 |
+
model='smplx2020',
|
524 |
+
gender='neutral',
|
525 |
+
mocap_frame_rate = 30 ,
|
526 |
+
)
|
527 |
+
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
528 |
+
betas=gt_npz["betas"],
|
529 |
+
poses=rec_pose_np,
|
530 |
+
expressions=rec_exp_np,
|
531 |
+
trans=rec_trans_np,
|
532 |
+
model='smplx2020',
|
533 |
+
gender='neutral',
|
534 |
+
mocap_frame_rate = 30,
|
535 |
+
)
|
536 |
+
total_length += n
|
537 |
+
# other_tools.render_one_sequence(
|
538 |
+
# results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
539 |
+
# results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
540 |
+
# results_save_path,
|
541 |
+
# self.args.data_path+"wave16k/"+test_seq_list.iloc[its]['id']+".wav",
|
542 |
+
# self.args.data_path_1+"smplx_models/",
|
543 |
+
# use_matplotlib = False,
|
544 |
+
# args = self.args,
|
545 |
+
# )
|
546 |
+
end_time = time.time() - start_time
|
547 |
+
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
|
548 |
+
|
549 |
+
@logger.catch
|
550 |
+
def main_worker(rank, world_size, args):
|
551 |
+
#os.environ['TRANSFORMERS_CACHE'] = args.data_path_1 + "hub/"
|
552 |
+
if not sys.warnoptions:
|
553 |
+
warnings.simplefilter("ignore")
|
554 |
+
dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
|
555 |
+
|
556 |
+
logger_tools.set_args_and_logger(args, rank)
|
557 |
+
other_tools.set_random_seed(args)
|
558 |
+
other_tools.print_exp_info(args)
|
559 |
+
|
560 |
+
# return one intance of trainer
|
561 |
+
other_tools.write_wav_names_to_csv(args.data_path, args.data_path+"test.csv")
|
562 |
+
trainer = BaseTrainer(args)
|
563 |
+
other_tools.load_checkpoints(trainer.model, args.test_ckpt, args.g_name)
|
564 |
+
trainer.test_demo(999)
|
565 |
+
|
566 |
+
|
567 |
+
|
568 |
+
if __name__ == "__main__":
|
569 |
+
os.environ["MASTER_ADDR"]='127.0.0.1'
|
570 |
+
os.environ["MASTER_PORT"]='8675'
|
571 |
+
#os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
|
572 |
+
args = config.parse_args()
|
573 |
+
if args.ddp:
|
574 |
+
mp.set_start_method("spawn", force=True)
|
575 |
+
mp.spawn(
|
576 |
+
main_worker,
|
577 |
+
args=(len(args.gpus), args,),
|
578 |
+
nprocs=len(args.gpus),
|
579 |
+
)
|
580 |
+
else:
|
581 |
+
main_worker(0, 1, args)
|
EMAGE/emage_audio_175.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b19f845300e7f52c77eddfb6307f48c8fd2766edada3efa8ad1973a87990c1ea
|
3 |
+
size 556333206
|
EMAGE/pretrained_vq/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
EMAGE/pretrained_vq/hands_vertex_1layer_710.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1595a13fbdf38b95da2baf6a4ba9f0c62cd6af8b8f537da12c1c90321affa3b3
|
3 |
+
size 9644516
|
EMAGE/pretrained_vq/last_1700_foot.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f293265b828c6b45e12068c9b7956283c92b40cfdc9dd56ae960bbeb7bba1ad6
|
3 |
+
size 14611444
|
EMAGE/pretrained_vq/last_790_face_v2.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13ff79afef2c3209804c0cae2b9a7c467c1a39268efa87a637e860b8e6b1b4c0
|
3 |
+
size 8935204
|
EMAGE/pretrained_vq/lower_foot_600.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e323ed5f7014957433b59249497188656811b76952d666eae5f4affdc341786
|
3 |
+
size 14873924
|
EMAGE/pretrained_vq/upper_vertex_1layer_710.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58ffcb34ff18f3aeaf53898980ef623ea9ce36f0302a005b5f95ceef1a206a8f
|
3 |
+
size 8701092
|
EMAGE/smplx_models/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
EMAGE/smplx_models/smplx/SMPLX_NEUTRAL_2020.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdf06146e27d92022fe5dadad3b9203373f6879eca8e4d8235359ee3ec6a5a74
|
3 |
+
size 167264530
|
EMAGE/test_sequences/smplxflame_30/2_scott_0_1_1.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37b112fd59fcabb09270d6ca3c74e7459cc5b9729564bcacf1f75609f3999592
|
3 |
+
size 2831524
|
EMAGE/test_sequences/smplxflame_30/2_scott_0_2_2.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5875f768aa4600af7d767625e0d87941b1cca9555855d8c6b509004116790f7d
|
3 |
+
size 2754356
|
EMAGE/test_sequences/smplxflame_30/2_scott_0_3_3.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23ace88c7ff0288af83cc30d2428e0cb70c3d92bce981a67a5811cd53ab96db4
|
3 |
+
size 3021476
|
EMAGE/test_sequences/smplxflame_30/2_scott_0_4_4.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ede3993db9565b7b3a945532def69d617d6b2338f488a746a7be998f3b0685d8
|
3 |
+
size 2976956
|
EMAGE/test_sequences/test.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
id,type
|
2 |
+
2_scott_0_3_3,test
|
3 |
+
2_scott_0_2_2,test
|
4 |
+
2_scott_0_1_1,test
|
5 |
+
2_scott_0_4_4,test
|
EMAGE/test_sequences/textgrid/2_scott_0_1_1.TextGrid
ADDED
@@ -0,0 +1,3636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
File type = "ooTextFile"
|
2 |
+
Object class = "TextGrid"
|
3 |
+
|
4 |
+
xmin = 0
|
5 |
+
xmax = 64.097375
|
6 |
+
tiers? <exists>
|
7 |
+
size = 2
|
8 |
+
item []:
|
9 |
+
item [1]:
|
10 |
+
class = "IntervalTier"
|
11 |
+
name = "words"
|
12 |
+
xmin = 0
|
13 |
+
xmax = 64.097375
|
14 |
+
intervals: size = 220
|
15 |
+
intervals [1]:
|
16 |
+
xmin = 0
|
17 |
+
xmax = 1.42
|
18 |
+
text = ""
|
19 |
+
intervals [2]:
|
20 |
+
xmin = 1.42
|
21 |
+
xmax = 1.52
|
22 |
+
text = "the"
|
23 |
+
intervals [3]:
|
24 |
+
xmin = 1.52
|
25 |
+
xmax = 1.78
|
26 |
+
text = "first"
|
27 |
+
intervals [4]:
|
28 |
+
xmin = 1.78
|
29 |
+
xmax = 1.97
|
30 |
+
text = "thing"
|
31 |
+
intervals [5]:
|
32 |
+
xmin = 1.97
|
33 |
+
xmax = 2.04
|
34 |
+
text = "i"
|
35 |
+
intervals [6]:
|
36 |
+
xmin = 2.04
|
37 |
+
xmax = 2.21
|
38 |
+
text = "like"
|
39 |
+
intervals [7]:
|
40 |
+
xmin = 2.21
|
41 |
+
xmax = 2.28
|
42 |
+
text = "to"
|
43 |
+
intervals [8]:
|
44 |
+
xmin = 2.28
|
45 |
+
xmax = 2.47
|
46 |
+
text = "do"
|
47 |
+
intervals [9]:
|
48 |
+
xmin = 2.47
|
49 |
+
xmax = 2.63
|
50 |
+
text = "on"
|
51 |
+
intervals [10]:
|
52 |
+
xmin = 2.63
|
53 |
+
xmax = 3.32
|
54 |
+
text = "weekends"
|
55 |
+
intervals [11]:
|
56 |
+
xmin = 3.32
|
57 |
+
xmax = 3.58
|
58 |
+
text = "is"
|
59 |
+
intervals [12]:
|
60 |
+
xmin = 3.58
|
61 |
+
xmax = 4.41
|
62 |
+
text = "relaxing"
|
63 |
+
intervals [13]:
|
64 |
+
xmin = 4.41
|
65 |
+
xmax = 4.52
|
66 |
+
text = ""
|
67 |
+
intervals [14]:
|
68 |
+
xmin = 4.52
|
69 |
+
xmax = 5.05
|
70 |
+
text = "and"
|
71 |
+
intervals [15]:
|
72 |
+
xmin = 5.05
|
73 |
+
xmax = 5.14
|
74 |
+
text = "i"
|
75 |
+
intervals [16]:
|
76 |
+
xmin = 5.14
|
77 |
+
xmax = 5.33
|
78 |
+
text = "think"
|
79 |
+
intervals [17]:
|
80 |
+
xmin = 5.33
|
81 |
+
xmax = 5.41
|
82 |
+
text = "i'll"
|
83 |
+
intervals [18]:
|
84 |
+
xmin = 5.41
|
85 |
+
xmax = 5.5
|
86 |
+
text = "go"
|
87 |
+
intervals [19]:
|
88 |
+
xmin = 5.5
|
89 |
+
xmax = 6
|
90 |
+
text = "shopping"
|
91 |
+
intervals [20]:
|
92 |
+
xmin = 6
|
93 |
+
xmax = 6.11
|
94 |
+
text = "if"
|
95 |
+
intervals [21]:
|
96 |
+
xmin = 6.11
|
97 |
+
xmax = 6.29
|
98 |
+
text = "i'm"
|
99 |
+
intervals [22]:
|
100 |
+
xmin = 6.29
|
101 |
+
xmax = 6.54
|
102 |
+
text = "not"
|
103 |
+
intervals [23]:
|
104 |
+
xmin = 6.54
|
105 |
+
xmax = 6.7
|
106 |
+
text = "that"
|
107 |
+
intervals [24]:
|
108 |
+
xmin = 6.7
|
109 |
+
xmax = 7.19
|
110 |
+
text = "tired"
|
111 |
+
intervals [25]:
|
112 |
+
xmin = 7.19
|
113 |
+
xmax = 7.45
|
114 |
+
text = ""
|
115 |
+
intervals [26]:
|
116 |
+
xmin = 7.45
|
117 |
+
xmax = 7.62
|
118 |
+
text = "so"
|
119 |
+
intervals [27]:
|
120 |
+
xmin = 7.62
|
121 |
+
xmax = 7.74
|
122 |
+
text = "that"
|
123 |
+
intervals [28]:
|
124 |
+
xmin = 7.74
|
125 |
+
xmax = 7.85
|
126 |
+
text = "you"
|
127 |
+
intervals [29]:
|
128 |
+
xmin = 7.85
|
129 |
+
xmax = 8.14
|
130 |
+
text = "started"
|
131 |
+
intervals [30]:
|
132 |
+
xmin = 8.14
|
133 |
+
xmax = 8.24
|
134 |
+
text = "by"
|
135 |
+
intervals [31]:
|
136 |
+
xmin = 8.24
|
137 |
+
xmax = 8.52
|
138 |
+
text = "job"
|
139 |
+
intervals [32]:
|
140 |
+
xmin = 8.52
|
141 |
+
xmax = 8.59
|
142 |
+
text = "i"
|
143 |
+
intervals [33]:
|
144 |
+
xmin = 8.59
|
145 |
+
xmax = 8.75
|
146 |
+
text = "think"
|
147 |
+
intervals [34]:
|
148 |
+
xmin = 8.75
|
149 |
+
xmax = 8.88
|
150 |
+
text = "it's"
|
151 |
+
intervals [35]:
|
152 |
+
xmin = 8.88
|
153 |
+
xmax = 9.35
|
154 |
+
text = "very"
|
155 |
+
intervals [36]:
|
156 |
+
xmin = 9.35
|
157 |
+
xmax = 9.8
|
158 |
+
text = "important"
|
159 |
+
intervals [37]:
|
160 |
+
xmin = 9.8
|
161 |
+
xmax = 9.87
|
162 |
+
text = "to"
|
163 |
+
intervals [38]:
|
164 |
+
xmin = 9.87
|
165 |
+
xmax = 9.99
|
166 |
+
text = "get"
|
167 |
+
intervals [39]:
|
168 |
+
xmin = 9.99
|
169 |
+
xmax = 10.03
|
170 |
+
text = "a"
|
171 |
+
intervals [40]:
|
172 |
+
xmin = 10.03
|
173 |
+
xmax = 10.17
|
174 |
+
text = "good"
|
175 |
+
intervals [41]:
|
176 |
+
xmin = 10.17
|
177 |
+
xmax = 10.56
|
178 |
+
text = "sleep"
|
179 |
+
intervals [42]:
|
180 |
+
xmin = 10.56
|
181 |
+
xmax = 11.14
|
182 |
+
text = "during"
|
183 |
+
intervals [43]:
|
184 |
+
xmin = 11.14
|
185 |
+
xmax = 11.32
|
186 |
+
text = "your"
|
187 |
+
intervals [44]:
|
188 |
+
xmin = 11.32
|
189 |
+
xmax = 11.77
|
190 |
+
text = "weekend"
|
191 |
+
intervals [45]:
|
192 |
+
xmin = 11.77
|
193 |
+
xmax = 12.4
|
194 |
+
text = "because"
|
195 |
+
intervals [46]:
|
196 |
+
xmin = 12.4
|
197 |
+
xmax = 12.95
|
198 |
+
text = "when"
|
199 |
+
intervals [47]:
|
200 |
+
xmin = 12.95
|
201 |
+
xmax = 13.04
|
202 |
+
text = "you"
|
203 |
+
intervals [48]:
|
204 |
+
xmin = 13.04
|
205 |
+
xmax = 13.19
|
206 |
+
text = "have"
|
207 |
+
intervals [49]:
|
208 |
+
xmin = 13.19
|
209 |
+
xmax = 13.27
|
210 |
+
text = "to"
|
211 |
+
intervals [50]:
|
212 |
+
xmin = 13.27
|
213 |
+
xmax = 13.44
|
214 |
+
text = "work"
|
215 |
+
intervals [51]:
|
216 |
+
xmin = 13.44
|
217 |
+
xmax = 13.58
|
218 |
+
text = "on"
|
219 |
+
intervals [52]:
|
220 |
+
xmin = 13.58
|
221 |
+
xmax = 13.96
|
222 |
+
text = "monday"
|
223 |
+
intervals [53]:
|
224 |
+
xmin = 13.96
|
225 |
+
xmax = 14.1
|
226 |
+
text = "through"
|
227 |
+
intervals [54]:
|
228 |
+
xmin = 14.1
|
229 |
+
xmax = 14.75
|
230 |
+
text = "friday"
|
231 |
+
intervals [55]:
|
232 |
+
xmin = 14.75
|
233 |
+
xmax = 15.41
|
234 |
+
text = ""
|
235 |
+
intervals [56]:
|
236 |
+
xmin = 15.41
|
237 |
+
xmax = 15.53
|
238 |
+
text = "the"
|
239 |
+
intervals [57]:
|
240 |
+
xmin = 15.53
|
241 |
+
xmax = 15.75
|
242 |
+
text = "whole"
|
243 |
+
intervals [58]:
|
244 |
+
xmin = 15.75
|
245 |
+
xmax = 16.09
|
246 |
+
text = "week"
|
247 |
+
intervals [59]:
|
248 |
+
xmin = 16.09
|
249 |
+
xmax = 16.28
|
250 |
+
text = ""
|
251 |
+
intervals [60]:
|
252 |
+
xmin = 16.28
|
253 |
+
xmax = 16.42
|
254 |
+
text = "you"
|
255 |
+
intervals [61]:
|
256 |
+
xmin = 16.42
|
257 |
+
xmax = 16.49
|
258 |
+
text = "are"
|
259 |
+
intervals [62]:
|
260 |
+
xmin = 16.49
|
261 |
+
xmax = 16.73
|
262 |
+
text = "very"
|
263 |
+
intervals [63]:
|
264 |
+
xmin = 16.73
|
265 |
+
xmax = 17.59
|
266 |
+
text = "tired"
|
267 |
+
intervals [64]:
|
268 |
+
xmin = 17.59
|
269 |
+
xmax = 17.83
|
270 |
+
text = ""
|
271 |
+
intervals [65]:
|
272 |
+
xmin = 17.83
|
273 |
+
xmax = 18.29
|
274 |
+
text = "so"
|
275 |
+
intervals [66]:
|
276 |
+
xmin = 18.29
|
277 |
+
xmax = 18.55
|
278 |
+
text = "getting"
|
279 |
+
intervals [67]:
|
280 |
+
xmin = 18.55
|
281 |
+
xmax = 18.61
|
282 |
+
text = "a"
|
283 |
+
intervals [68]:
|
284 |
+
xmin = 18.61
|
285 |
+
xmax = 18.78
|
286 |
+
text = "good"
|
287 |
+
intervals [69]:
|
288 |
+
xmin = 18.78
|
289 |
+
xmax = 19.08
|
290 |
+
text = "rest"
|
291 |
+
intervals [70]:
|
292 |
+
xmin = 19.08
|
293 |
+
xmax = 19.21
|
294 |
+
text = "is"
|
295 |
+
intervals [71]:
|
296 |
+
xmin = 19.21
|
297 |
+
xmax = 19.3
|
298 |
+
text = "as"
|
299 |
+
intervals [72]:
|
300 |
+
xmin = 19.3
|
301 |
+
xmax = 19.77
|
302 |
+
text = "important"
|
303 |
+
intervals [73]:
|
304 |
+
xmin = 19.77
|
305 |
+
xmax = 20.16
|
306 |
+
text = "as"
|
307 |
+
intervals [74]:
|
308 |
+
xmin = 20.16
|
309 |
+
xmax = 20.3
|
310 |
+
text = ""
|
311 |
+
intervals [75]:
|
312 |
+
xmin = 20.3
|
313 |
+
xmax = 20.66
|
314 |
+
text = "complain"
|
315 |
+
intervals [76]:
|
316 |
+
xmin = 20.66
|
317 |
+
xmax = 20.75
|
318 |
+
text = "to"
|
319 |
+
intervals [77]:
|
320 |
+
xmin = 20.75
|
321 |
+
xmax = 21.09
|
322 |
+
text = "jaw"
|
323 |
+
intervals [78]:
|
324 |
+
xmin = 21.09
|
325 |
+
xmax = 21.3
|
326 |
+
text = "or"
|
327 |
+
intervals [79]:
|
328 |
+
xmin = 21.3
|
329 |
+
xmax = 21.79
|
330 |
+
text = "completing"
|
331 |
+
intervals [80]:
|
332 |
+
xmin = 21.79
|
333 |
+
xmax = 21.9
|
334 |
+
text = "an"
|
335 |
+
intervals [81]:
|
336 |
+
xmin = 21.9
|
337 |
+
xmax = 22.23
|
338 |
+
text = "excellent"
|
339 |
+
intervals [82]:
|
340 |
+
xmin = 22.23
|
341 |
+
xmax = 22.64
|
342 |
+
text = "job"
|
343 |
+
intervals [83]:
|
344 |
+
xmin = 22.64
|
345 |
+
xmax = 23.04
|
346 |
+
text = ""
|
347 |
+
intervals [84]:
|
348 |
+
xmin = 23.04
|
349 |
+
xmax = 23.17
|
350 |
+
text = "in"
|
351 |
+
intervals [85]:
|
352 |
+
xmin = 23.17
|
353 |
+
xmax = 23.29
|
354 |
+
text = "my"
|
355 |
+
intervals [86]:
|
356 |
+
xmin = 23.29
|
357 |
+
xmax = 23.56
|
358 |
+
text = "spare"
|
359 |
+
intervals [87]:
|
360 |
+
xmin = 23.56
|
361 |
+
xmax = 23.8
|
362 |
+
text = "time"
|
363 |
+
intervals [88]:
|
364 |
+
xmin = 23.8
|
365 |
+
xmax = 23.88
|
366 |
+
text = "if"
|
367 |
+
intervals [89]:
|
368 |
+
xmin = 23.88
|
369 |
+
xmax = 23.98
|
370 |
+
text = "i"
|
371 |
+
intervals [90]:
|
372 |
+
xmin = 23.98
|
373 |
+
xmax = 24.18
|
374 |
+
text = "feel"
|
375 |
+
intervals [91]:
|
376 |
+
xmin = 24.18
|
377 |
+
xmax = 24.84
|
378 |
+
text = "okay"
|
379 |
+
intervals [92]:
|
380 |
+
xmin = 24.84
|
381 |
+
xmax = 25.07
|
382 |
+
text = "i"
|
383 |
+
intervals [93]:
|
384 |
+
xmin = 25.07
|
385 |
+
xmax = 25.1
|
386 |
+
text = ""
|
387 |
+
intervals [94]:
|
388 |
+
xmin = 25.1
|
389 |
+
xmax = 25.38
|
390 |
+
text = "like"
|
391 |
+
intervals [95]:
|
392 |
+
xmin = 25.38
|
393 |
+
xmax = 25.44
|
394 |
+
text = "to"
|
395 |
+
intervals [96]:
|
396 |
+
xmin = 25.44
|
397 |
+
xmax = 25.55
|
398 |
+
text = "go"
|
399 |
+
intervals [97]:
|
400 |
+
xmin = 25.55
|
401 |
+
xmax = 25.79
|
402 |
+
text = "for"
|
403 |
+
intervals [98]:
|
404 |
+
xmin = 25.79
|
405 |
+
xmax = 25.83
|
406 |
+
text = "a"
|
407 |
+
intervals [99]:
|
408 |
+
xmin = 25.83
|
409 |
+
xmax = 26.12
|
410 |
+
text = "hike"
|
411 |
+
intervals [100]:
|
412 |
+
xmin = 26.12
|
413 |
+
xmax = 26.21
|
414 |
+
text = "in"
|
415 |
+
intervals [101]:
|
416 |
+
xmin = 26.21
|
417 |
+
xmax = 26.81
|
418 |
+
text = "nature"
|
419 |
+
intervals [102]:
|
420 |
+
xmin = 26.81
|
421 |
+
xmax = 27.11
|
422 |
+
text = ""
|
423 |
+
intervals [103]:
|
424 |
+
xmin = 27.11
|
425 |
+
xmax = 27.45
|
426 |
+
text = "sometimes"
|
427 |
+
intervals [104]:
|
428 |
+
xmin = 27.45
|
429 |
+
xmax = 27.51
|
430 |
+
text = "i"
|
431 |
+
intervals [105]:
|
432 |
+
xmin = 27.51
|
433 |
+
xmax = 27.74
|
434 |
+
text = "try"
|
435 |
+
intervals [106]:
|
436 |
+
xmin = 27.74
|
437 |
+
xmax = 27.88
|
438 |
+
text = "to"
|
439 |
+
intervals [107]:
|
440 |
+
xmin = 27.88
|
441 |
+
xmax = 28.37
|
442 |
+
text = "organize"
|
443 |
+
intervals [108]:
|
444 |
+
xmin = 28.37
|
445 |
+
xmax = 28.94
|
446 |
+
text = "something"
|
447 |
+
intervals [109]:
|
448 |
+
xmin = 28.94
|
449 |
+
xmax = 28.98
|
450 |
+
text = ""
|
451 |
+
intervals [110]:
|
452 |
+
xmin = 28.98
|
453 |
+
xmax = 29.19
|
454 |
+
text = "for"
|
455 |
+
intervals [111]:
|
456 |
+
xmin = 29.19
|
457 |
+
xmax = 29.32
|
458 |
+
text = "my"
|
459 |
+
intervals [112]:
|
460 |
+
xmin = 29.32
|
461 |
+
xmax = 29.89
|
462 |
+
text = "friends"
|
463 |
+
intervals [113]:
|
464 |
+
xmin = 29.89
|
465 |
+
xmax = 29.92
|
466 |
+
text = ""
|
467 |
+
intervals [114]:
|
468 |
+
xmin = 29.92
|
469 |
+
xmax = 29.95
|
470 |
+
text = "i"
|
471 |
+
intervals [115]:
|
472 |
+
xmin = 29.95
|
473 |
+
xmax = 30.2
|
474 |
+
text = ""
|
475 |
+
intervals [116]:
|
476 |
+
xmin = 30.2
|
477 |
+
xmax = 30.73
|
478 |
+
text = "volunteer"
|
479 |
+
intervals [117]:
|
480 |
+
xmin = 30.73
|
481 |
+
xmax = 30.86
|
482 |
+
text = "at"
|
483 |
+
intervals [118]:
|
484 |
+
xmin = 30.86
|
485 |
+
xmax = 30.97
|
486 |
+
text = "the"
|
487 |
+
intervals [119]:
|
488 |
+
xmin = 30.97
|
489 |
+
xmax = 31.38
|
490 |
+
text = "buddhist"
|
491 |
+
intervals [120]:
|
492 |
+
xmin = 31.38
|
493 |
+
xmax = 31.83
|
494 |
+
text = "temple"
|
495 |
+
intervals [121]:
|
496 |
+
xmin = 31.83
|
497 |
+
xmax = 31.94
|
498 |
+
text = "on"
|
499 |
+
intervals [122]:
|
500 |
+
xmin = 31.94
|
501 |
+
xmax = 32.01
|
502 |
+
text = "the"
|
503 |
+
intervals [123]:
|
504 |
+
xmin = 32.01
|
505 |
+
xmax = 32.6
|
506 |
+
text = "weekend"
|
507 |
+
intervals [124]:
|
508 |
+
xmin = 32.6
|
509 |
+
xmax = 33.01
|
510 |
+
text = "or"
|
511 |
+
intervals [125]:
|
512 |
+
xmin = 33.01
|
513 |
+
xmax = 33.24
|
514 |
+
text = "i"
|
515 |
+
intervals [126]:
|
516 |
+
xmin = 33.24
|
517 |
+
xmax = 33.62
|
518 |
+
text = "can"
|
519 |
+
intervals [127]:
|
520 |
+
xmin = 33.62
|
521 |
+
xmax = 33.91
|
522 |
+
text = "just"
|
523 |
+
intervals [128]:
|
524 |
+
xmin = 33.91
|
525 |
+
xmax = 34.3
|
526 |
+
text = "walk"
|
527 |
+
intervals [129]:
|
528 |
+
xmin = 34.3
|
529 |
+
xmax = 34.69
|
530 |
+
text = "around"
|
531 |
+
intervals [130]:
|
532 |
+
xmin = 34.69
|
533 |
+
xmax = 35.08
|
534 |
+
text = "enjoying"
|
535 |
+
intervals [131]:
|
536 |
+
xmin = 35.08
|
537 |
+
xmax = 35.17
|
538 |
+
text = "the"
|
539 |
+
intervals [132]:
|
540 |
+
xmin = 35.17
|
541 |
+
xmax = 35.87
|
542 |
+
text = "sunshine"
|
543 |
+
intervals [133]:
|
544 |
+
xmin = 35.87
|
545 |
+
xmax = 36.15
|
546 |
+
text = ""
|
547 |
+
intervals [134]:
|
548 |
+
xmin = 36.15
|
549 |
+
xmax = 36.34
|
550 |
+
text = "i'd"
|
551 |
+
intervals [135]:
|
552 |
+
xmin = 36.34
|
553 |
+
xmax = 36.52
|
554 |
+
text = "like"
|
555 |
+
intervals [136]:
|
556 |
+
xmin = 36.52
|
557 |
+
xmax = 36.59
|
558 |
+
text = "to"
|
559 |
+
intervals [137]:
|
560 |
+
xmin = 36.59
|
561 |
+
xmax = 36.74
|
562 |
+
text = "have"
|
563 |
+
intervals [138]:
|
564 |
+
xmin = 36.74
|
565 |
+
xmax = 36.79
|
566 |
+
text = "a"
|
567 |
+
intervals [139]:
|
568 |
+
xmin = 36.79
|
569 |
+
xmax = 37.06
|
570 |
+
text = "healthy"
|
571 |
+
intervals [140]:
|
572 |
+
xmin = 37.06
|
573 |
+
xmax = 37.66
|
574 |
+
text = "lifestyle"
|
575 |
+
intervals [141]:
|
576 |
+
xmin = 37.66
|
577 |
+
xmax = 38.06
|
578 |
+
text = "considering"
|
579 |
+
intervals [142]:
|
580 |
+
xmin = 38.06
|
581 |
+
xmax = 38.17
|
582 |
+
text = "how"
|
583 |
+
intervals [143]:
|
584 |
+
xmin = 38.17
|
585 |
+
xmax = 38.38
|
586 |
+
text = "much"
|
587 |
+
intervals [144]:
|
588 |
+
xmin = 38.38
|
589 |
+
xmax = 38.74
|
590 |
+
text = "time"
|
591 |
+
intervals [145]:
|
592 |
+
xmin = 38.74
|
593 |
+
xmax = 38.81
|
594 |
+
text = "i"
|
595 |
+
intervals [146]:
|
596 |
+
xmin = 38.81
|
597 |
+
xmax = 39.18
|
598 |
+
text = "spend"
|
599 |
+
intervals [147]:
|
600 |
+
xmin = 39.18
|
601 |
+
xmax = 39.29
|
602 |
+
text = "at"
|
603 |
+
intervals [148]:
|
604 |
+
xmin = 39.29
|
605 |
+
xmax = 39.84
|
606 |
+
text = "work"
|
607 |
+
intervals [149]:
|
608 |
+
xmin = 39.84
|
609 |
+
xmax = 40.29
|
610 |
+
text = ""
|
611 |
+
intervals [150]:
|
612 |
+
xmin = 40.29
|
613 |
+
xmax = 40.52
|
614 |
+
text = "i"
|
615 |
+
intervals [151]:
|
616 |
+
xmin = 40.52
|
617 |
+
xmax = 40.79
|
618 |
+
text = "always"
|
619 |
+
intervals [152]:
|
620 |
+
xmin = 40.79
|
621 |
+
xmax = 41.28
|
622 |
+
text = "try"
|
623 |
+
intervals [153]:
|
624 |
+
xmin = 41.28
|
625 |
+
xmax = 41.47
|
626 |
+
text = "to"
|
627 |
+
intervals [154]:
|
628 |
+
xmin = 41.47
|
629 |
+
xmax = 41.85
|
630 |
+
text = "move"
|
631 |
+
intervals [155]:
|
632 |
+
xmin = 41.85
|
633 |
+
xmax = 42
|
634 |
+
text = "as"
|
635 |
+
intervals [156]:
|
636 |
+
xmin = 42
|
637 |
+
xmax = 42.22
|
638 |
+
text = "much"
|
639 |
+
intervals [157]:
|
640 |
+
xmin = 42.22
|
641 |
+
xmax = 42.31
|
642 |
+
text = "as"
|
643 |
+
intervals [158]:
|
644 |
+
xmin = 42.31
|
645 |
+
xmax = 42.4
|
646 |
+
text = "i"
|
647 |
+
intervals [159]:
|
648 |
+
xmin = 42.4
|
649 |
+
xmax = 42.76
|
650 |
+
text = "can"
|
651 |
+
intervals [160]:
|
652 |
+
xmin = 42.76
|
653 |
+
xmax = 42.89
|
654 |
+
text = "when"
|
655 |
+
intervals [161]:
|
656 |
+
xmin = 42.89
|
657 |
+
xmax = 42.98
|
658 |
+
text = "i'm"
|
659 |
+
intervals [162]:
|
660 |
+
xmin = 42.98
|
661 |
+
xmax = 43.18
|
662 |
+
text = "not"
|
663 |
+
intervals [163]:
|
664 |
+
xmin = 43.18
|
665 |
+
xmax = 43.76
|
666 |
+
text = "working"
|
667 |
+
intervals [164]:
|
668 |
+
xmin = 43.76
|
669 |
+
xmax = 44.5
|
670 |
+
text = ""
|
671 |
+
intervals [165]:
|
672 |
+
xmin = 44.5
|
673 |
+
xmax = 45.19
|
674 |
+
text = "and"
|
675 |
+
intervals [166]:
|
676 |
+
xmin = 45.19
|
677 |
+
xmax = 45.32
|
678 |
+
text = "on"
|
679 |
+
intervals [167]:
|
680 |
+
xmin = 45.32
|
681 |
+
xmax = 45.49
|
682 |
+
text = "other"
|
683 |
+
intervals [168]:
|
684 |
+
xmin = 45.49
|
685 |
+
xmax = 45.82
|
686 |
+
text = "days"
|
687 |
+
intervals [169]:
|
688 |
+
xmin = 45.82
|
689 |
+
xmax = 45.96
|
690 |
+
text = "when"
|
691 |
+
intervals [170]:
|
692 |
+
xmin = 45.96
|
693 |
+
xmax = 46.16
|
694 |
+
text = "i'm"
|
695 |
+
intervals [171]:
|
696 |
+
xmin = 46.16
|
697 |
+
xmax = 46.65
|
698 |
+
text = "free"
|
699 |
+
intervals [172]:
|
700 |
+
xmin = 46.65
|
701 |
+
xmax = 46.86
|
702 |
+
text = "i"
|
703 |
+
intervals [173]:
|
704 |
+
xmin = 46.86
|
705 |
+
xmax = 47.16
|
706 |
+
text = "like"
|
707 |
+
intervals [174]:
|
708 |
+
xmin = 47.16
|
709 |
+
xmax = 47.39
|
710 |
+
text = "to"
|
711 |
+
intervals [175]:
|
712 |
+
xmin = 47.39
|
713 |
+
xmax = 47.86
|
714 |
+
text = "listen"
|
715 |
+
intervals [176]:
|
716 |
+
xmin = 47.86
|
717 |
+
xmax = 48.03
|
718 |
+
text = "to"
|
719 |
+
intervals [177]:
|
720 |
+
xmin = 48.03
|
721 |
+
xmax = 48.41
|
722 |
+
text = "music"
|
723 |
+
intervals [178]:
|
724 |
+
xmin = 48.41
|
725 |
+
xmax = 48.73
|
726 |
+
text = "and"
|
727 |
+
intervals [179]:
|
728 |
+
xmin = 48.73
|
729 |
+
xmax = 48.76
|
730 |
+
text = ""
|
731 |
+
intervals [180]:
|
732 |
+
xmin = 48.76
|
733 |
+
xmax = 49.01
|
734 |
+
text = "we're"
|
735 |
+
intervals [181]:
|
736 |
+
xmin = 49.01
|
737 |
+
xmax = 49.3
|
738 |
+
text = "watch"
|
739 |
+
intervals [182]:
|
740 |
+
xmin = 49.3
|
741 |
+
xmax = 49.38
|
742 |
+
text = "a"
|
743 |
+
intervals [183]:
|
744 |
+
xmin = 49.38
|
745 |
+
xmax = 50.05
|
746 |
+
text = "documentary"
|
747 |
+
intervals [184]:
|
748 |
+
xmin = 50.05
|
749 |
+
xmax = 50.51
|
750 |
+
text = "movies"
|
751 |
+
intervals [185]:
|
752 |
+
xmin = 50.51
|
753 |
+
xmax = 50.82
|
754 |
+
text = "on"
|
755 |
+
intervals [186]:
|
756 |
+
xmin = 50.82
|
757 |
+
xmax = 51.11
|
758 |
+
text = "my"
|
759 |
+
intervals [187]:
|
760 |
+
xmin = 51.11
|
761 |
+
xmax = 51.81
|
762 |
+
text = "laptop"
|
763 |
+
intervals [188]:
|
764 |
+
xmin = 51.81
|
765 |
+
xmax = 52.14
|
766 |
+
text = ""
|
767 |
+
intervals [189]:
|
768 |
+
xmin = 52.14
|
769 |
+
xmax = 52.44
|
770 |
+
text = "but"
|
771 |
+
intervals [190]:
|
772 |
+
xmin = 52.44
|
773 |
+
xmax = 52.86
|
774 |
+
text = "sometimes"
|
775 |
+
intervals [191]:
|
776 |
+
xmin = 52.86
|
777 |
+
xmax = 52.93
|
778 |
+
text = "it"
|
779 |
+
intervals [192]:
|
780 |
+
xmin = 52.93
|
781 |
+
xmax = 53.13
|
782 |
+
text = "just"
|
783 |
+
intervals [193]:
|
784 |
+
xmin = 53.13
|
785 |
+
xmax = 53.61
|
786 |
+
text = "sleep"
|
787 |
+
intervals [194]:
|
788 |
+
xmin = 53.61
|
789 |
+
xmax = 53.65
|
790 |
+
text = ""
|
791 |
+
intervals [195]:
|
792 |
+
xmin = 53.65
|
793 |
+
xmax = 53.83
|
794 |
+
text = "i"
|
795 |
+
intervals [196]:
|
796 |
+
xmin = 53.83
|
797 |
+
xmax = 54.27
|
798 |
+
text = "especially"
|
799 |
+
intervals [197]:
|
800 |
+
xmin = 54.27
|
801 |
+
xmax = 54.61
|
802 |
+
text = "liked"
|
803 |
+
intervals [198]:
|
804 |
+
xmin = 54.61
|
805 |
+
xmax = 55.01
|
806 |
+
text = "watching"
|
807 |
+
intervals [199]:
|
808 |
+
xmin = 55.01
|
809 |
+
xmax = 55.62
|
810 |
+
text = "japanese"
|
811 |
+
intervals [200]:
|
812 |
+
xmin = 55.62
|
813 |
+
xmax = 55.91
|
814 |
+
text = "anime"
|
815 |
+
intervals [201]:
|
816 |
+
xmin = 55.91
|
817 |
+
xmax = 56.33
|
818 |
+
text = "i"
|
819 |
+
intervals [202]:
|
820 |
+
xmin = 56.33
|
821 |
+
xmax = 56.85
|
822 |
+
text = ""
|
823 |
+
intervals [203]:
|
824 |
+
xmin = 56.85
|
825 |
+
xmax = 57.12
|
826 |
+
text = "think"
|
827 |
+
intervals [204]:
|
828 |
+
xmin = 57.12
|
829 |
+
xmax = 57.43
|
830 |
+
text = "watching"
|
831 |
+
intervals [205]:
|
832 |
+
xmin = 57.43
|
833 |
+
xmax = 57.62
|
834 |
+
text = "a"
|
835 |
+
intervals [206]:
|
836 |
+
xmin = 57.62
|
837 |
+
xmax = 57.79
|
838 |
+
text = "me"
|
839 |
+
intervals [207]:
|
840 |
+
xmin = 57.79
|
841 |
+
xmax = 58.09
|
842 |
+
text = "is"
|
843 |
+
intervals [208]:
|
844 |
+
xmin = 58.09
|
845 |
+
xmax = 58.39
|
846 |
+
text = "anime"
|
847 |
+
intervals [209]:
|
848 |
+
xmin = 58.39
|
849 |
+
xmax = 59.06
|
850 |
+
text = "is"
|
851 |
+
intervals [210]:
|
852 |
+
xmin = 59.06
|
853 |
+
xmax = 59.31
|
854 |
+
text = "very"
|
855 |
+
intervals [211]:
|
856 |
+
xmin = 59.31
|
857 |
+
xmax = 59.67
|
858 |
+
text = "helpful"
|
859 |
+
intervals [212]:
|
860 |
+
xmin = 59.67
|
861 |
+
xmax = 59.81
|
862 |
+
text = "for"
|
863 |
+
intervals [213]:
|
864 |
+
xmin = 59.81
|
865 |
+
xmax = 59.98
|
866 |
+
text = "me"
|
867 |
+
intervals [214]:
|
868 |
+
xmin = 59.98
|
869 |
+
xmax = 60.28
|
870 |
+
text = "to"
|
871 |
+
intervals [215]:
|
872 |
+
xmin = 60.28
|
873 |
+
xmax = 60.69
|
874 |
+
text = "learn"
|
875 |
+
intervals [216]:
|
876 |
+
xmin = 60.69
|
877 |
+
xmax = 60.78
|
878 |
+
text = "and"
|
879 |
+
intervals [217]:
|
880 |
+
xmin = 60.78
|
881 |
+
xmax = 61.21
|
882 |
+
text = "express"
|
883 |
+
intervals [218]:
|
884 |
+
xmin = 61.21
|
885 |
+
xmax = 61.89
|
886 |
+
text = "japanese"
|
887 |
+
intervals [219]:
|
888 |
+
xmin = 61.89
|
889 |
+
xmax = 62.42
|
890 |
+
text = "better"
|
891 |
+
intervals [220]:
|
892 |
+
xmin = 62.42
|
893 |
+
xmax = 64.097375
|
894 |
+
text = ""
|
895 |
+
item [2]:
|
896 |
+
class = "IntervalTier"
|
897 |
+
name = "phones"
|
898 |
+
xmin = 0
|
899 |
+
xmax = 64.097375
|
900 |
+
intervals: size = 684
|
901 |
+
intervals [1]:
|
902 |
+
xmin = 0
|
903 |
+
xmax = 1.42
|
904 |
+
text = ""
|
905 |
+
intervals [2]:
|
906 |
+
xmin = 1.42
|
907 |
+
xmax = 1.48
|
908 |
+
text = "DH"
|
909 |
+
intervals [3]:
|
910 |
+
xmin = 1.48
|
911 |
+
xmax = 1.52
|
912 |
+
text = "AH0"
|
913 |
+
intervals [4]:
|
914 |
+
xmin = 1.52
|
915 |
+
xmax = 1.62
|
916 |
+
text = "F"
|
917 |
+
intervals [5]:
|
918 |
+
xmin = 1.62
|
919 |
+
xmax = 1.72
|
920 |
+
text = "ER1"
|
921 |
+
intervals [6]:
|
922 |
+
xmin = 1.72
|
923 |
+
xmax = 1.75
|
924 |
+
text = "S"
|
925 |
+
intervals [7]:
|
926 |
+
xmin = 1.75
|
927 |
+
xmax = 1.78
|
928 |
+
text = "T"
|
929 |
+
intervals [8]:
|
930 |
+
xmin = 1.78
|
931 |
+
xmax = 1.81
|
932 |
+
text = "TH"
|
933 |
+
intervals [9]:
|
934 |
+
xmin = 1.81
|
935 |
+
xmax = 1.88
|
936 |
+
text = "IH1"
|
937 |
+
intervals [10]:
|
938 |
+
xmin = 1.88
|
939 |
+
xmax = 1.97
|
940 |
+
text = "NG"
|
941 |
+
intervals [11]:
|
942 |
+
xmin = 1.97
|
943 |
+
xmax = 2.04
|
944 |
+
text = "AY1"
|
945 |
+
intervals [12]:
|
946 |
+
xmin = 2.04
|
947 |
+
xmax = 2.08
|
948 |
+
text = "L"
|
949 |
+
intervals [13]:
|
950 |
+
xmin = 2.08
|
951 |
+
xmax = 2.17
|
952 |
+
text = "AY1"
|
953 |
+
intervals [14]:
|
954 |
+
xmin = 2.17
|
955 |
+
xmax = 2.21
|
956 |
+
text = "K"
|
957 |
+
intervals [15]:
|
958 |
+
xmin = 2.21
|
959 |
+
xmax = 2.24
|
960 |
+
text = "T"
|
961 |
+
intervals [16]:
|
962 |
+
xmin = 2.24
|
963 |
+
xmax = 2.28
|
964 |
+
text = "IH0"
|
965 |
+
intervals [17]:
|
966 |
+
xmin = 2.28
|
967 |
+
xmax = 2.34
|
968 |
+
text = "D"
|
969 |
+
intervals [18]:
|
970 |
+
xmin = 2.34
|
971 |
+
xmax = 2.47
|
972 |
+
text = "UW1"
|
973 |
+
intervals [19]:
|
974 |
+
xmin = 2.47
|
975 |
+
xmax = 2.58
|
976 |
+
text = "AA1"
|
977 |
+
intervals [20]:
|
978 |
+
xmin = 2.58
|
979 |
+
xmax = 2.63
|
980 |
+
text = "N"
|
981 |
+
intervals [21]:
|
982 |
+
xmin = 2.63
|
983 |
+
xmax = 2.68
|
984 |
+
text = "W"
|
985 |
+
intervals [22]:
|
986 |
+
xmin = 2.68
|
987 |
+
xmax = 2.78
|
988 |
+
text = "IY1"
|
989 |
+
intervals [23]:
|
990 |
+
xmin = 2.78
|
991 |
+
xmax = 2.88
|
992 |
+
text = "K"
|
993 |
+
intervals [24]:
|
994 |
+
xmin = 2.88
|
995 |
+
xmax = 3.01
|
996 |
+
text = "EH2"
|
997 |
+
intervals [25]:
|
998 |
+
xmin = 3.01
|
999 |
+
xmax = 3.14
|
1000 |
+
text = "N"
|
1001 |
+
intervals [26]:
|
1002 |
+
xmin = 3.14
|
1003 |
+
xmax = 3.2
|
1004 |
+
text = "D"
|
1005 |
+
intervals [27]:
|
1006 |
+
xmin = 3.2
|
1007 |
+
xmax = 3.32
|
1008 |
+
text = "Z"
|
1009 |
+
intervals [28]:
|
1010 |
+
xmin = 3.32
|
1011 |
+
xmax = 3.47
|
1012 |
+
text = "IH1"
|
1013 |
+
intervals [29]:
|
1014 |
+
xmin = 3.47
|
1015 |
+
xmax = 3.58
|
1016 |
+
text = "Z"
|
1017 |
+
intervals [30]:
|
1018 |
+
xmin = 3.58
|
1019 |
+
xmax = 3.64
|
1020 |
+
text = "R"
|
1021 |
+
intervals [31]:
|
1022 |
+
xmin = 3.64
|
1023 |
+
xmax = 3.7
|
1024 |
+
text = "IY0"
|
1025 |
+
intervals [32]:
|
1026 |
+
xmin = 3.7
|
1027 |
+
xmax = 3.8
|
1028 |
+
text = "L"
|
1029 |
+
intervals [33]:
|
1030 |
+
xmin = 3.8
|
1031 |
+
xmax = 3.96
|
1032 |
+
text = "AE1"
|
1033 |
+
intervals [34]:
|
1034 |
+
xmin = 3.96
|
1035 |
+
xmax = 4.02
|
1036 |
+
text = "K"
|
1037 |
+
intervals [35]:
|
1038 |
+
xmin = 4.02
|
1039 |
+
xmax = 4.11
|
1040 |
+
text = "S"
|
1041 |
+
intervals [36]:
|
1042 |
+
xmin = 4.11
|
1043 |
+
xmax = 4.2
|
1044 |
+
text = "IH0"
|
1045 |
+
intervals [37]:
|
1046 |
+
xmin = 4.2
|
1047 |
+
xmax = 4.41
|
1048 |
+
text = "NG"
|
1049 |
+
intervals [38]:
|
1050 |
+
xmin = 4.41
|
1051 |
+
xmax = 4.52
|
1052 |
+
text = ""
|
1053 |
+
intervals [39]:
|
1054 |
+
xmin = 4.52
|
1055 |
+
xmax = 4.97
|
1056 |
+
text = "AH0"
|
1057 |
+
intervals [40]:
|
1058 |
+
xmin = 4.97
|
1059 |
+
xmax = 5.01
|
1060 |
+
text = "N"
|
1061 |
+
intervals [41]:
|
1062 |
+
xmin = 5.01
|
1063 |
+
xmax = 5.05
|
1064 |
+
text = "D"
|
1065 |
+
intervals [42]:
|
1066 |
+
xmin = 5.05
|
1067 |
+
xmax = 5.14
|
1068 |
+
text = "AY1"
|
1069 |
+
intervals [43]:
|
1070 |
+
xmin = 5.14
|
1071 |
+
xmax = 5.19
|
1072 |
+
text = "TH"
|
1073 |
+
intervals [44]:
|
1074 |
+
xmin = 5.19
|
1075 |
+
xmax = 5.25
|
1076 |
+
text = "IH1"
|
1077 |
+
intervals [45]:
|
1078 |
+
xmin = 5.25
|
1079 |
+
xmax = 5.29
|
1080 |
+
text = "NG"
|
1081 |
+
intervals [46]:
|
1082 |
+
xmin = 5.29
|
1083 |
+
xmax = 5.33
|
1084 |
+
text = "K"
|
1085 |
+
intervals [47]:
|
1086 |
+
xmin = 5.33
|
1087 |
+
xmax = 5.36
|
1088 |
+
text = "AY1"
|
1089 |
+
intervals [48]:
|
1090 |
+
xmin = 5.36
|
1091 |
+
xmax = 5.41
|
1092 |
+
text = "L"
|
1093 |
+
intervals [49]:
|
1094 |
+
xmin = 5.41
|
1095 |
+
xmax = 5.44
|
1096 |
+
text = "G"
|
1097 |
+
intervals [50]:
|
1098 |
+
xmin = 5.44
|
1099 |
+
xmax = 5.5
|
1100 |
+
text = "OW1"
|
1101 |
+
intervals [51]:
|
1102 |
+
xmin = 5.5
|
1103 |
+
xmax = 5.68
|
1104 |
+
text = "SH"
|
1105 |
+
intervals [52]:
|
1106 |
+
xmin = 5.68
|
1107 |
+
xmax = 5.87
|
1108 |
+
text = "AA1"
|
1109 |
+
intervals [53]:
|
1110 |
+
xmin = 5.87
|
1111 |
+
xmax = 5.92
|
1112 |
+
text = "P"
|
1113 |
+
intervals [54]:
|
1114 |
+
xmin = 5.92
|
1115 |
+
xmax = 5.96
|
1116 |
+
text = "IH0"
|
1117 |
+
intervals [55]:
|
1118 |
+
xmin = 5.96
|
1119 |
+
xmax = 6
|
1120 |
+
text = "NG"
|
1121 |
+
intervals [56]:
|
1122 |
+
xmin = 6
|
1123 |
+
xmax = 6.06
|
1124 |
+
text = "IH0"
|
1125 |
+
intervals [57]:
|
1126 |
+
xmin = 6.06
|
1127 |
+
xmax = 6.11
|
1128 |
+
text = "F"
|
1129 |
+
intervals [58]:
|
1130 |
+
xmin = 6.11
|
1131 |
+
xmax = 6.16
|
1132 |
+
text = "AY1"
|
1133 |
+
intervals [59]:
|
1134 |
+
xmin = 6.16
|
1135 |
+
xmax = 6.29
|
1136 |
+
text = "M"
|
1137 |
+
intervals [60]:
|
1138 |
+
xmin = 6.29
|
1139 |
+
xmax = 6.35
|
1140 |
+
text = "N"
|
1141 |
+
intervals [61]:
|
1142 |
+
xmin = 6.35
|
1143 |
+
xmax = 6.48
|
1144 |
+
text = "AA1"
|
1145 |
+
intervals [62]:
|
1146 |
+
xmin = 6.48
|
1147 |
+
xmax = 6.54
|
1148 |
+
text = "T"
|
1149 |
+
intervals [63]:
|
1150 |
+
xmin = 6.54
|
1151 |
+
xmax = 6.58
|
1152 |
+
text = "DH"
|
1153 |
+
intervals [64]:
|
1154 |
+
xmin = 6.58
|
1155 |
+
xmax = 6.64
|
1156 |
+
text = "AE1"
|
1157 |
+
intervals [65]:
|
1158 |
+
xmin = 6.64
|
1159 |
+
xmax = 6.7
|
1160 |
+
text = "T"
|
1161 |
+
intervals [66]:
|
1162 |
+
xmin = 6.7
|
1163 |
+
xmax = 6.78
|
1164 |
+
text = "T"
|
1165 |
+
intervals [67]:
|
1166 |
+
xmin = 6.78
|
1167 |
+
xmax = 6.93
|
1168 |
+
text = "AY1"
|
1169 |
+
intervals [68]:
|
1170 |
+
xmin = 6.93
|
1171 |
+
xmax = 7.08
|
1172 |
+
text = "ER0"
|
1173 |
+
intervals [69]:
|
1174 |
+
xmin = 7.08
|
1175 |
+
xmax = 7.19
|
1176 |
+
text = "D"
|
1177 |
+
intervals [70]:
|
1178 |
+
xmin = 7.19
|
1179 |
+
xmax = 7.45
|
1180 |
+
text = ""
|
1181 |
+
intervals [71]:
|
1182 |
+
xmin = 7.45
|
1183 |
+
xmax = 7.59
|
1184 |
+
text = "S"
|
1185 |
+
intervals [72]:
|
1186 |
+
xmin = 7.59
|
1187 |
+
xmax = 7.62
|
1188 |
+
text = "OW1"
|
1189 |
+
intervals [73]:
|
1190 |
+
xmin = 7.62
|
1191 |
+
xmax = 7.66
|
1192 |
+
text = "DH"
|
1193 |
+
intervals [74]:
|
1194 |
+
xmin = 7.66
|
1195 |
+
xmax = 7.71
|
1196 |
+
text = "AE1"
|
1197 |
+
intervals [75]:
|
1198 |
+
xmin = 7.71
|
1199 |
+
xmax = 7.74
|
1200 |
+
text = "T"
|
1201 |
+
intervals [76]:
|
1202 |
+
xmin = 7.74
|
1203 |
+
xmax = 7.77
|
1204 |
+
text = "Y"
|
1205 |
+
intervals [77]:
|
1206 |
+
xmin = 7.77
|
1207 |
+
xmax = 7.85
|
1208 |
+
text = "UW1"
|
1209 |
+
intervals [78]:
|
1210 |
+
xmin = 7.85
|
1211 |
+
xmax = 7.92
|
1212 |
+
text = "S"
|
1213 |
+
intervals [79]:
|
1214 |
+
xmin = 7.92
|
1215 |
+
xmax = 7.97
|
1216 |
+
text = "T"
|
1217 |
+
intervals [80]:
|
1218 |
+
xmin = 7.97
|
1219 |
+
xmax = 8.02
|
1220 |
+
text = "AA1"
|
1221 |
+
intervals [81]:
|
1222 |
+
xmin = 8.02
|
1223 |
+
xmax = 8.05
|
1224 |
+
text = "R"
|
1225 |
+
intervals [82]:
|
1226 |
+
xmin = 8.05
|
1227 |
+
xmax = 8.08
|
1228 |
+
text = "T"
|
1229 |
+
intervals [83]:
|
1230 |
+
xmin = 8.08
|
1231 |
+
xmax = 8.11
|
1232 |
+
text = "AH0"
|
1233 |
+
intervals [84]:
|
1234 |
+
xmin = 8.11
|
1235 |
+
xmax = 8.14
|
1236 |
+
text = "D"
|
1237 |
+
intervals [85]:
|
1238 |
+
xmin = 8.14
|
1239 |
+
xmax = 8.17
|
1240 |
+
text = "B"
|
1241 |
+
intervals [86]:
|
1242 |
+
xmin = 8.17
|
1243 |
+
xmax = 8.24
|
1244 |
+
text = "AY1"
|
1245 |
+
intervals [87]:
|
1246 |
+
xmin = 8.24
|
1247 |
+
xmax = 8.35
|
1248 |
+
text = "JH"
|
1249 |
+
intervals [88]:
|
1250 |
+
xmin = 8.35
|
1251 |
+
xmax = 8.48
|
1252 |
+
text = "AA1"
|
1253 |
+
intervals [89]:
|
1254 |
+
xmin = 8.48
|
1255 |
+
xmax = 8.52
|
1256 |
+
text = "B"
|
1257 |
+
intervals [90]:
|
1258 |
+
xmin = 8.52
|
1259 |
+
xmax = 8.59
|
1260 |
+
text = "AY1"
|
1261 |
+
intervals [91]:
|
1262 |
+
xmin = 8.59
|
1263 |
+
xmax = 8.64
|
1264 |
+
text = "TH"
|
1265 |
+
intervals [92]:
|
1266 |
+
xmin = 8.64
|
1267 |
+
xmax = 8.69
|
1268 |
+
text = "IH1"
|
1269 |
+
intervals [93]:
|
1270 |
+
xmin = 8.69
|
1271 |
+
xmax = 8.72
|
1272 |
+
text = "NG"
|
1273 |
+
intervals [94]:
|
1274 |
+
xmin = 8.72
|
1275 |
+
xmax = 8.75
|
1276 |
+
text = "K"
|
1277 |
+
intervals [95]:
|
1278 |
+
xmin = 8.75
|
1279 |
+
xmax = 8.79
|
1280 |
+
text = "IH1"
|
1281 |
+
intervals [96]:
|
1282 |
+
xmin = 8.79
|
1283 |
+
xmax = 8.84
|
1284 |
+
text = "T"
|
1285 |
+
intervals [97]:
|
1286 |
+
xmin = 8.84
|
1287 |
+
xmax = 8.88
|
1288 |
+
text = "S"
|
1289 |
+
intervals [98]:
|
1290 |
+
xmin = 8.88
|
1291 |
+
xmax = 9.08
|
1292 |
+
text = "V"
|
1293 |
+
intervals [99]:
|
1294 |
+
xmin = 9.08
|
1295 |
+
xmax = 9.2
|
1296 |
+
text = "EH1"
|
1297 |
+
intervals [100]:
|
1298 |
+
xmin = 9.2
|
1299 |
+
xmax = 9.28
|
1300 |
+
text = "R"
|
1301 |
+
intervals [101]:
|
1302 |
+
xmin = 9.28
|
1303 |
+
xmax = 9.35
|
1304 |
+
text = "IY0"
|
1305 |
+
intervals [102]:
|
1306 |
+
xmin = 9.35
|
1307 |
+
xmax = 9.4
|
1308 |
+
text = "IH0"
|
1309 |
+
intervals [103]:
|
1310 |
+
xmin = 9.4
|
1311 |
+
xmax = 9.46
|
1312 |
+
text = "M"
|
1313 |
+
intervals [104]:
|
1314 |
+
xmin = 9.46
|
1315 |
+
xmax = 9.55
|
1316 |
+
text = "P"
|
1317 |
+
intervals [105]:
|
1318 |
+
xmin = 9.55
|
1319 |
+
xmax = 9.63
|
1320 |
+
text = "AO1"
|
1321 |
+
intervals [106]:
|
1322 |
+
xmin = 9.63
|
1323 |
+
xmax = 9.68
|
1324 |
+
text = "R"
|
1325 |
+
intervals [107]:
|
1326 |
+
xmin = 9.68
|
1327 |
+
xmax = 9.71
|
1328 |
+
text = "T"
|
1329 |
+
intervals [108]:
|
1330 |
+
xmin = 9.71
|
1331 |
+
xmax = 9.74
|
1332 |
+
text = "AH0"
|
1333 |
+
intervals [109]:
|
1334 |
+
xmin = 9.74
|
1335 |
+
xmax = 9.77
|
1336 |
+
text = "N"
|
1337 |
+
intervals [110]:
|
1338 |
+
xmin = 9.77
|
1339 |
+
xmax = 9.8
|
1340 |
+
text = "T"
|
1341 |
+
intervals [111]:
|
1342 |
+
xmin = 9.8
|
1343 |
+
xmax = 9.83
|
1344 |
+
text = "T"
|
1345 |
+
intervals [112]:
|
1346 |
+
xmin = 9.83
|
1347 |
+
xmax = 9.87
|
1348 |
+
text = "IH0"
|
1349 |
+
intervals [113]:
|
1350 |
+
xmin = 9.87
|
1351 |
+
xmax = 9.93
|
1352 |
+
text = "G"
|
1353 |
+
intervals [114]:
|
1354 |
+
xmin = 9.93
|
1355 |
+
xmax = 9.96
|
1356 |
+
text = "EH1"
|
1357 |
+
intervals [115]:
|
1358 |
+
xmin = 9.96
|
1359 |
+
xmax = 9.99
|
1360 |
+
text = "T"
|
1361 |
+
intervals [116]:
|
1362 |
+
xmin = 9.99
|
1363 |
+
xmax = 10.03
|
1364 |
+
text = "AH0"
|
1365 |
+
intervals [117]:
|
1366 |
+
xmin = 10.03
|
1367 |
+
xmax = 10.07
|
1368 |
+
text = "G"
|
1369 |
+
intervals [118]:
|
1370 |
+
xmin = 10.07
|
1371 |
+
xmax = 10.1
|
1372 |
+
text = "IH0"
|
1373 |
+
intervals [119]:
|
1374 |
+
xmin = 10.1
|
1375 |
+
xmax = 10.17
|
1376 |
+
text = "D"
|
1377 |
+
intervals [120]:
|
1378 |
+
xmin = 10.17
|
1379 |
+
xmax = 10.35
|
1380 |
+
text = "S"
|
1381 |
+
intervals [121]:
|
1382 |
+
xmin = 10.35
|
1383 |
+
xmax = 10.43
|
1384 |
+
text = "L"
|
1385 |
+
intervals [122]:
|
1386 |
+
xmin = 10.43
|
1387 |
+
xmax = 10.53
|
1388 |
+
text = "IY1"
|
1389 |
+
intervals [123]:
|
1390 |
+
xmin = 10.53
|
1391 |
+
xmax = 10.56
|
1392 |
+
text = "P"
|
1393 |
+
intervals [124]:
|
1394 |
+
xmin = 10.56
|
1395 |
+
xmax = 10.8
|
1396 |
+
text = "D"
|
1397 |
+
intervals [125]:
|
1398 |
+
xmin = 10.8
|
1399 |
+
xmax = 10.92
|
1400 |
+
text = "ER1"
|
1401 |
+
intervals [126]:
|
1402 |
+
xmin = 10.92
|
1403 |
+
xmax = 10.99
|
1404 |
+
text = "IH0"
|
1405 |
+
intervals [127]:
|
1406 |
+
xmin = 10.99
|
1407 |
+
xmax = 11.14
|
1408 |
+
text = "NG"
|
1409 |
+
intervals [128]:
|
1410 |
+
xmin = 11.14
|
1411 |
+
xmax = 11.2
|
1412 |
+
text = "Y"
|
1413 |
+
intervals [129]:
|
1414 |
+
xmin = 11.2
|
1415 |
+
xmax = 11.23
|
1416 |
+
text = "UH1"
|
1417 |
+
intervals [130]:
|
1418 |
+
xmin = 11.23
|
1419 |
+
xmax = 11.32
|
1420 |
+
text = "R"
|
1421 |
+
intervals [131]:
|
1422 |
+
xmin = 11.32
|
1423 |
+
xmax = 11.4
|
1424 |
+
text = "W"
|
1425 |
+
intervals [132]:
|
1426 |
+
xmin = 11.4
|
1427 |
+
xmax = 11.51
|
1428 |
+
text = "IY1"
|
1429 |
+
intervals [133]:
|
1430 |
+
xmin = 11.51
|
1431 |
+
xmax = 11.6
|
1432 |
+
text = "K"
|
1433 |
+
intervals [134]:
|
1434 |
+
xmin = 11.6
|
1435 |
+
xmax = 11.68
|
1436 |
+
text = "EH2"
|
1437 |
+
intervals [135]:
|
1438 |
+
xmin = 11.68
|
1439 |
+
xmax = 11.74
|
1440 |
+
text = "N"
|
1441 |
+
intervals [136]:
|
1442 |
+
xmin = 11.74
|
1443 |
+
xmax = 11.77
|
1444 |
+
text = "D"
|
1445 |
+
intervals [137]:
|
1446 |
+
xmin = 11.77
|
1447 |
+
xmax = 11.8
|
1448 |
+
text = "B"
|
1449 |
+
intervals [138]:
|
1450 |
+
xmin = 11.8
|
1451 |
+
xmax = 11.88
|
1452 |
+
text = "IH0"
|
1453 |
+
intervals [139]:
|
1454 |
+
xmin = 11.88
|
1455 |
+
xmax = 12
|
1456 |
+
text = "K"
|
1457 |
+
intervals [140]:
|
1458 |
+
xmin = 12
|
1459 |
+
xmax = 12.26
|
1460 |
+
text = "AH1"
|
1461 |
+
intervals [141]:
|
1462 |
+
xmin = 12.26
|
1463 |
+
xmax = 12.4
|
1464 |
+
text = "Z"
|
1465 |
+
intervals [142]:
|
1466 |
+
xmin = 12.4
|
1467 |
+
xmax = 12.6
|
1468 |
+
text = "W"
|
1469 |
+
intervals [143]:
|
1470 |
+
xmin = 12.6
|
1471 |
+
xmax = 12.88
|
1472 |
+
text = "EH1"
|
1473 |
+
intervals [144]:
|
1474 |
+
xmin = 12.88
|
1475 |
+
xmax = 12.95
|
1476 |
+
text = "N"
|
1477 |
+
intervals [145]:
|
1478 |
+
xmin = 12.95
|
1479 |
+
xmax = 12.99
|
1480 |
+
text = "Y"
|
1481 |
+
intervals [146]:
|
1482 |
+
xmin = 12.99
|
1483 |
+
xmax = 13.04
|
1484 |
+
text = "UW1"
|
1485 |
+
intervals [147]:
|
1486 |
+
xmin = 13.04
|
1487 |
+
xmax = 13.07
|
1488 |
+
text = "HH"
|
1489 |
+
intervals [148]:
|
1490 |
+
xmin = 13.07
|
1491 |
+
xmax = 13.16
|
1492 |
+
text = "AE1"
|
1493 |
+
intervals [149]:
|
1494 |
+
xmin = 13.16
|
1495 |
+
xmax = 13.19
|
1496 |
+
text = "V"
|
1497 |
+
intervals [150]:
|
1498 |
+
xmin = 13.19
|
1499 |
+
xmax = 13.22
|
1500 |
+
text = "T"
|
1501 |
+
intervals [151]:
|
1502 |
+
xmin = 13.22
|
1503 |
+
xmax = 13.27
|
1504 |
+
text = "UW1"
|
1505 |
+
intervals [152]:
|
1506 |
+
xmin = 13.27
|
1507 |
+
xmax = 13.32
|
1508 |
+
text = "W"
|
1509 |
+
intervals [153]:
|
1510 |
+
xmin = 13.32
|
1511 |
+
xmax = 13.4
|
1512 |
+
text = "ER1"
|
1513 |
+
intervals [154]:
|
1514 |
+
xmin = 13.4
|
1515 |
+
xmax = 13.44
|
1516 |
+
text = "K"
|
1517 |
+
intervals [155]:
|
1518 |
+
xmin = 13.44
|
1519 |
+
xmax = 13.51
|
1520 |
+
text = "AA1"
|
1521 |
+
intervals [156]:
|
1522 |
+
xmin = 13.51
|
1523 |
+
xmax = 13.58
|
1524 |
+
text = "N"
|
1525 |
+
intervals [157]:
|
1526 |
+
xmin = 13.58
|
1527 |
+
xmax = 13.66
|
1528 |
+
text = "M"
|
1529 |
+
intervals [158]:
|
1530 |
+
xmin = 13.66
|
1531 |
+
xmax = 13.76
|
1532 |
+
text = "AH1"
|
1533 |
+
intervals [159]:
|
1534 |
+
xmin = 13.76
|
1535 |
+
xmax = 13.81
|
1536 |
+
text = "N"
|
1537 |
+
intervals [160]:
|
1538 |
+
xmin = 13.81
|
1539 |
+
xmax = 13.85
|
1540 |
+
text = "D"
|
1541 |
+
intervals [161]:
|
1542 |
+
xmin = 13.85
|
1543 |
+
xmax = 13.96
|
1544 |
+
text = "EY2"
|
1545 |
+
intervals [162]:
|
1546 |
+
xmin = 13.96
|
1547 |
+
xmax = 14.01
|
1548 |
+
text = "TH"
|
1549 |
+
intervals [163]:
|
1550 |
+
xmin = 14.01
|
1551 |
+
xmax = 14.04
|
1552 |
+
text = "R"
|
1553 |
+
intervals [164]:
|
1554 |
+
xmin = 14.04
|
1555 |
+
xmax = 14.1
|
1556 |
+
text = "UW1"
|
1557 |
+
intervals [165]:
|
1558 |
+
xmin = 14.1
|
1559 |
+
xmax = 14.17
|
1560 |
+
text = "F"
|
1561 |
+
intervals [166]:
|
1562 |
+
xmin = 14.17
|
1563 |
+
xmax = 14.26
|
1564 |
+
text = "R"
|
1565 |
+
intervals [167]:
|
1566 |
+
xmin = 14.26
|
1567 |
+
xmax = 14.4
|
1568 |
+
text = "AY1"
|
1569 |
+
intervals [168]:
|
1570 |
+
xmin = 14.4
|
1571 |
+
xmax = 14.45
|
1572 |
+
text = "D"
|
1573 |
+
intervals [169]:
|
1574 |
+
xmin = 14.45
|
1575 |
+
xmax = 14.75
|
1576 |
+
text = "EY2"
|
1577 |
+
intervals [170]:
|
1578 |
+
xmin = 14.75
|
1579 |
+
xmax = 15.41
|
1580 |
+
text = ""
|
1581 |
+
intervals [171]:
|
1582 |
+
xmin = 15.41
|
1583 |
+
xmax = 15.49
|
1584 |
+
text = "DH"
|
1585 |
+
intervals [172]:
|
1586 |
+
xmin = 15.49
|
1587 |
+
xmax = 15.53
|
1588 |
+
text = "AH1"
|
1589 |
+
intervals [173]:
|
1590 |
+
xmin = 15.53
|
1591 |
+
xmax = 15.62
|
1592 |
+
text = "HH"
|
1593 |
+
intervals [174]:
|
1594 |
+
xmin = 15.62
|
1595 |
+
xmax = 15.67
|
1596 |
+
text = "OW1"
|
1597 |
+
intervals [175]:
|
1598 |
+
xmin = 15.67
|
1599 |
+
xmax = 15.75
|
1600 |
+
text = "L"
|
1601 |
+
intervals [176]:
|
1602 |
+
xmin = 15.75
|
1603 |
+
xmax = 15.8
|
1604 |
+
text = "W"
|
1605 |
+
intervals [177]:
|
1606 |
+
xmin = 15.8
|
1607 |
+
xmax = 15.94
|
1608 |
+
text = "IY1"
|
1609 |
+
intervals [178]:
|
1610 |
+
xmin = 15.94
|
1611 |
+
xmax = 16.09
|
1612 |
+
text = "K"
|
1613 |
+
intervals [179]:
|
1614 |
+
xmin = 16.09
|
1615 |
+
xmax = 16.28
|
1616 |
+
text = ""
|
1617 |
+
intervals [180]:
|
1618 |
+
xmin = 16.28
|
1619 |
+
xmax = 16.38
|
1620 |
+
text = "Y"
|
1621 |
+
intervals [181]:
|
1622 |
+
xmin = 16.38
|
1623 |
+
xmax = 16.42
|
1624 |
+
text = "UW1"
|
1625 |
+
intervals [182]:
|
1626 |
+
xmin = 16.42
|
1627 |
+
xmax = 16.49
|
1628 |
+
text = "ER0"
|
1629 |
+
intervals [183]:
|
1630 |
+
xmin = 16.49
|
1631 |
+
xmax = 16.55
|
1632 |
+
text = "V"
|
1633 |
+
intervals [184]:
|
1634 |
+
xmin = 16.55
|
1635 |
+
xmax = 16.58
|
1636 |
+
text = "EH1"
|
1637 |
+
intervals [185]:
|
1638 |
+
xmin = 16.58
|
1639 |
+
xmax = 16.65
|
1640 |
+
text = "R"
|
1641 |
+
intervals [186]:
|
1642 |
+
xmin = 16.65
|
1643 |
+
xmax = 16.73
|
1644 |
+
text = "IY0"
|
1645 |
+
intervals [187]:
|
1646 |
+
xmin = 16.73
|
1647 |
+
xmax = 16.92
|
1648 |
+
text = "T"
|
1649 |
+
intervals [188]:
|
1650 |
+
xmin = 16.92
|
1651 |
+
xmax = 17.08
|
1652 |
+
text = "AY1"
|
1653 |
+
intervals [189]:
|
1654 |
+
xmin = 17.08
|
1655 |
+
xmax = 17.22
|
1656 |
+
text = "ER0"
|
1657 |
+
intervals [190]:
|
1658 |
+
xmin = 17.22
|
1659 |
+
xmax = 17.59
|
1660 |
+
text = "D"
|
1661 |
+
intervals [191]:
|
1662 |
+
xmin = 17.59
|
1663 |
+
xmax = 17.83
|
1664 |
+
text = ""
|
1665 |
+
intervals [192]:
|
1666 |
+
xmin = 17.83
|
1667 |
+
xmax = 18.02
|
1668 |
+
text = "S"
|
1669 |
+
intervals [193]:
|
1670 |
+
xmin = 18.02
|
1671 |
+
xmax = 18.29
|
1672 |
+
text = "OW1"
|
1673 |
+
intervals [194]:
|
1674 |
+
xmin = 18.29
|
1675 |
+
xmax = 18.37
|
1676 |
+
text = "G"
|
1677 |
+
intervals [195]:
|
1678 |
+
xmin = 18.37
|
1679 |
+
xmax = 18.42
|
1680 |
+
text = "IH1"
|
1681 |
+
intervals [196]:
|
1682 |
+
xmin = 18.42
|
1683 |
+
xmax = 18.46
|
1684 |
+
text = "T"
|
1685 |
+
intervals [197]:
|
1686 |
+
xmin = 18.46
|
1687 |
+
xmax = 18.5
|
1688 |
+
text = "IH0"
|
1689 |
+
intervals [198]:
|
1690 |
+
xmin = 18.5
|
1691 |
+
xmax = 18.55
|
1692 |
+
text = "NG"
|
1693 |
+
intervals [199]:
|
1694 |
+
xmin = 18.55
|
1695 |
+
xmax = 18.61
|
1696 |
+
text = "EY1"
|
1697 |
+
intervals [200]:
|
1698 |
+
xmin = 18.61
|
1699 |
+
xmax = 18.67
|
1700 |
+
text = "G"
|
1701 |
+
intervals [201]:
|
1702 |
+
xmin = 18.67
|
1703 |
+
xmax = 18.73
|
1704 |
+
text = "UH1"
|
1705 |
+
intervals [202]:
|
1706 |
+
xmin = 18.73
|
1707 |
+
xmax = 18.78
|
1708 |
+
text = "D"
|
1709 |
+
intervals [203]:
|
1710 |
+
xmin = 18.78
|
1711 |
+
xmax = 18.86
|
1712 |
+
text = "R"
|
1713 |
+
intervals [204]:
|
1714 |
+
xmin = 18.86
|
1715 |
+
xmax = 18.97
|
1716 |
+
text = "EH1"
|
1717 |
+
intervals [205]:
|
1718 |
+
xmin = 18.97
|
1719 |
+
xmax = 19.05
|
1720 |
+
text = "S"
|
1721 |
+
intervals [206]:
|
1722 |
+
xmin = 19.05
|
1723 |
+
xmax = 19.08
|
1724 |
+
text = "T"
|
1725 |
+
intervals [207]:
|
1726 |
+
xmin = 19.08
|
1727 |
+
xmax = 19.13
|
1728 |
+
text = "IH0"
|
1729 |
+
intervals [208]:
|
1730 |
+
xmin = 19.13
|
1731 |
+
xmax = 19.21
|
1732 |
+
text = "Z"
|
1733 |
+
intervals [209]:
|
1734 |
+
xmin = 19.21
|
1735 |
+
xmax = 19.24
|
1736 |
+
text = "EH1"
|
1737 |
+
intervals [210]:
|
1738 |
+
xmin = 19.24
|
1739 |
+
xmax = 19.3
|
1740 |
+
text = "Z"
|
1741 |
+
intervals [211]:
|
1742 |
+
xmin = 19.3
|
1743 |
+
xmax = 19.34
|
1744 |
+
text = "IH0"
|
1745 |
+
intervals [212]:
|
1746 |
+
xmin = 19.34
|
1747 |
+
xmax = 19.38
|
1748 |
+
text = "M"
|
1749 |
+
intervals [213]:
|
1750 |
+
xmin = 19.38
|
1751 |
+
xmax = 19.48
|
1752 |
+
text = "P"
|
1753 |
+
intervals [214]:
|
1754 |
+
xmin = 19.48
|
1755 |
+
xmax = 19.55
|
1756 |
+
text = "AO1"
|
1757 |
+
intervals [215]:
|
1758 |
+
xmin = 19.55
|
1759 |
+
xmax = 19.59
|
1760 |
+
text = "R"
|
1761 |
+
intervals [216]:
|
1762 |
+
xmin = 19.59
|
1763 |
+
xmax = 19.62
|
1764 |
+
text = "T"
|
1765 |
+
intervals [217]:
|
1766 |
+
xmin = 19.62
|
1767 |
+
xmax = 19.65
|
1768 |
+
text = "AH0"
|
1769 |
+
intervals [218]:
|
1770 |
+
xmin = 19.65
|
1771 |
+
xmax = 19.68
|
1772 |
+
text = "N"
|
1773 |
+
intervals [219]:
|
1774 |
+
xmin = 19.68
|
1775 |
+
xmax = 19.77
|
1776 |
+
text = "T"
|
1777 |
+
intervals [220]:
|
1778 |
+
xmin = 19.77
|
1779 |
+
xmax = 19.94
|
1780 |
+
text = "AE1"
|
1781 |
+
intervals [221]:
|
1782 |
+
xmin = 19.94
|
1783 |
+
xmax = 20.16
|
1784 |
+
text = "Z"
|
1785 |
+
intervals [222]:
|
1786 |
+
xmin = 20.16
|
1787 |
+
xmax = 20.3
|
1788 |
+
text = ""
|
1789 |
+
intervals [223]:
|
1790 |
+
xmin = 20.3
|
1791 |
+
xmax = 20.39
|
1792 |
+
text = "K"
|
1793 |
+
intervals [224]:
|
1794 |
+
xmin = 20.39
|
1795 |
+
xmax = 20.43
|
1796 |
+
text = "AH0"
|
1797 |
+
intervals [225]:
|
1798 |
+
xmin = 20.43
|
1799 |
+
xmax = 20.46
|
1800 |
+
text = "M"
|
1801 |
+
intervals [226]:
|
1802 |
+
xmin = 20.46
|
1803 |
+
xmax = 20.53
|
1804 |
+
text = "P"
|
1805 |
+
intervals [227]:
|
1806 |
+
xmin = 20.53
|
1807 |
+
xmax = 20.59
|
1808 |
+
text = "L"
|
1809 |
+
intervals [228]:
|
1810 |
+
xmin = 20.59
|
1811 |
+
xmax = 20.63
|
1812 |
+
text = "EY1"
|
1813 |
+
intervals [229]:
|
1814 |
+
xmin = 20.63
|
1815 |
+
xmax = 20.66
|
1816 |
+
text = "N"
|
1817 |
+
intervals [230]:
|
1818 |
+
xmin = 20.66
|
1819 |
+
xmax = 20.69
|
1820 |
+
text = "T"
|
1821 |
+
intervals [231]:
|
1822 |
+
xmin = 20.69
|
1823 |
+
xmax = 20.75
|
1824 |
+
text = "AH0"
|
1825 |
+
intervals [232]:
|
1826 |
+
xmin = 20.75
|
1827 |
+
xmax = 20.87
|
1828 |
+
text = "JH"
|
1829 |
+
intervals [233]:
|
1830 |
+
xmin = 20.87
|
1831 |
+
xmax = 21.09
|
1832 |
+
text = "AO1"
|
1833 |
+
intervals [234]:
|
1834 |
+
xmin = 21.09
|
1835 |
+
xmax = 21.3
|
1836 |
+
text = "ER0"
|
1837 |
+
intervals [235]:
|
1838 |
+
xmin = 21.3
|
1839 |
+
xmax = 21.44
|
1840 |
+
text = "K"
|
1841 |
+
intervals [236]:
|
1842 |
+
xmin = 21.44
|
1843 |
+
xmax = 21.47
|
1844 |
+
text = "AH0"
|
1845 |
+
intervals [237]:
|
1846 |
+
xmin = 21.47
|
1847 |
+
xmax = 21.5
|
1848 |
+
text = "M"
|
1849 |
+
intervals [238]:
|
1850 |
+
xmin = 21.5
|
1851 |
+
xmax = 21.53
|
1852 |
+
text = "P"
|
1853 |
+
intervals [239]:
|
1854 |
+
xmin = 21.53
|
1855 |
+
xmax = 21.6
|
1856 |
+
text = "L"
|
1857 |
+
intervals [240]:
|
1858 |
+
xmin = 21.6
|
1859 |
+
xmax = 21.63
|
1860 |
+
text = "IY1"
|
1861 |
+
intervals [241]:
|
1862 |
+
xmin = 21.63
|
1863 |
+
xmax = 21.66
|
1864 |
+
text = "T"
|
1865 |
+
intervals [242]:
|
1866 |
+
xmin = 21.66
|
1867 |
+
xmax = 21.72
|
1868 |
+
text = "IH0"
|
1869 |
+
intervals [243]:
|
1870 |
+
xmin = 21.72
|
1871 |
+
xmax = 21.79
|
1872 |
+
text = "NG"
|
1873 |
+
intervals [244]:
|
1874 |
+
xmin = 21.79
|
1875 |
+
xmax = 21.83
|
1876 |
+
text = "AH0"
|
1877 |
+
intervals [245]:
|
1878 |
+
xmin = 21.83
|
1879 |
+
xmax = 21.9
|
1880 |
+
text = "N"
|
1881 |
+
intervals [246]:
|
1882 |
+
xmin = 21.9
|
1883 |
+
xmax = 21.98
|
1884 |
+
text = "EH1"
|
1885 |
+
intervals [247]:
|
1886 |
+
xmin = 21.98
|
1887 |
+
xmax = 22.03
|
1888 |
+
text = "K"
|
1889 |
+
intervals [248]:
|
1890 |
+
xmin = 22.03
|
1891 |
+
xmax = 22.07
|
1892 |
+
text = "S"
|
1893 |
+
intervals [249]:
|
1894 |
+
xmin = 22.07
|
1895 |
+
xmax = 22.11
|
1896 |
+
text = "AH0"
|
1897 |
+
intervals [250]:
|
1898 |
+
xmin = 22.11
|
1899 |
+
xmax = 22.14
|
1900 |
+
text = "L"
|
1901 |
+
intervals [251]:
|
1902 |
+
xmin = 22.14
|
1903 |
+
xmax = 22.17
|
1904 |
+
text = "AH0"
|
1905 |
+
intervals [252]:
|
1906 |
+
xmin = 22.17
|
1907 |
+
xmax = 22.2
|
1908 |
+
text = "N"
|
1909 |
+
intervals [253]:
|
1910 |
+
xmin = 22.2
|
1911 |
+
xmax = 22.23
|
1912 |
+
text = "T"
|
1913 |
+
intervals [254]:
|
1914 |
+
xmin = 22.23
|
1915 |
+
xmax = 22.34
|
1916 |
+
text = "JH"
|
1917 |
+
intervals [255]:
|
1918 |
+
xmin = 22.34
|
1919 |
+
xmax = 22.5
|
1920 |
+
text = "AA1"
|
1921 |
+
intervals [256]:
|
1922 |
+
xmin = 22.5
|
1923 |
+
xmax = 22.64
|
1924 |
+
text = "B"
|
1925 |
+
intervals [257]:
|
1926 |
+
xmin = 22.64
|
1927 |
+
xmax = 23.04
|
1928 |
+
text = ""
|
1929 |
+
intervals [258]:
|
1930 |
+
xmin = 23.04
|
1931 |
+
xmax = 23.14
|
1932 |
+
text = "IH0"
|
1933 |
+
intervals [259]:
|
1934 |
+
xmin = 23.14
|
1935 |
+
xmax = 23.17
|
1936 |
+
text = "N"
|
1937 |
+
intervals [260]:
|
1938 |
+
xmin = 23.17
|
1939 |
+
xmax = 23.2
|
1940 |
+
text = "M"
|
1941 |
+
intervals [261]:
|
1942 |
+
xmin = 23.2
|
1943 |
+
xmax = 23.29
|
1944 |
+
text = "AY1"
|
1945 |
+
intervals [262]:
|
1946 |
+
xmin = 23.29
|
1947 |
+
xmax = 23.36
|
1948 |
+
text = "S"
|
1949 |
+
intervals [263]:
|
1950 |
+
xmin = 23.36
|
1951 |
+
xmax = 23.41
|
1952 |
+
text = "P"
|
1953 |
+
intervals [264]:
|
1954 |
+
xmin = 23.41
|
1955 |
+
xmax = 23.52
|
1956 |
+
text = "EH1"
|
1957 |
+
intervals [265]:
|
1958 |
+
xmin = 23.52
|
1959 |
+
xmax = 23.56
|
1960 |
+
text = "R"
|
1961 |
+
intervals [266]:
|
1962 |
+
xmin = 23.56
|
1963 |
+
xmax = 23.65
|
1964 |
+
text = "T"
|
1965 |
+
intervals [267]:
|
1966 |
+
xmin = 23.65
|
1967 |
+
xmax = 23.76
|
1968 |
+
text = "AY1"
|
1969 |
+
intervals [268]:
|
1970 |
+
xmin = 23.76
|
1971 |
+
xmax = 23.8
|
1972 |
+
text = "M"
|
1973 |
+
intervals [269]:
|
1974 |
+
xmin = 23.8
|
1975 |
+
xmax = 23.85
|
1976 |
+
text = "IH0"
|
1977 |
+
intervals [270]:
|
1978 |
+
xmin = 23.85
|
1979 |
+
xmax = 23.88
|
1980 |
+
text = "F"
|
1981 |
+
intervals [271]:
|
1982 |
+
xmin = 23.88
|
1983 |
+
xmax = 23.98
|
1984 |
+
text = "AY1"
|
1985 |
+
intervals [272]:
|
1986 |
+
xmin = 23.98
|
1987 |
+
xmax = 24.04
|
1988 |
+
text = "F"
|
1989 |
+
intervals [273]:
|
1990 |
+
xmin = 24.04
|
1991 |
+
xmax = 24.13
|
1992 |
+
text = "IY1"
|
1993 |
+
intervals [274]:
|
1994 |
+
xmin = 24.13
|
1995 |
+
xmax = 24.18
|
1996 |
+
text = "L"
|
1997 |
+
intervals [275]:
|
1998 |
+
xmin = 24.18
|
1999 |
+
xmax = 24.26
|
2000 |
+
text = "OW2"
|
2001 |
+
intervals [276]:
|
2002 |
+
xmin = 24.26
|
2003 |
+
xmax = 24.39
|
2004 |
+
text = "K"
|
2005 |
+
intervals [277]:
|
2006 |
+
xmin = 24.39
|
2007 |
+
xmax = 24.84
|
2008 |
+
text = "EY1"
|
2009 |
+
intervals [278]:
|
2010 |
+
xmin = 24.84
|
2011 |
+
xmax = 25.07
|
2012 |
+
text = "AY1"
|
2013 |
+
intervals [279]:
|
2014 |
+
xmin = 25.07
|
2015 |
+
xmax = 25.1
|
2016 |
+
text = ""
|
2017 |
+
intervals [280]:
|
2018 |
+
xmin = 25.1
|
2019 |
+
xmax = 25.29
|
2020 |
+
text = "L"
|
2021 |
+
intervals [281]:
|
2022 |
+
xmin = 25.29
|
2023 |
+
xmax = 25.35
|
2024 |
+
text = "AY1"
|
2025 |
+
intervals [282]:
|
2026 |
+
xmin = 25.35
|
2027 |
+
xmax = 25.38
|
2028 |
+
text = "K"
|
2029 |
+
intervals [283]:
|
2030 |
+
xmin = 25.38
|
2031 |
+
xmax = 25.41
|
2032 |
+
text = "T"
|
2033 |
+
intervals [284]:
|
2034 |
+
xmin = 25.41
|
2035 |
+
xmax = 25.44
|
2036 |
+
text = "IH0"
|
2037 |
+
intervals [285]:
|
2038 |
+
xmin = 25.44
|
2039 |
+
xmax = 25.5
|
2040 |
+
text = "G"
|
2041 |
+
intervals [286]:
|
2042 |
+
xmin = 25.5
|
2043 |
+
xmax = 25.55
|
2044 |
+
text = "OW1"
|
2045 |
+
intervals [287]:
|
2046 |
+
xmin = 25.55
|
2047 |
+
xmax = 25.59
|
2048 |
+
text = "F"
|
2049 |
+
intervals [288]:
|
2050 |
+
xmin = 25.59
|
2051 |
+
xmax = 25.79
|
2052 |
+
text = "ER0"
|
2053 |
+
intervals [289]:
|
2054 |
+
xmin = 25.79
|
2055 |
+
xmax = 25.83
|
2056 |
+
text = "AH0"
|
2057 |
+
intervals [290]:
|
2058 |
+
xmin = 25.83
|
2059 |
+
xmax = 25.94
|
2060 |
+
text = "HH"
|
2061 |
+
intervals [291]:
|
2062 |
+
xmin = 25.94
|
2063 |
+
xmax = 26.06
|
2064 |
+
text = "AY1"
|
2065 |
+
intervals [292]:
|
2066 |
+
xmin = 26.06
|
2067 |
+
xmax = 26.12
|
2068 |
+
text = "K"
|
2069 |
+
intervals [293]:
|
2070 |
+
xmin = 26.12
|
2071 |
+
xmax = 26.17
|
2072 |
+
text = "IH1"
|
2073 |
+
intervals [294]:
|
2074 |
+
xmin = 26.17
|
2075 |
+
xmax = 26.21
|
2076 |
+
text = "N"
|
2077 |
+
intervals [295]:
|
2078 |
+
xmin = 26.21
|
2079 |
+
xmax = 26.27
|
2080 |
+
text = "N"
|
2081 |
+
intervals [296]:
|
2082 |
+
xmin = 26.27
|
2083 |
+
xmax = 26.4
|
2084 |
+
text = "EY1"
|
2085 |
+
intervals [297]:
|
2086 |
+
xmin = 26.4
|
2087 |
+
xmax = 26.53
|
2088 |
+
text = "CH"
|
2089 |
+
intervals [298]:
|
2090 |
+
xmin = 26.53
|
2091 |
+
xmax = 26.81
|
2092 |
+
text = "ER0"
|
2093 |
+
intervals [299]:
|
2094 |
+
xmin = 26.81
|
2095 |
+
xmax = 27.11
|
2096 |
+
text = ""
|
2097 |
+
intervals [300]:
|
2098 |
+
xmin = 27.11
|
2099 |
+
xmax = 27.21
|
2100 |
+
text = "S"
|
2101 |
+
intervals [301]:
|
2102 |
+
xmin = 27.21
|
2103 |
+
xmax = 27.25
|
2104 |
+
text = "AH1"
|
2105 |
+
intervals [302]:
|
2106 |
+
xmin = 27.25
|
2107 |
+
xmax = 27.28
|
2108 |
+
text = "M"
|
2109 |
+
intervals [303]:
|
2110 |
+
xmin = 27.28
|
2111 |
+
xmax = 27.31
|
2112 |
+
text = "T"
|
2113 |
+
intervals [304]:
|
2114 |
+
xmin = 27.31
|
2115 |
+
xmax = 27.38
|
2116 |
+
text = "AY2"
|
2117 |
+
intervals [305]:
|
2118 |
+
xmin = 27.38
|
2119 |
+
xmax = 27.41
|
2120 |
+
text = "M"
|
2121 |
+
intervals [306]:
|
2122 |
+
xmin = 27.41
|
2123 |
+
xmax = 27.45
|
2124 |
+
text = "Z"
|
2125 |
+
intervals [307]:
|
2126 |
+
xmin = 27.45
|
2127 |
+
xmax = 27.51
|
2128 |
+
text = "AY1"
|
2129 |
+
intervals [308]:
|
2130 |
+
xmin = 27.51
|
2131 |
+
xmax = 27.6
|
2132 |
+
text = "T"
|
2133 |
+
intervals [309]:
|
2134 |
+
xmin = 27.6
|
2135 |
+
xmax = 27.67
|
2136 |
+
text = "R"
|
2137 |
+
intervals [310]:
|
2138 |
+
xmin = 27.67
|
2139 |
+
xmax = 27.74
|
2140 |
+
text = "AY1"
|
2141 |
+
intervals [311]:
|
2142 |
+
xmin = 27.74
|
2143 |
+
xmax = 27.77
|
2144 |
+
text = "T"
|
2145 |
+
intervals [312]:
|
2146 |
+
xmin = 27.77
|
2147 |
+
xmax = 27.88
|
2148 |
+
text = "AH0"
|
2149 |
+
intervals [313]:
|
2150 |
+
xmin = 27.88
|
2151 |
+
xmax = 28.02
|
2152 |
+
text = "AO1"
|
2153 |
+
intervals [314]:
|
2154 |
+
xmin = 28.02
|
2155 |
+
xmax = 28.07
|
2156 |
+
text = "R"
|
2157 |
+
intervals [315]:
|
2158 |
+
xmin = 28.07
|
2159 |
+
xmax = 28.12
|
2160 |
+
text = "G"
|
2161 |
+
intervals [316]:
|
2162 |
+
xmin = 28.12
|
2163 |
+
xmax = 28.15
|
2164 |
+
text = "AH0"
|
2165 |
+
intervals [317]:
|
2166 |
+
xmin = 28.15
|
2167 |
+
xmax = 28.18
|
2168 |
+
text = "N"
|
2169 |
+
intervals [318]:
|
2170 |
+
xmin = 28.18
|
2171 |
+
xmax = 28.3
|
2172 |
+
text = "AY2"
|
2173 |
+
intervals [319]:
|
2174 |
+
xmin = 28.3
|
2175 |
+
xmax = 28.37
|
2176 |
+
text = "Z"
|
2177 |
+
intervals [320]:
|
2178 |
+
xmin = 28.37
|
2179 |
+
xmax = 28.42
|
2180 |
+
text = "S"
|
2181 |
+
intervals [321]:
|
2182 |
+
xmin = 28.42
|
2183 |
+
xmax = 28.47
|
2184 |
+
text = "AH1"
|
2185 |
+
intervals [322]:
|
2186 |
+
xmin = 28.47
|
2187 |
+
xmax = 28.5
|
2188 |
+
text = "M"
|
2189 |
+
intervals [323]:
|
2190 |
+
xmin = 28.5
|
2191 |
+
xmax = 28.53
|
2192 |
+
text = "TH"
|
2193 |
+
intervals [324]:
|
2194 |
+
xmin = 28.53
|
2195 |
+
xmax = 28.61
|
2196 |
+
text = "IH0"
|
2197 |
+
intervals [325]:
|
2198 |
+
xmin = 28.61
|
2199 |
+
xmax = 28.94
|
2200 |
+
text = "NG"
|
2201 |
+
intervals [326]:
|
2202 |
+
xmin = 28.94
|
2203 |
+
xmax = 28.98
|
2204 |
+
text = ""
|
2205 |
+
intervals [327]:
|
2206 |
+
xmin = 28.98
|
2207 |
+
xmax = 29.08
|
2208 |
+
text = "F"
|
2209 |
+
intervals [328]:
|
2210 |
+
xmin = 29.08
|
2211 |
+
xmax = 29.13
|
2212 |
+
text = "AO1"
|
2213 |
+
intervals [329]:
|
2214 |
+
xmin = 29.13
|
2215 |
+
xmax = 29.19
|
2216 |
+
text = "R"
|
2217 |
+
intervals [330]:
|
2218 |
+
xmin = 29.19
|
2219 |
+
xmax = 29.23
|
2220 |
+
text = "M"
|
2221 |
+
intervals [331]:
|
2222 |
+
xmin = 29.23
|
2223 |
+
xmax = 29.32
|
2224 |
+
text = "AY1"
|
2225 |
+
intervals [332]:
|
2226 |
+
xmin = 29.32
|
2227 |
+
xmax = 29.41
|
2228 |
+
text = "F"
|
2229 |
+
intervals [333]:
|
2230 |
+
xmin = 29.41
|
2231 |
+
xmax = 29.49
|
2232 |
+
text = "R"
|
2233 |
+
intervals [334]:
|
2234 |
+
xmin = 29.49
|
2235 |
+
xmax = 29.6
|
2236 |
+
text = "EH1"
|
2237 |
+
intervals [335]:
|
2238 |
+
xmin = 29.6
|
2239 |
+
xmax = 29.65
|
2240 |
+
text = "N"
|
2241 |
+
intervals [336]:
|
2242 |
+
xmin = 29.65
|
2243 |
+
xmax = 29.7
|
2244 |
+
text = "D"
|
2245 |
+
intervals [337]:
|
2246 |
+
xmin = 29.7
|
2247 |
+
xmax = 29.89
|
2248 |
+
text = "Z"
|
2249 |
+
intervals [338]:
|
2250 |
+
xmin = 29.89
|
2251 |
+
xmax = 29.92
|
2252 |
+
text = ""
|
2253 |
+
intervals [339]:
|
2254 |
+
xmin = 29.92
|
2255 |
+
xmax = 29.95
|
2256 |
+
text = "AY1"
|
2257 |
+
intervals [340]:
|
2258 |
+
xmin = 29.95
|
2259 |
+
xmax = 30.2
|
2260 |
+
text = ""
|
2261 |
+
intervals [341]:
|
2262 |
+
xmin = 30.2
|
2263 |
+
xmax = 30.26
|
2264 |
+
text = "V"
|
2265 |
+
intervals [342]:
|
2266 |
+
xmin = 30.26
|
2267 |
+
xmax = 30.39
|
2268 |
+
text = "AA2"
|
2269 |
+
intervals [343]:
|
2270 |
+
xmin = 30.39
|
2271 |
+
xmax = 30.45
|
2272 |
+
text = "L"
|
2273 |
+
intervals [344]:
|
2274 |
+
xmin = 30.45
|
2275 |
+
xmax = 30.48
|
2276 |
+
text = "AH0"
|
2277 |
+
intervals [345]:
|
2278 |
+
xmin = 30.48
|
2279 |
+
xmax = 30.51
|
2280 |
+
text = "N"
|
2281 |
+
intervals [346]:
|
2282 |
+
xmin = 30.51
|
2283 |
+
xmax = 30.6
|
2284 |
+
text = "T"
|
2285 |
+
intervals [347]:
|
2286 |
+
xmin = 30.6
|
2287 |
+
xmax = 30.67
|
2288 |
+
text = "IH1"
|
2289 |
+
intervals [348]:
|
2290 |
+
xmin = 30.67
|
2291 |
+
xmax = 30.73
|
2292 |
+
text = "R"
|
2293 |
+
intervals [349]:
|
2294 |
+
xmin = 30.73
|
2295 |
+
xmax = 30.77
|
2296 |
+
text = "AE1"
|
2297 |
+
intervals [350]:
|
2298 |
+
xmin = 30.77
|
2299 |
+
xmax = 30.86
|
2300 |
+
text = "T"
|
2301 |
+
intervals [351]:
|
2302 |
+
xmin = 30.86
|
2303 |
+
xmax = 30.91
|
2304 |
+
text = "DH"
|
2305 |
+
intervals [352]:
|
2306 |
+
xmin = 30.91
|
2307 |
+
xmax = 30.97
|
2308 |
+
text = "AH1"
|
2309 |
+
intervals [353]:
|
2310 |
+
xmin = 30.97
|
2311 |
+
xmax = 31.13
|
2312 |
+
text = "B"
|
2313 |
+
intervals [354]:
|
2314 |
+
xmin = 31.13
|
2315 |
+
xmax = 31.19
|
2316 |
+
text = "UW1"
|
2317 |
+
intervals [355]:
|
2318 |
+
xmin = 31.19
|
2319 |
+
xmax = 31.24
|
2320 |
+
text = "D"
|
2321 |
+
intervals [356]:
|
2322 |
+
xmin = 31.24
|
2323 |
+
xmax = 31.3
|
2324 |
+
text = "AH0"
|
2325 |
+
intervals [357]:
|
2326 |
+
xmin = 31.3
|
2327 |
+
xmax = 31.35
|
2328 |
+
text = "S"
|
2329 |
+
intervals [358]:
|
2330 |
+
xmin = 31.35
|
2331 |
+
xmax = 31.38
|
2332 |
+
text = "T"
|
2333 |
+
intervals [359]:
|
2334 |
+
xmin = 31.38
|
2335 |
+
xmax = 31.41
|
2336 |
+
text = "T"
|
2337 |
+
intervals [360]:
|
2338 |
+
xmin = 31.41
|
2339 |
+
xmax = 31.47
|
2340 |
+
text = "EH1"
|
2341 |
+
intervals [361]:
|
2342 |
+
xmin = 31.47
|
2343 |
+
xmax = 31.52
|
2344 |
+
text = "M"
|
2345 |
+
intervals [362]:
|
2346 |
+
xmin = 31.52
|
2347 |
+
xmax = 31.56
|
2348 |
+
text = "P"
|
2349 |
+
intervals [363]:
|
2350 |
+
xmin = 31.56
|
2351 |
+
xmax = 31.61
|
2352 |
+
text = "AH0"
|
2353 |
+
intervals [364]:
|
2354 |
+
xmin = 31.61
|
2355 |
+
xmax = 31.83
|
2356 |
+
text = "L"
|
2357 |
+
intervals [365]:
|
2358 |
+
xmin = 31.83
|
2359 |
+
xmax = 31.9
|
2360 |
+
text = "AO1"
|
2361 |
+
intervals [366]:
|
2362 |
+
xmin = 31.9
|
2363 |
+
xmax = 31.94
|
2364 |
+
text = "N"
|
2365 |
+
intervals [367]:
|
2366 |
+
xmin = 31.94
|
2367 |
+
xmax = 31.97
|
2368 |
+
text = "DH"
|
2369 |
+
intervals [368]:
|
2370 |
+
xmin = 31.97
|
2371 |
+
xmax = 32.01
|
2372 |
+
text = "AH1"
|
2373 |
+
intervals [369]:
|
2374 |
+
xmin = 32.01
|
2375 |
+
xmax = 32.08
|
2376 |
+
text = "W"
|
2377 |
+
intervals [370]:
|
2378 |
+
xmin = 32.08
|
2379 |
+
xmax = 32.17
|
2380 |
+
text = "IY1"
|
2381 |
+
intervals [371]:
|
2382 |
+
xmin = 32.17
|
2383 |
+
xmax = 32.26
|
2384 |
+
text = "K"
|
2385 |
+
intervals [372]:
|
2386 |
+
xmin = 32.26
|
2387 |
+
xmax = 32.45
|
2388 |
+
text = "EH2"
|
2389 |
+
intervals [373]:
|
2390 |
+
xmin = 32.45
|
2391 |
+
xmax = 32.51
|
2392 |
+
text = "N"
|
2393 |
+
intervals [374]:
|
2394 |
+
xmin = 32.51
|
2395 |
+
xmax = 32.6
|
2396 |
+
text = "D"
|
2397 |
+
intervals [375]:
|
2398 |
+
xmin = 32.6
|
2399 |
+
xmax = 32.88
|
2400 |
+
text = "AO1"
|
2401 |
+
intervals [376]:
|
2402 |
+
xmin = 32.88
|
2403 |
+
xmax = 33.01
|
2404 |
+
text = "R"
|
2405 |
+
intervals [377]:
|
2406 |
+
xmin = 33.01
|
2407 |
+
xmax = 33.24
|
2408 |
+
text = "AY1"
|
2409 |
+
intervals [378]:
|
2410 |
+
xmin = 33.24
|
2411 |
+
xmax = 33.36
|
2412 |
+
text = "K"
|
2413 |
+
intervals [379]:
|
2414 |
+
xmin = 33.36
|
2415 |
+
xmax = 33.51
|
2416 |
+
text = "AE1"
|
2417 |
+
intervals [380]:
|
2418 |
+
xmin = 33.51
|
2419 |
+
xmax = 33.62
|
2420 |
+
text = "N"
|
2421 |
+
intervals [381]:
|
2422 |
+
xmin = 33.62
|
2423 |
+
xmax = 33.7
|
2424 |
+
text = "JH"
|
2425 |
+
intervals [382]:
|
2426 |
+
xmin = 33.7
|
2427 |
+
xmax = 33.77
|
2428 |
+
text = "IH0"
|
2429 |
+
intervals [383]:
|
2430 |
+
xmin = 33.77
|
2431 |
+
xmax = 33.8
|
2432 |
+
text = "S"
|
2433 |
+
intervals [384]:
|
2434 |
+
xmin = 33.8
|
2435 |
+
xmax = 33.91
|
2436 |
+
text = "T"
|
2437 |
+
intervals [385]:
|
2438 |
+
xmin = 33.91
|
2439 |
+
xmax = 33.96
|
2440 |
+
text = "W"
|
2441 |
+
intervals [386]:
|
2442 |
+
xmin = 33.96
|
2443 |
+
xmax = 34.2
|
2444 |
+
text = "AO1"
|
2445 |
+
intervals [387]:
|
2446 |
+
xmin = 34.2
|
2447 |
+
xmax = 34.3
|
2448 |
+
text = "K"
|
2449 |
+
intervals [388]:
|
2450 |
+
xmin = 34.3
|
2451 |
+
xmax = 34.42
|
2452 |
+
text = "ER0"
|
2453 |
+
intervals [389]:
|
2454 |
+
xmin = 34.42
|
2455 |
+
xmax = 34.63
|
2456 |
+
text = "AW1"
|
2457 |
+
intervals [390]:
|
2458 |
+
xmin = 34.63
|
2459 |
+
xmax = 34.69
|
2460 |
+
text = "N"
|
2461 |
+
intervals [391]:
|
2462 |
+
xmin = 34.69
|
2463 |
+
xmax = 34.76
|
2464 |
+
text = "IH0"
|
2465 |
+
intervals [392]:
|
2466 |
+
xmin = 34.76
|
2467 |
+
xmax = 34.8
|
2468 |
+
text = "N"
|
2469 |
+
intervals [393]:
|
2470 |
+
xmin = 34.8
|
2471 |
+
xmax = 34.9
|
2472 |
+
text = "JH"
|
2473 |
+
intervals [394]:
|
2474 |
+
xmin = 34.9
|
2475 |
+
xmax = 34.99
|
2476 |
+
text = "OY1"
|
2477 |
+
intervals [395]:
|
2478 |
+
xmin = 34.99
|
2479 |
+
xmax = 35.03
|
2480 |
+
text = "IH0"
|
2481 |
+
intervals [396]:
|
2482 |
+
xmin = 35.03
|
2483 |
+
xmax = 35.08
|
2484 |
+
text = "NG"
|
2485 |
+
intervals [397]:
|
2486 |
+
xmin = 35.08
|
2487 |
+
xmax = 35.12
|
2488 |
+
text = "DH"
|
2489 |
+
intervals [398]:
|
2490 |
+
xmin = 35.12
|
2491 |
+
xmax = 35.17
|
2492 |
+
text = "AH0"
|
2493 |
+
intervals [399]:
|
2494 |
+
xmin = 35.17
|
2495 |
+
xmax = 35.26
|
2496 |
+
text = "S"
|
2497 |
+
intervals [400]:
|
2498 |
+
xmin = 35.26
|
2499 |
+
xmax = 35.33
|
2500 |
+
text = "AH1"
|
2501 |
+
intervals [401]:
|
2502 |
+
xmin = 35.33
|
2503 |
+
xmax = 35.4
|
2504 |
+
text = "N"
|
2505 |
+
intervals [402]:
|
2506 |
+
xmin = 35.4
|
2507 |
+
xmax = 35.53
|
2508 |
+
text = "SH"
|
2509 |
+
intervals [403]:
|
2510 |
+
xmin = 35.53
|
2511 |
+
xmax = 35.69
|
2512 |
+
text = "AY2"
|
2513 |
+
intervals [404]:
|
2514 |
+
xmin = 35.69
|
2515 |
+
xmax = 35.87
|
2516 |
+
text = "N"
|
2517 |
+
intervals [405]:
|
2518 |
+
xmin = 35.87
|
2519 |
+
xmax = 36.15
|
2520 |
+
text = ""
|
2521 |
+
intervals [406]:
|
2522 |
+
xmin = 36.15
|
2523 |
+
xmax = 36.3
|
2524 |
+
text = "AY1"
|
2525 |
+
intervals [407]:
|
2526 |
+
xmin = 36.3
|
2527 |
+
xmax = 36.34
|
2528 |
+
text = "D"
|
2529 |
+
intervals [408]:
|
2530 |
+
xmin = 36.34
|
2531 |
+
xmax = 36.38
|
2532 |
+
text = "L"
|
2533 |
+
intervals [409]:
|
2534 |
+
xmin = 36.38
|
2535 |
+
xmax = 36.49
|
2536 |
+
text = "AY1"
|
2537 |
+
intervals [410]:
|
2538 |
+
xmin = 36.49
|
2539 |
+
xmax = 36.52
|
2540 |
+
text = "K"
|
2541 |
+
intervals [411]:
|
2542 |
+
xmin = 36.52
|
2543 |
+
xmax = 36.56
|
2544 |
+
text = "T"
|
2545 |
+
intervals [412]:
|
2546 |
+
xmin = 36.56
|
2547 |
+
xmax = 36.59
|
2548 |
+
text = "AH0"
|
2549 |
+
intervals [413]:
|
2550 |
+
xmin = 36.59
|
2551 |
+
xmax = 36.62
|
2552 |
+
text = "HH"
|
2553 |
+
intervals [414]:
|
2554 |
+
xmin = 36.62
|
2555 |
+
xmax = 36.7
|
2556 |
+
text = "AE1"
|
2557 |
+
intervals [415]:
|
2558 |
+
xmin = 36.7
|
2559 |
+
xmax = 36.74
|
2560 |
+
text = "V"
|
2561 |
+
intervals [416]:
|
2562 |
+
xmin = 36.74
|
2563 |
+
xmax = 36.79
|
2564 |
+
text = "AH0"
|
2565 |
+
intervals [417]:
|
2566 |
+
xmin = 36.79
|
2567 |
+
xmax = 36.83
|
2568 |
+
text = "HH"
|
2569 |
+
intervals [418]:
|
2570 |
+
xmin = 36.83
|
2571 |
+
xmax = 36.88
|
2572 |
+
text = "EH1"
|
2573 |
+
intervals [419]:
|
2574 |
+
xmin = 36.88
|
2575 |
+
xmax = 36.93
|
2576 |
+
text = "L"
|
2577 |
+
intervals [420]:
|
2578 |
+
xmin = 36.93
|
2579 |
+
xmax = 37.01
|
2580 |
+
text = "TH"
|
2581 |
+
intervals [421]:
|
2582 |
+
xmin = 37.01
|
2583 |
+
xmax = 37.06
|
2584 |
+
text = "IY0"
|
2585 |
+
intervals [422]:
|
2586 |
+
xmin = 37.06
|
2587 |
+
xmax = 37.12
|
2588 |
+
text = "L"
|
2589 |
+
intervals [423]:
|
2590 |
+
xmin = 37.12
|
2591 |
+
xmax = 37.23
|
2592 |
+
text = "AY1"
|
2593 |
+
intervals [424]:
|
2594 |
+
xmin = 37.23
|
2595 |
+
xmax = 37.27
|
2596 |
+
text = "F"
|
2597 |
+
intervals [425]:
|
2598 |
+
xmin = 37.27
|
2599 |
+
xmax = 37.34
|
2600 |
+
text = "S"
|
2601 |
+
intervals [426]:
|
2602 |
+
xmin = 37.34
|
2603 |
+
xmax = 37.39
|
2604 |
+
text = "T"
|
2605 |
+
intervals [427]:
|
2606 |
+
xmin = 37.39
|
2607 |
+
xmax = 37.56
|
2608 |
+
text = "AY2"
|
2609 |
+
intervals [428]:
|
2610 |
+
xmin = 37.56
|
2611 |
+
xmax = 37.66
|
2612 |
+
text = "L"
|
2613 |
+
intervals [429]:
|
2614 |
+
xmin = 37.66
|
2615 |
+
xmax = 37.73
|
2616 |
+
text = "K"
|
2617 |
+
intervals [430]:
|
2618 |
+
xmin = 37.73
|
2619 |
+
xmax = 37.77
|
2620 |
+
text = "AH0"
|
2621 |
+
intervals [431]:
|
2622 |
+
xmin = 37.77
|
2623 |
+
xmax = 37.82
|
2624 |
+
text = "N"
|
2625 |
+
intervals [432]:
|
2626 |
+
xmin = 37.82
|
2627 |
+
xmax = 37.87
|
2628 |
+
text = "S"
|
2629 |
+
intervals [433]:
|
2630 |
+
xmin = 37.87
|
2631 |
+
xmax = 37.91
|
2632 |
+
text = "IH1"
|
2633 |
+
intervals [434]:
|
2634 |
+
xmin = 37.91
|
2635 |
+
xmax = 37.94
|
2636 |
+
text = "D"
|
2637 |
+
intervals [435]:
|
2638 |
+
xmin = 37.94
|
2639 |
+
xmax = 37.98
|
2640 |
+
text = "ER0"
|
2641 |
+
intervals [436]:
|
2642 |
+
xmin = 37.98
|
2643 |
+
xmax = 38.02
|
2644 |
+
text = "IH0"
|
2645 |
+
intervals [437]:
|
2646 |
+
xmin = 38.02
|
2647 |
+
xmax = 38.06
|
2648 |
+
text = "NG"
|
2649 |
+
intervals [438]:
|
2650 |
+
xmin = 38.06
|
2651 |
+
xmax = 38.13
|
2652 |
+
text = "HH"
|
2653 |
+
intervals [439]:
|
2654 |
+
xmin = 38.13
|
2655 |
+
xmax = 38.17
|
2656 |
+
text = "AW1"
|
2657 |
+
intervals [440]:
|
2658 |
+
xmin = 38.17
|
2659 |
+
xmax = 38.23
|
2660 |
+
text = "M"
|
2661 |
+
intervals [441]:
|
2662 |
+
xmin = 38.23
|
2663 |
+
xmax = 38.27
|
2664 |
+
text = "AH1"
|
2665 |
+
intervals [442]:
|
2666 |
+
xmin = 38.27
|
2667 |
+
xmax = 38.38
|
2668 |
+
text = "CH"
|
2669 |
+
intervals [443]:
|
2670 |
+
xmin = 38.38
|
2671 |
+
xmax = 38.5
|
2672 |
+
text = "T"
|
2673 |
+
intervals [444]:
|
2674 |
+
xmin = 38.5
|
2675 |
+
xmax = 38.67
|
2676 |
+
text = "AY1"
|
2677 |
+
intervals [445]:
|
2678 |
+
xmin = 38.67
|
2679 |
+
xmax = 38.74
|
2680 |
+
text = "M"
|
2681 |
+
intervals [446]:
|
2682 |
+
xmin = 38.74
|
2683 |
+
xmax = 38.81
|
2684 |
+
text = "AY1"
|
2685 |
+
intervals [447]:
|
2686 |
+
xmin = 38.81
|
2687 |
+
xmax = 38.95
|
2688 |
+
text = "S"
|
2689 |
+
intervals [448]:
|
2690 |
+
xmin = 38.95
|
2691 |
+
xmax = 39.02
|
2692 |
+
text = "P"
|
2693 |
+
intervals [449]:
|
2694 |
+
xmin = 39.02
|
2695 |
+
xmax = 39.09
|
2696 |
+
text = "EH1"
|
2697 |
+
intervals [450]:
|
2698 |
+
xmin = 39.09
|
2699 |
+
xmax = 39.12
|
2700 |
+
text = "N"
|
2701 |
+
intervals [451]:
|
2702 |
+
xmin = 39.12
|
2703 |
+
xmax = 39.18
|
2704 |
+
text = "D"
|
2705 |
+
intervals [452]:
|
2706 |
+
xmin = 39.18
|
2707 |
+
xmax = 39.21
|
2708 |
+
text = "AE1"
|
2709 |
+
intervals [453]:
|
2710 |
+
xmin = 39.21
|
2711 |
+
xmax = 39.29
|
2712 |
+
text = "T"
|
2713 |
+
intervals [454]:
|
2714 |
+
xmin = 39.29
|
2715 |
+
xmax = 39.47
|
2716 |
+
text = "W"
|
2717 |
+
intervals [455]:
|
2718 |
+
xmin = 39.47
|
2719 |
+
xmax = 39.69
|
2720 |
+
text = "ER1"
|
2721 |
+
intervals [456]:
|
2722 |
+
xmin = 39.69
|
2723 |
+
xmax = 39.84
|
2724 |
+
text = "K"
|
2725 |
+
intervals [457]:
|
2726 |
+
xmin = 39.84
|
2727 |
+
xmax = 40.29
|
2728 |
+
text = ""
|
2729 |
+
intervals [458]:
|
2730 |
+
xmin = 40.29
|
2731 |
+
xmax = 40.52
|
2732 |
+
text = "AY1"
|
2733 |
+
intervals [459]:
|
2734 |
+
xmin = 40.52
|
2735 |
+
xmax = 40.56
|
2736 |
+
text = "AO1"
|
2737 |
+
intervals [460]:
|
2738 |
+
xmin = 40.56
|
2739 |
+
xmax = 40.59
|
2740 |
+
text = "L"
|
2741 |
+
intervals [461]:
|
2742 |
+
xmin = 40.59
|
2743 |
+
xmax = 40.66
|
2744 |
+
text = "W"
|
2745 |
+
intervals [462]:
|
2746 |
+
xmin = 40.66
|
2747 |
+
xmax = 40.7
|
2748 |
+
text = "IY0"
|
2749 |
+
intervals [463]:
|
2750 |
+
xmin = 40.7
|
2751 |
+
xmax = 40.79
|
2752 |
+
text = "Z"
|
2753 |
+
intervals [464]:
|
2754 |
+
xmin = 40.79
|
2755 |
+
xmax = 40.94
|
2756 |
+
text = "T"
|
2757 |
+
intervals [465]:
|
2758 |
+
xmin = 40.94
|
2759 |
+
xmax = 41.05
|
2760 |
+
text = "R"
|
2761 |
+
intervals [466]:
|
2762 |
+
xmin = 41.05
|
2763 |
+
xmax = 41.28
|
2764 |
+
text = "AY1"
|
2765 |
+
intervals [467]:
|
2766 |
+
xmin = 41.28
|
2767 |
+
xmax = 41.38
|
2768 |
+
text = "T"
|
2769 |
+
intervals [468]:
|
2770 |
+
xmin = 41.38
|
2771 |
+
xmax = 41.47
|
2772 |
+
text = "IH0"
|
2773 |
+
intervals [469]:
|
2774 |
+
xmin = 41.47
|
2775 |
+
xmax = 41.7
|
2776 |
+
text = "M"
|
2777 |
+
intervals [470]:
|
2778 |
+
xmin = 41.7
|
2779 |
+
xmax = 41.77
|
2780 |
+
text = "UW1"
|
2781 |
+
intervals [471]:
|
2782 |
+
xmin = 41.77
|
2783 |
+
xmax = 41.85
|
2784 |
+
text = "V"
|
2785 |
+
intervals [472]:
|
2786 |
+
xmin = 41.85
|
2787 |
+
xmax = 41.9
|
2788 |
+
text = "EH1"
|
2789 |
+
intervals [473]:
|
2790 |
+
xmin = 41.9
|
2791 |
+
xmax = 42
|
2792 |
+
text = "Z"
|
2793 |
+
intervals [474]:
|
2794 |
+
xmin = 42
|
2795 |
+
xmax = 42.08
|
2796 |
+
text = "M"
|
2797 |
+
intervals [475]:
|
2798 |
+
xmin = 42.08
|
2799 |
+
xmax = 42.13
|
2800 |
+
text = "AH1"
|
2801 |
+
intervals [476]:
|
2802 |
+
xmin = 42.13
|
2803 |
+
xmax = 42.22
|
2804 |
+
text = "CH"
|
2805 |
+
intervals [477]:
|
2806 |
+
xmin = 42.22
|
2807 |
+
xmax = 42.26
|
2808 |
+
text = "EH1"
|
2809 |
+
intervals [478]:
|
2810 |
+
xmin = 42.26
|
2811 |
+
xmax = 42.31
|
2812 |
+
text = "Z"
|
2813 |
+
intervals [479]:
|
2814 |
+
xmin = 42.31
|
2815 |
+
xmax = 42.4
|
2816 |
+
text = "AY1"
|
2817 |
+
intervals [480]:
|
2818 |
+
xmin = 42.4
|
2819 |
+
xmax = 42.51
|
2820 |
+
text = "K"
|
2821 |
+
intervals [481]:
|
2822 |
+
xmin = 42.51
|
2823 |
+
xmax = 42.64
|
2824 |
+
text = "AE1"
|
2825 |
+
intervals [482]:
|
2826 |
+
xmin = 42.64
|
2827 |
+
xmax = 42.76
|
2828 |
+
text = "N"
|
2829 |
+
intervals [483]:
|
2830 |
+
xmin = 42.76
|
2831 |
+
xmax = 42.81
|
2832 |
+
text = "W"
|
2833 |
+
intervals [484]:
|
2834 |
+
xmin = 42.81
|
2835 |
+
xmax = 42.84
|
2836 |
+
text = "EH1"
|
2837 |
+
intervals [485]:
|
2838 |
+
xmin = 42.84
|
2839 |
+
xmax = 42.89
|
2840 |
+
text = "N"
|
2841 |
+
intervals [486]:
|
2842 |
+
xmin = 42.89
|
2843 |
+
xmax = 42.95
|
2844 |
+
text = "AH0"
|
2845 |
+
intervals [487]:
|
2846 |
+
xmin = 42.95
|
2847 |
+
xmax = 42.98
|
2848 |
+
text = "M"
|
2849 |
+
intervals [488]:
|
2850 |
+
xmin = 42.98
|
2851 |
+
xmax = 43.03
|
2852 |
+
text = "N"
|
2853 |
+
intervals [489]:
|
2854 |
+
xmin = 43.03
|
2855 |
+
xmax = 43.12
|
2856 |
+
text = "AA1"
|
2857 |
+
intervals [490]:
|
2858 |
+
xmin = 43.12
|
2859 |
+
xmax = 43.18
|
2860 |
+
text = "T"
|
2861 |
+
intervals [491]:
|
2862 |
+
xmin = 43.18
|
2863 |
+
xmax = 43.28
|
2864 |
+
text = "W"
|
2865 |
+
intervals [492]:
|
2866 |
+
xmin = 43.28
|
2867 |
+
xmax = 43.42
|
2868 |
+
text = "ER1"
|
2869 |
+
intervals [493]:
|
2870 |
+
xmin = 43.42
|
2871 |
+
xmax = 43.49
|
2872 |
+
text = "K"
|
2873 |
+
intervals [494]:
|
2874 |
+
xmin = 43.49
|
2875 |
+
xmax = 43.53
|
2876 |
+
text = "IH0"
|
2877 |
+
intervals [495]:
|
2878 |
+
xmin = 43.53
|
2879 |
+
xmax = 43.76
|
2880 |
+
text = "NG"
|
2881 |
+
intervals [496]:
|
2882 |
+
xmin = 43.76
|
2883 |
+
xmax = 44.5
|
2884 |
+
text = ""
|
2885 |
+
intervals [497]:
|
2886 |
+
xmin = 44.5
|
2887 |
+
xmax = 44.86
|
2888 |
+
text = "AH0"
|
2889 |
+
intervals [498]:
|
2890 |
+
xmin = 44.86
|
2891 |
+
xmax = 45.15
|
2892 |
+
text = "N"
|
2893 |
+
intervals [499]:
|
2894 |
+
xmin = 45.15
|
2895 |
+
xmax = 45.19
|
2896 |
+
text = "D"
|
2897 |
+
intervals [500]:
|
2898 |
+
xmin = 45.19
|
2899 |
+
xmax = 45.27
|
2900 |
+
text = "AA1"
|
2901 |
+
intervals [501]:
|
2902 |
+
xmin = 45.27
|
2903 |
+
xmax = 45.32
|
2904 |
+
text = "N"
|
2905 |
+
intervals [502]:
|
2906 |
+
xmin = 45.32
|
2907 |
+
xmax = 45.4
|
2908 |
+
text = "AH1"
|
2909 |
+
intervals [503]:
|
2910 |
+
xmin = 45.4
|
2911 |
+
xmax = 45.46
|
2912 |
+
text = "DH"
|
2913 |
+
intervals [504]:
|
2914 |
+
xmin = 45.46
|
2915 |
+
xmax = 45.49
|
2916 |
+
text = "ER0"
|
2917 |
+
intervals [505]:
|
2918 |
+
xmin = 45.49
|
2919 |
+
xmax = 45.55
|
2920 |
+
text = "D"
|
2921 |
+
intervals [506]:
|
2922 |
+
xmin = 45.55
|
2923 |
+
xmax = 45.74
|
2924 |
+
text = "EY1"
|
2925 |
+
intervals [507]:
|
2926 |
+
xmin = 45.74
|
2927 |
+
xmax = 45.82
|
2928 |
+
text = "Z"
|
2929 |
+
intervals [508]:
|
2930 |
+
xmin = 45.82
|
2931 |
+
xmax = 45.89
|
2932 |
+
text = "W"
|
2933 |
+
intervals [509]:
|
2934 |
+
xmin = 45.89
|
2935 |
+
xmax = 45.92
|
2936 |
+
text = "EH1"
|
2937 |
+
intervals [510]:
|
2938 |
+
xmin = 45.92
|
2939 |
+
xmax = 45.96
|
2940 |
+
text = "N"
|
2941 |
+
intervals [511]:
|
2942 |
+
xmin = 45.96
|
2943 |
+
xmax = 46.09
|
2944 |
+
text = "AY1"
|
2945 |
+
intervals [512]:
|
2946 |
+
xmin = 46.09
|
2947 |
+
xmax = 46.16
|
2948 |
+
text = "M"
|
2949 |
+
intervals [513]:
|
2950 |
+
xmin = 46.16
|
2951 |
+
xmax = 46.29
|
2952 |
+
text = "F"
|
2953 |
+
intervals [514]:
|
2954 |
+
xmin = 46.29
|
2955 |
+
xmax = 46.39
|
2956 |
+
text = "R"
|
2957 |
+
intervals [515]:
|
2958 |
+
xmin = 46.39
|
2959 |
+
xmax = 46.65
|
2960 |
+
text = "IY1"
|
2961 |
+
intervals [516]:
|
2962 |
+
xmin = 46.65
|
2963 |
+
xmax = 46.86
|
2964 |
+
text = "AY1"
|
2965 |
+
intervals [517]:
|
2966 |
+
xmin = 46.86
|
2967 |
+
xmax = 46.94
|
2968 |
+
text = "L"
|
2969 |
+
intervals [518]:
|
2970 |
+
xmin = 46.94
|
2971 |
+
xmax = 47.08
|
2972 |
+
text = "AY1"
|
2973 |
+
intervals [519]:
|
2974 |
+
xmin = 47.08
|
2975 |
+
xmax = 47.16
|
2976 |
+
text = "K"
|
2977 |
+
intervals [520]:
|
2978 |
+
xmin = 47.16
|
2979 |
+
xmax = 47.25
|
2980 |
+
text = "T"
|
2981 |
+
intervals [521]:
|
2982 |
+
xmin = 47.25
|
2983 |
+
xmax = 47.39
|
2984 |
+
text = "UW1"
|
2985 |
+
intervals [522]:
|
2986 |
+
xmin = 47.39
|
2987 |
+
xmax = 47.48
|
2988 |
+
text = "L"
|
2989 |
+
intervals [523]:
|
2990 |
+
xmin = 47.48
|
2991 |
+
xmax = 47.53
|
2992 |
+
text = "IH1"
|
2993 |
+
intervals [524]:
|
2994 |
+
xmin = 47.53
|
2995 |
+
xmax = 47.6
|
2996 |
+
text = "S"
|
2997 |
+
intervals [525]:
|
2998 |
+
xmin = 47.6
|
2999 |
+
xmax = 47.64
|
3000 |
+
text = "AH0"
|
3001 |
+
intervals [526]:
|
3002 |
+
xmin = 47.64
|
3003 |
+
xmax = 47.86
|
3004 |
+
text = "N"
|
3005 |
+
intervals [527]:
|
3006 |
+
xmin = 47.86
|
3007 |
+
xmax = 47.93
|
3008 |
+
text = "T"
|
3009 |
+
intervals [528]:
|
3010 |
+
xmin = 47.93
|
3011 |
+
xmax = 48.03
|
3012 |
+
text = "IH0"
|
3013 |
+
intervals [529]:
|
3014 |
+
xmin = 48.03
|
3015 |
+
xmax = 48.07
|
3016 |
+
text = "M"
|
3017 |
+
intervals [530]:
|
3018 |
+
xmin = 48.07
|
3019 |
+
xmax = 48.15
|
3020 |
+
text = "Y"
|
3021 |
+
intervals [531]:
|
3022 |
+
xmin = 48.15
|
3023 |
+
xmax = 48.2
|
3024 |
+
text = "UW1"
|
3025 |
+
intervals [532]:
|
3026 |
+
xmin = 48.2
|
3027 |
+
xmax = 48.27
|
3028 |
+
text = "Z"
|
3029 |
+
intervals [533]:
|
3030 |
+
xmin = 48.27
|
3031 |
+
xmax = 48.35
|
3032 |
+
text = "IH0"
|
3033 |
+
intervals [534]:
|
3034 |
+
xmin = 48.35
|
3035 |
+
xmax = 48.41
|
3036 |
+
text = "K"
|
3037 |
+
intervals [535]:
|
3038 |
+
xmin = 48.41
|
3039 |
+
xmax = 48.48
|
3040 |
+
text = "AH0"
|
3041 |
+
intervals [536]:
|
3042 |
+
xmin = 48.48
|
3043 |
+
xmax = 48.56
|
3044 |
+
text = "N"
|
3045 |
+
intervals [537]:
|
3046 |
+
xmin = 48.56
|
3047 |
+
xmax = 48.73
|
3048 |
+
text = "D"
|
3049 |
+
intervals [538]:
|
3050 |
+
xmin = 48.73
|
3051 |
+
xmax = 48.76
|
3052 |
+
text = ""
|
3053 |
+
intervals [539]:
|
3054 |
+
xmin = 48.76
|
3055 |
+
xmax = 48.91
|
3056 |
+
text = "W"
|
3057 |
+
intervals [540]:
|
3058 |
+
xmin = 48.91
|
3059 |
+
xmax = 49.01
|
3060 |
+
text = "ER1"
|
3061 |
+
intervals [541]:
|
3062 |
+
xmin = 49.01
|
3063 |
+
xmax = 49.13
|
3064 |
+
text = "W"
|
3065 |
+
intervals [542]:
|
3066 |
+
xmin = 49.13
|
3067 |
+
xmax = 49.23
|
3068 |
+
text = "AA1"
|
3069 |
+
intervals [543]:
|
3070 |
+
xmin = 49.23
|
3071 |
+
xmax = 49.3
|
3072 |
+
text = "CH"
|
3073 |
+
intervals [544]:
|
3074 |
+
xmin = 49.3
|
3075 |
+
xmax = 49.38
|
3076 |
+
text = "AH0"
|
3077 |
+
intervals [545]:
|
3078 |
+
xmin = 49.38
|
3079 |
+
xmax = 49.46
|
3080 |
+
text = "D"
|
3081 |
+
intervals [546]:
|
3082 |
+
xmin = 49.46
|
3083 |
+
xmax = 49.56
|
3084 |
+
text = "AA2"
|
3085 |
+
intervals [547]:
|
3086 |
+
xmin = 49.56
|
3087 |
+
xmax = 49.62
|
3088 |
+
text = "K"
|
3089 |
+
intervals [548]:
|
3090 |
+
xmin = 49.62
|
3091 |
+
xmax = 49.66
|
3092 |
+
text = "Y"
|
3093 |
+
intervals [549]:
|
3094 |
+
xmin = 49.66
|
3095 |
+
xmax = 49.7
|
3096 |
+
text = "AH0"
|
3097 |
+
intervals [550]:
|
3098 |
+
xmin = 49.7
|
3099 |
+
xmax = 49.76
|
3100 |
+
text = "M"
|
3101 |
+
intervals [551]:
|
3102 |
+
xmin = 49.76
|
3103 |
+
xmax = 49.81
|
3104 |
+
text = "EH1"
|
3105 |
+
intervals [552]:
|
3106 |
+
xmin = 49.81
|
3107 |
+
xmax = 49.85
|
3108 |
+
text = "N"
|
3109 |
+
intervals [553]:
|
3110 |
+
xmin = 49.85
|
3111 |
+
xmax = 49.98
|
3112 |
+
text = "ER0"
|
3113 |
+
intervals [554]:
|
3114 |
+
xmin = 49.98
|
3115 |
+
xmax = 50.05
|
3116 |
+
text = "IY0"
|
3117 |
+
intervals [555]:
|
3118 |
+
xmin = 50.05
|
3119 |
+
xmax = 50.17
|
3120 |
+
text = "M"
|
3121 |
+
intervals [556]:
|
3122 |
+
xmin = 50.17
|
3123 |
+
xmax = 50.2
|
3124 |
+
text = "UW1"
|
3125 |
+
intervals [557]:
|
3126 |
+
xmin = 50.2
|
3127 |
+
xmax = 50.28
|
3128 |
+
text = "V"
|
3129 |
+
intervals [558]:
|
3130 |
+
xmin = 50.28
|
3131 |
+
xmax = 50.38
|
3132 |
+
text = "IY0"
|
3133 |
+
intervals [559]:
|
3134 |
+
xmin = 50.38
|
3135 |
+
xmax = 50.51
|
3136 |
+
text = "Z"
|
3137 |
+
intervals [560]:
|
3138 |
+
xmin = 50.51
|
3139 |
+
xmax = 50.75
|
3140 |
+
text = "AA1"
|
3141 |
+
intervals [561]:
|
3142 |
+
xmin = 50.75
|
3143 |
+
xmax = 50.82
|
3144 |
+
text = "N"
|
3145 |
+
intervals [562]:
|
3146 |
+
xmin = 50.82
|
3147 |
+
xmax = 50.9
|
3148 |
+
text = "M"
|
3149 |
+
intervals [563]:
|
3150 |
+
xmin = 50.9
|
3151 |
+
xmax = 51.11
|
3152 |
+
text = "AY1"
|
3153 |
+
intervals [564]:
|
3154 |
+
xmin = 51.11
|
3155 |
+
xmax = 51.22
|
3156 |
+
text = "L"
|
3157 |
+
intervals [565]:
|
3158 |
+
xmin = 51.22
|
3159 |
+
xmax = 51.39
|
3160 |
+
text = "AE1"
|
3161 |
+
intervals [566]:
|
3162 |
+
xmin = 51.39
|
3163 |
+
xmax = 51.44
|
3164 |
+
text = "P"
|
3165 |
+
intervals [567]:
|
3166 |
+
xmin = 51.44
|
3167 |
+
xmax = 51.49
|
3168 |
+
text = "T"
|
3169 |
+
intervals [568]:
|
3170 |
+
xmin = 51.49
|
3171 |
+
xmax = 51.66
|
3172 |
+
text = "AA2"
|
3173 |
+
intervals [569]:
|
3174 |
+
xmin = 51.66
|
3175 |
+
xmax = 51.81
|
3176 |
+
text = "P"
|
3177 |
+
intervals [570]:
|
3178 |
+
xmin = 51.81
|
3179 |
+
xmax = 52.14
|
3180 |
+
text = ""
|
3181 |
+
intervals [571]:
|
3182 |
+
xmin = 52.14
|
3183 |
+
xmax = 52.2
|
3184 |
+
text = "B"
|
3185 |
+
intervals [572]:
|
3186 |
+
xmin = 52.2
|
3187 |
+
xmax = 52.33
|
3188 |
+
text = "AH1"
|
3189 |
+
intervals [573]:
|
3190 |
+
xmin = 52.33
|
3191 |
+
xmax = 52.44
|
3192 |
+
text = "T"
|
3193 |
+
intervals [574]:
|
3194 |
+
xmin = 52.44
|
3195 |
+
xmax = 52.51
|
3196 |
+
text = "S"
|
3197 |
+
intervals [575]:
|
3198 |
+
xmin = 52.51
|
3199 |
+
xmax = 52.59
|
3200 |
+
text = "AH1"
|
3201 |
+
intervals [576]:
|
3202 |
+
xmin = 52.59
|
3203 |
+
xmax = 52.64
|
3204 |
+
text = "M"
|
3205 |
+
intervals [577]:
|
3206 |
+
xmin = 52.64
|
3207 |
+
xmax = 52.67
|
3208 |
+
text = "T"
|
3209 |
+
intervals [578]:
|
3210 |
+
xmin = 52.67
|
3211 |
+
xmax = 52.77
|
3212 |
+
text = "AY2"
|
3213 |
+
intervals [579]:
|
3214 |
+
xmin = 52.77
|
3215 |
+
xmax = 52.82
|
3216 |
+
text = "M"
|
3217 |
+
intervals [580]:
|
3218 |
+
xmin = 52.82
|
3219 |
+
xmax = 52.86
|
3220 |
+
text = "Z"
|
3221 |
+
intervals [581]:
|
3222 |
+
xmin = 52.86
|
3223 |
+
xmax = 52.9
|
3224 |
+
text = "IH1"
|
3225 |
+
intervals [582]:
|
3226 |
+
xmin = 52.9
|
3227 |
+
xmax = 52.93
|
3228 |
+
text = "T"
|
3229 |
+
intervals [583]:
|
3230 |
+
xmin = 52.93
|
3231 |
+
xmax = 52.98
|
3232 |
+
text = "JH"
|
3233 |
+
intervals [584]:
|
3234 |
+
xmin = 52.98
|
3235 |
+
xmax = 53.07
|
3236 |
+
text = "IH0"
|
3237 |
+
intervals [585]:
|
3238 |
+
xmin = 53.07
|
3239 |
+
xmax = 53.1
|
3240 |
+
text = "S"
|
3241 |
+
intervals [586]:
|
3242 |
+
xmin = 53.1
|
3243 |
+
xmax = 53.13
|
3244 |
+
text = "T"
|
3245 |
+
intervals [587]:
|
3246 |
+
xmin = 53.13
|
3247 |
+
xmax = 53.18
|
3248 |
+
text = "S"
|
3249 |
+
intervals [588]:
|
3250 |
+
xmin = 53.18
|
3251 |
+
xmax = 53.26
|
3252 |
+
text = "L"
|
3253 |
+
intervals [589]:
|
3254 |
+
xmin = 53.26
|
3255 |
+
xmax = 53.35
|
3256 |
+
text = "IY1"
|
3257 |
+
intervals [590]:
|
3258 |
+
xmin = 53.35
|
3259 |
+
xmax = 53.61
|
3260 |
+
text = "P"
|
3261 |
+
intervals [591]:
|
3262 |
+
xmin = 53.61
|
3263 |
+
xmax = 53.65
|
3264 |
+
text = ""
|
3265 |
+
intervals [592]:
|
3266 |
+
xmin = 53.65
|
3267 |
+
xmax = 53.83
|
3268 |
+
text = "AY1"
|
3269 |
+
intervals [593]:
|
3270 |
+
xmin = 53.83
|
3271 |
+
xmax = 53.88
|
3272 |
+
text = "AH0"
|
3273 |
+
intervals [594]:
|
3274 |
+
xmin = 53.88
|
3275 |
+
xmax = 53.95
|
3276 |
+
text = "S"
|
3277 |
+
intervals [595]:
|
3278 |
+
xmin = 53.95
|
3279 |
+
xmax = 54
|
3280 |
+
text = "P"
|
3281 |
+
intervals [596]:
|
3282 |
+
xmin = 54
|
3283 |
+
xmax = 54.09
|
3284 |
+
text = "EH1"
|
3285 |
+
intervals [597]:
|
3286 |
+
xmin = 54.09
|
3287 |
+
xmax = 54.19
|
3288 |
+
text = "SH"
|
3289 |
+
intervals [598]:
|
3290 |
+
xmin = 54.19
|
3291 |
+
xmax = 54.22
|
3292 |
+
text = "L"
|
3293 |
+
intervals [599]:
|
3294 |
+
xmin = 54.22
|
3295 |
+
xmax = 54.27
|
3296 |
+
text = "IY0"
|
3297 |
+
intervals [600]:
|
3298 |
+
xmin = 54.27
|
3299 |
+
xmax = 54.33
|
3300 |
+
text = "L"
|
3301 |
+
intervals [601]:
|
3302 |
+
xmin = 54.33
|
3303 |
+
xmax = 54.43
|
3304 |
+
text = "AY1"
|
3305 |
+
intervals [602]:
|
3306 |
+
xmin = 54.43
|
3307 |
+
xmax = 54.57
|
3308 |
+
text = "K"
|
3309 |
+
intervals [603]:
|
3310 |
+
xmin = 54.57
|
3311 |
+
xmax = 54.61
|
3312 |
+
text = "T"
|
3313 |
+
intervals [604]:
|
3314 |
+
xmin = 54.61
|
3315 |
+
xmax = 54.69
|
3316 |
+
text = "W"
|
3317 |
+
intervals [605]:
|
3318 |
+
xmin = 54.69
|
3319 |
+
xmax = 54.79
|
3320 |
+
text = "AA1"
|
3321 |
+
intervals [606]:
|
3322 |
+
xmin = 54.79
|
3323 |
+
xmax = 54.85
|
3324 |
+
text = "CH"
|
3325 |
+
intervals [607]:
|
3326 |
+
xmin = 54.85
|
3327 |
+
xmax = 54.89
|
3328 |
+
text = "IH0"
|
3329 |
+
intervals [608]:
|
3330 |
+
xmin = 54.89
|
3331 |
+
xmax = 55.01
|
3332 |
+
text = "NG"
|
3333 |
+
intervals [609]:
|
3334 |
+
xmin = 55.01
|
3335 |
+
xmax = 55.12
|
3336 |
+
text = "JH"
|
3337 |
+
intervals [610]:
|
3338 |
+
xmin = 55.12
|
3339 |
+
xmax = 55.25
|
3340 |
+
text = "AE2"
|
3341 |
+
intervals [611]:
|
3342 |
+
xmin = 55.25
|
3343 |
+
xmax = 55.3
|
3344 |
+
text = "P"
|
3345 |
+
intervals [612]:
|
3346 |
+
xmin = 55.3
|
3347 |
+
xmax = 55.35
|
3348 |
+
text = "AH0"
|
3349 |
+
intervals [613]:
|
3350 |
+
xmin = 55.35
|
3351 |
+
xmax = 55.4
|
3352 |
+
text = "N"
|
3353 |
+
intervals [614]:
|
3354 |
+
xmin = 55.4
|
3355 |
+
xmax = 55.59
|
3356 |
+
text = "IY1"
|
3357 |
+
intervals [615]:
|
3358 |
+
xmin = 55.59
|
3359 |
+
xmax = 55.62
|
3360 |
+
text = "Z"
|
3361 |
+
intervals [616]:
|
3362 |
+
xmin = 55.62
|
3363 |
+
xmax = 55.77
|
3364 |
+
text = "AE1"
|
3365 |
+
intervals [617]:
|
3366 |
+
xmin = 55.77
|
3367 |
+
xmax = 55.83
|
3368 |
+
text = "N"
|
3369 |
+
intervals [618]:
|
3370 |
+
xmin = 55.83
|
3371 |
+
xmax = 55.87
|
3372 |
+
text = "AH0"
|
3373 |
+
intervals [619]:
|
3374 |
+
xmin = 55.87
|
3375 |
+
xmax = 55.91
|
3376 |
+
text = "M"
|
3377 |
+
intervals [620]:
|
3378 |
+
xmin = 55.91
|
3379 |
+
xmax = 56.33
|
3380 |
+
text = "AY1"
|
3381 |
+
intervals [621]:
|
3382 |
+
xmin = 56.33
|
3383 |
+
xmax = 56.85
|
3384 |
+
text = ""
|
3385 |
+
intervals [622]:
|
3386 |
+
xmin = 56.85
|
3387 |
+
xmax = 56.99
|
3388 |
+
text = "TH"
|
3389 |
+
intervals [623]:
|
3390 |
+
xmin = 56.99
|
3391 |
+
xmax = 57.05
|
3392 |
+
text = "IH1"
|
3393 |
+
intervals [624]:
|
3394 |
+
xmin = 57.05
|
3395 |
+
xmax = 57.09
|
3396 |
+
text = "NG"
|
3397 |
+
intervals [625]:
|
3398 |
+
xmin = 57.09
|
3399 |
+
xmax = 57.12
|
3400 |
+
text = "K"
|
3401 |
+
intervals [626]:
|
3402 |
+
xmin = 57.12
|
3403 |
+
xmax = 57.2
|
3404 |
+
text = "W"
|
3405 |
+
intervals [627]:
|
3406 |
+
xmin = 57.2
|
3407 |
+
xmax = 57.27
|
3408 |
+
text = "AA1"
|
3409 |
+
intervals [628]:
|
3410 |
+
xmin = 57.27
|
3411 |
+
xmax = 57.35
|
3412 |
+
text = "CH"
|
3413 |
+
intervals [629]:
|
3414 |
+
xmin = 57.35
|
3415 |
+
xmax = 57.4
|
3416 |
+
text = "IH0"
|
3417 |
+
intervals [630]:
|
3418 |
+
xmin = 57.4
|
3419 |
+
xmax = 57.43
|
3420 |
+
text = "NG"
|
3421 |
+
intervals [631]:
|
3422 |
+
xmin = 57.43
|
3423 |
+
xmax = 57.62
|
3424 |
+
text = "EY1"
|
3425 |
+
intervals [632]:
|
3426 |
+
xmin = 57.62
|
3427 |
+
xmax = 57.69
|
3428 |
+
text = "M"
|
3429 |
+
intervals [633]:
|
3430 |
+
xmin = 57.69
|
3431 |
+
xmax = 57.79
|
3432 |
+
text = "IY1"
|
3433 |
+
intervals [634]:
|
3434 |
+
xmin = 57.79
|
3435 |
+
xmax = 57.92
|
3436 |
+
text = "IH0"
|
3437 |
+
intervals [635]:
|
3438 |
+
xmin = 57.92
|
3439 |
+
xmax = 58.09
|
3440 |
+
text = "Z"
|
3441 |
+
intervals [636]:
|
3442 |
+
xmin = 58.09
|
3443 |
+
xmax = 58.12
|
3444 |
+
text = "AE1"
|
3445 |
+
intervals [637]:
|
3446 |
+
xmin = 58.12
|
3447 |
+
xmax = 58.19
|
3448 |
+
text = "N"
|
3449 |
+
intervals [638]:
|
3450 |
+
xmin = 58.19
|
3451 |
+
xmax = 58.23
|
3452 |
+
text = "AH0"
|
3453 |
+
intervals [639]:
|
3454 |
+
xmin = 58.23
|
3455 |
+
xmax = 58.39
|
3456 |
+
text = "M"
|
3457 |
+
intervals [640]:
|
3458 |
+
xmin = 58.39
|
3459 |
+
xmax = 58.97
|
3460 |
+
text = "IH1"
|
3461 |
+
intervals [641]:
|
3462 |
+
xmin = 58.97
|
3463 |
+
xmax = 59.06
|
3464 |
+
text = "Z"
|
3465 |
+
intervals [642]:
|
3466 |
+
xmin = 59.06
|
3467 |
+
xmax = 59.11
|
3468 |
+
text = "V"
|
3469 |
+
intervals [643]:
|
3470 |
+
xmin = 59.11
|
3471 |
+
xmax = 59.15
|
3472 |
+
text = "EH1"
|
3473 |
+
intervals [644]:
|
3474 |
+
xmin = 59.15
|
3475 |
+
xmax = 59.24
|
3476 |
+
text = "R"
|
3477 |
+
intervals [645]:
|
3478 |
+
xmin = 59.24
|
3479 |
+
xmax = 59.31
|
3480 |
+
text = "IY0"
|
3481 |
+
intervals [646]:
|
3482 |
+
xmin = 59.31
|
3483 |
+
xmax = 59.38
|
3484 |
+
text = "HH"
|
3485 |
+
intervals [647]:
|
3486 |
+
xmin = 59.38
|
3487 |
+
xmax = 59.43
|
3488 |
+
text = "EH1"
|
3489 |
+
intervals [648]:
|
3490 |
+
xmin = 59.43
|
3491 |
+
xmax = 59.52
|
3492 |
+
text = "L"
|
3493 |
+
intervals [649]:
|
3494 |
+
xmin = 59.52
|
3495 |
+
xmax = 59.55
|
3496 |
+
text = "P"
|
3497 |
+
intervals [650]:
|
3498 |
+
xmin = 59.55
|
3499 |
+
xmax = 59.58
|
3500 |
+
text = "F"
|
3501 |
+
intervals [651]:
|
3502 |
+
xmin = 59.58
|
3503 |
+
xmax = 59.61
|
3504 |
+
text = "AH0"
|
3505 |
+
intervals [652]:
|
3506 |
+
xmin = 59.61
|
3507 |
+
xmax = 59.67
|
3508 |
+
text = "L"
|
3509 |
+
intervals [653]:
|
3510 |
+
xmin = 59.67
|
3511 |
+
xmax = 59.72
|
3512 |
+
text = "F"
|
3513 |
+
intervals [654]:
|
3514 |
+
xmin = 59.72
|
3515 |
+
xmax = 59.75
|
3516 |
+
text = "R"
|
3517 |
+
intervals [655]:
|
3518 |
+
xmin = 59.75
|
3519 |
+
xmax = 59.81
|
3520 |
+
text = "ER0"
|
3521 |
+
intervals [656]:
|
3522 |
+
xmin = 59.81
|
3523 |
+
xmax = 59.88
|
3524 |
+
text = "M"
|
3525 |
+
intervals [657]:
|
3526 |
+
xmin = 59.88
|
3527 |
+
xmax = 59.98
|
3528 |
+
text = "IY1"
|
3529 |
+
intervals [658]:
|
3530 |
+
xmin = 59.98
|
3531 |
+
xmax = 60.08
|
3532 |
+
text = "T"
|
3533 |
+
intervals [659]:
|
3534 |
+
xmin = 60.08
|
3535 |
+
xmax = 60.28
|
3536 |
+
text = "UW1"
|
3537 |
+
intervals [660]:
|
3538 |
+
xmin = 60.28
|
3539 |
+
xmax = 60.42
|
3540 |
+
text = "L"
|
3541 |
+
intervals [661]:
|
3542 |
+
xmin = 60.42
|
3543 |
+
xmax = 60.63
|
3544 |
+
text = "ER1"
|
3545 |
+
intervals [662]:
|
3546 |
+
xmin = 60.63
|
3547 |
+
xmax = 60.69
|
3548 |
+
text = "N"
|
3549 |
+
intervals [663]:
|
3550 |
+
xmin = 60.69
|
3551 |
+
xmax = 60.72
|
3552 |
+
text = "AE1"
|
3553 |
+
intervals [664]:
|
3554 |
+
xmin = 60.72
|
3555 |
+
xmax = 60.75
|
3556 |
+
text = "N"
|
3557 |
+
intervals [665]:
|
3558 |
+
xmin = 60.75
|
3559 |
+
xmax = 60.78
|
3560 |
+
text = "D"
|
3561 |
+
intervals [666]:
|
3562 |
+
xmin = 60.78
|
3563 |
+
xmax = 60.84
|
3564 |
+
text = "IH0"
|
3565 |
+
intervals [667]:
|
3566 |
+
xmin = 60.84
|
3567 |
+
xmax = 60.88
|
3568 |
+
text = "K"
|
3569 |
+
intervals [668]:
|
3570 |
+
xmin = 60.88
|
3571 |
+
xmax = 60.95
|
3572 |
+
text = "S"
|
3573 |
+
intervals [669]:
|
3574 |
+
xmin = 60.95
|
3575 |
+
xmax = 61.01
|
3576 |
+
text = "P"
|
3577 |
+
intervals [670]:
|
3578 |
+
xmin = 61.01
|
3579 |
+
xmax = 61.09
|
3580 |
+
text = "R"
|
3581 |
+
intervals [671]:
|
3582 |
+
xmin = 61.09
|
3583 |
+
xmax = 61.14
|
3584 |
+
text = "EH1"
|
3585 |
+
intervals [672]:
|
3586 |
+
xmin = 61.14
|
3587 |
+
xmax = 61.21
|
3588 |
+
text = "S"
|
3589 |
+
intervals [673]:
|
3590 |
+
xmin = 61.21
|
3591 |
+
xmax = 61.33
|
3592 |
+
text = "JH"
|
3593 |
+
intervals [674]:
|
3594 |
+
xmin = 61.33
|
3595 |
+
xmax = 61.45
|
3596 |
+
text = "AE2"
|
3597 |
+
intervals [675]:
|
3598 |
+
xmin = 61.45
|
3599 |
+
xmax = 61.51
|
3600 |
+
text = "P"
|
3601 |
+
intervals [676]:
|
3602 |
+
xmin = 61.51
|
3603 |
+
xmax = 61.55
|
3604 |
+
text = "AH0"
|
3605 |
+
intervals [677]:
|
3606 |
+
xmin = 61.55
|
3607 |
+
xmax = 61.59
|
3608 |
+
text = "N"
|
3609 |
+
intervals [678]:
|
3610 |
+
xmin = 61.59
|
3611 |
+
xmax = 61.75
|
3612 |
+
text = "IY1"
|
3613 |
+
intervals [679]:
|
3614 |
+
xmin = 61.75
|
3615 |
+
xmax = 61.89
|
3616 |
+
text = "Z"
|
3617 |
+
intervals [680]:
|
3618 |
+
xmin = 61.89
|
3619 |
+
xmax = 62.02
|
3620 |
+
text = "B"
|
3621 |
+
intervals [681]:
|
3622 |
+
xmin = 62.02
|
3623 |
+
xmax = 62.11
|
3624 |
+
text = "EH1"
|
3625 |
+
intervals [682]:
|
3626 |
+
xmin = 62.11
|
3627 |
+
xmax = 62.19
|
3628 |
+
text = "T"
|
3629 |
+
intervals [683]:
|
3630 |
+
xmin = 62.19
|
3631 |
+
xmax = 62.42
|
3632 |
+
text = "ER0"
|
3633 |
+
intervals [684]:
|
3634 |
+
xmin = 62.42
|
3635 |
+
xmax = 64.097375
|
3636 |
+
text = ""
|
EMAGE/test_sequences/textgrid/2_scott_0_2_2.TextGrid
ADDED
@@ -0,0 +1,3716 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
File type = "ooTextFile"
|
2 |
+
Object class = "TextGrid"
|
3 |
+
|
4 |
+
xmin = 0.0
|
5 |
+
xmax = 62
|
6 |
+
tiers? <exists>
|
7 |
+
size = 2
|
8 |
+
item []:
|
9 |
+
item [1]:
|
10 |
+
class = "IntervalTier"
|
11 |
+
name = "words"
|
12 |
+
xmin = 0.0
|
13 |
+
xmax = 62
|
14 |
+
intervals: size = 223
|
15 |
+
intervals [1]:
|
16 |
+
xmin = 0.0
|
17 |
+
xmax = 1.45
|
18 |
+
text = ""
|
19 |
+
intervals [2]:
|
20 |
+
xmin = 1.45
|
21 |
+
xmax = 1.87
|
22 |
+
text = "so"
|
23 |
+
intervals [3]:
|
24 |
+
xmin = 1.87
|
25 |
+
xmax = 2.02
|
26 |
+
text = "when"
|
27 |
+
intervals [4]:
|
28 |
+
xmin = 2.02
|
29 |
+
xmax = 2.13
|
30 |
+
text = "i"
|
31 |
+
intervals [5]:
|
32 |
+
xmin = 2.13
|
33 |
+
xmax = 2.35
|
34 |
+
text = "have"
|
35 |
+
intervals [6]:
|
36 |
+
xmin = 2.35
|
37 |
+
xmax = 2.57
|
38 |
+
text = "time"
|
39 |
+
intervals [7]:
|
40 |
+
xmin = 2.57
|
41 |
+
xmax = 2.65
|
42 |
+
text = "to"
|
43 |
+
intervals [8]:
|
44 |
+
xmin = 2.65
|
45 |
+
xmax = 3.18
|
46 |
+
text = "kill"
|
47 |
+
intervals [9]:
|
48 |
+
xmin = 3.18
|
49 |
+
xmax = 3.22
|
50 |
+
text = ""
|
51 |
+
intervals [10]:
|
52 |
+
xmin = 3.22
|
53 |
+
xmax = 3.41
|
54 |
+
text = "i"
|
55 |
+
intervals [11]:
|
56 |
+
xmin = 3.41
|
57 |
+
xmax = 3.6
|
58 |
+
text = "like"
|
59 |
+
intervals [12]:
|
60 |
+
xmin = 3.6
|
61 |
+
xmax = 3.68
|
62 |
+
text = "to"
|
63 |
+
intervals [13]:
|
64 |
+
xmin = 3.68
|
65 |
+
xmax = 3.88
|
66 |
+
text = "play"
|
67 |
+
intervals [14]:
|
68 |
+
xmin = 3.88
|
69 |
+
xmax = 3.96
|
70 |
+
text = "on"
|
71 |
+
intervals [15]:
|
72 |
+
xmin = 3.96
|
73 |
+
xmax = 4.08
|
74 |
+
text = "the"
|
75 |
+
intervals [16]:
|
76 |
+
xmin = 4.08
|
77 |
+
xmax = 4.5
|
78 |
+
text = "internet"
|
79 |
+
intervals [17]:
|
80 |
+
xmin = 4.5
|
81 |
+
xmax = 4.66
|
82 |
+
text = "and"
|
83 |
+
intervals [18]:
|
84 |
+
xmin = 4.66
|
85 |
+
xmax = 4.87
|
86 |
+
text = "play"
|
87 |
+
intervals [19]:
|
88 |
+
xmin = 4.87
|
89 |
+
xmax = 5.19
|
90 |
+
text = "close"
|
91 |
+
intervals [20]:
|
92 |
+
xmin = 5.19
|
93 |
+
xmax = 5.67
|
94 |
+
text = "attention"
|
95 |
+
intervals [21]:
|
96 |
+
xmin = 5.67
|
97 |
+
xmax = 6.0
|
98 |
+
text = "to"
|
99 |
+
intervals [22]:
|
100 |
+
xmin = 6.0
|
101 |
+
xmax = 6.26
|
102 |
+
text = "new"
|
103 |
+
intervals [23]:
|
104 |
+
xmin = 6.26
|
105 |
+
xmax = 6.71
|
106 |
+
text = "fashion"
|
107 |
+
intervals [24]:
|
108 |
+
xmin = 6.71
|
109 |
+
xmax = 7.17
|
110 |
+
text = "events"
|
111 |
+
intervals [25]:
|
112 |
+
xmin = 7.17
|
113 |
+
xmax = 7.43
|
114 |
+
text = ""
|
115 |
+
intervals [26]:
|
116 |
+
xmin = 7.43
|
117 |
+
xmax = 7.76
|
118 |
+
text = "such"
|
119 |
+
intervals [27]:
|
120 |
+
xmin = 7.76
|
121 |
+
xmax = 8.14
|
122 |
+
text = "as"
|
123 |
+
intervals [28]:
|
124 |
+
xmin = 8.14
|
125 |
+
xmax = 8.19
|
126 |
+
text = ""
|
127 |
+
intervals [29]:
|
128 |
+
xmin = 8.19
|
129 |
+
xmax = 8.34
|
130 |
+
text = "the"
|
131 |
+
intervals [30]:
|
132 |
+
xmin = 8.34
|
133 |
+
xmax = 8.47
|
134 |
+
text = "new"
|
135 |
+
intervals [31]:
|
136 |
+
xmin = 8.47
|
137 |
+
xmax = 8.68
|
138 |
+
text = "york"
|
139 |
+
intervals [32]:
|
140 |
+
xmin = 8.68
|
141 |
+
xmax = 9.12
|
142 |
+
text = "fashion"
|
143 |
+
intervals [33]:
|
144 |
+
xmin = 9.12
|
145 |
+
xmax = 9.42
|
146 |
+
text = "week"
|
147 |
+
intervals [34]:
|
148 |
+
xmin = 9.42
|
149 |
+
xmax = 9.49
|
150 |
+
text = "the"
|
151 |
+
intervals [35]:
|
152 |
+
xmin = 9.49
|
153 |
+
xmax = 9.87
|
154 |
+
text = "paris"
|
155 |
+
intervals [36]:
|
156 |
+
xmin = 9.87
|
157 |
+
xmax = 10.25
|
158 |
+
text = "fashion"
|
159 |
+
intervals [37]:
|
160 |
+
xmin = 10.25
|
161 |
+
xmax = 10.56
|
162 |
+
text = "week"
|
163 |
+
intervals [38]:
|
164 |
+
xmin = 10.56
|
165 |
+
xmax = 10.66
|
166 |
+
text = "the"
|
167 |
+
intervals [39]:
|
168 |
+
xmin = 10.66
|
169 |
+
xmax = 11.07
|
170 |
+
text = "london"
|
171 |
+
intervals [40]:
|
172 |
+
xmin = 11.07
|
173 |
+
xmax = 11.51
|
174 |
+
text = "fashion"
|
175 |
+
intervals [41]:
|
176 |
+
xmin = 11.51
|
177 |
+
xmax = 11.78
|
178 |
+
text = "week"
|
179 |
+
intervals [42]:
|
180 |
+
xmin = 11.78
|
181 |
+
xmax = 12.17
|
182 |
+
text = "and"
|
183 |
+
intervals [43]:
|
184 |
+
xmin = 12.17
|
185 |
+
xmax = 12.21
|
186 |
+
text = ""
|
187 |
+
intervals [44]:
|
188 |
+
xmin = 12.21
|
189 |
+
xmax = 12.83
|
190 |
+
text = "milan"
|
191 |
+
intervals [45]:
|
192 |
+
xmin = 12.83
|
193 |
+
xmax = 13.24
|
194 |
+
text = "fashion"
|
195 |
+
intervals [46]:
|
196 |
+
xmin = 13.24
|
197 |
+
xmax = 13.62
|
198 |
+
text = "week"
|
199 |
+
intervals [47]:
|
200 |
+
xmin = 13.62
|
201 |
+
xmax = 14.03
|
202 |
+
text = ""
|
203 |
+
intervals [48]:
|
204 |
+
xmin = 14.03
|
205 |
+
xmax = 14.15
|
206 |
+
text = "the"
|
207 |
+
intervals [49]:
|
208 |
+
xmin = 14.15
|
209 |
+
xmax = 14.35
|
210 |
+
text = "rest"
|
211 |
+
intervals [50]:
|
212 |
+
xmin = 14.35
|
213 |
+
xmax = 14.43
|
214 |
+
text = "of"
|
215 |
+
intervals [51]:
|
216 |
+
xmin = 14.43
|
217 |
+
xmax = 14.49
|
218 |
+
text = "the"
|
219 |
+
intervals [52]:
|
220 |
+
xmin = 14.49
|
221 |
+
xmax = 14.8
|
222 |
+
text = "time"
|
223 |
+
intervals [53]:
|
224 |
+
xmin = 14.8
|
225 |
+
xmax = 14.87
|
226 |
+
text = "i"
|
227 |
+
intervals [54]:
|
228 |
+
xmin = 14.87
|
229 |
+
xmax = 15.2
|
230 |
+
text = "usually"
|
231 |
+
intervals [55]:
|
232 |
+
xmin = 15.2
|
233 |
+
xmax = 15.3
|
234 |
+
text = "go"
|
235 |
+
intervals [56]:
|
236 |
+
xmin = 15.3
|
237 |
+
xmax = 15.36
|
238 |
+
text = "to"
|
239 |
+
intervals [57]:
|
240 |
+
xmin = 15.36
|
241 |
+
xmax = 15.44
|
242 |
+
text = "the"
|
243 |
+
intervals [58]:
|
244 |
+
xmin = 15.44
|
245 |
+
xmax = 15.93
|
246 |
+
text = "library"
|
247 |
+
intervals [59]:
|
248 |
+
xmin = 15.93
|
249 |
+
xmax = 16.04
|
250 |
+
text = "and"
|
251 |
+
intervals [60]:
|
252 |
+
xmin = 16.04
|
253 |
+
xmax = 16.25
|
254 |
+
text = "find"
|
255 |
+
intervals [61]:
|
256 |
+
xmin = 16.25
|
257 |
+
xmax = 16.35
|
258 |
+
text = "some"
|
259 |
+
intervals [62]:
|
260 |
+
xmin = 16.35
|
261 |
+
xmax = 16.71
|
262 |
+
text = "interesting"
|
263 |
+
intervals [63]:
|
264 |
+
xmin = 16.71
|
265 |
+
xmax = 17.19
|
266 |
+
text = "books"
|
267 |
+
intervals [64]:
|
268 |
+
xmin = 17.19
|
269 |
+
xmax = 17.31
|
270 |
+
text = "and"
|
271 |
+
intervals [65]:
|
272 |
+
xmin = 17.31
|
273 |
+
xmax = 17.51
|
274 |
+
text = "then"
|
275 |
+
intervals [66]:
|
276 |
+
xmin = 17.51
|
277 |
+
xmax = 17.63
|
278 |
+
text = "go"
|
279 |
+
intervals [67]:
|
280 |
+
xmin = 17.63
|
281 |
+
xmax = 17.7
|
282 |
+
text = "to"
|
283 |
+
intervals [68]:
|
284 |
+
xmin = 17.7
|
285 |
+
xmax = 17.78
|
286 |
+
text = "a"
|
287 |
+
intervals [69]:
|
288 |
+
xmin = 17.78
|
289 |
+
xmax = 18.08
|
290 |
+
text = "park"
|
291 |
+
intervals [70]:
|
292 |
+
xmin = 18.08
|
293 |
+
xmax = 18.17
|
294 |
+
text = "and"
|
295 |
+
intervals [71]:
|
296 |
+
xmin = 18.17
|
297 |
+
xmax = 18.75
|
298 |
+
text = "relax"
|
299 |
+
intervals [72]:
|
300 |
+
xmin = 18.75
|
301 |
+
xmax = 19.04
|
302 |
+
text = ""
|
303 |
+
intervals [73]:
|
304 |
+
xmin = 19.04
|
305 |
+
xmax = 19.22
|
306 |
+
text = "there"
|
307 |
+
intervals [74]:
|
308 |
+
xmin = 19.22
|
309 |
+
xmax = 19.27
|
310 |
+
text = "are"
|
311 |
+
intervals [75]:
|
312 |
+
xmin = 19.27
|
313 |
+
xmax = 19.5
|
314 |
+
text = "many"
|
315 |
+
intervals [76]:
|
316 |
+
xmin = 19.5
|
317 |
+
xmax = 19.78
|
318 |
+
text = "books"
|
319 |
+
intervals [77]:
|
320 |
+
xmin = 19.78
|
321 |
+
xmax = 19.93
|
322 |
+
text = "that"
|
323 |
+
intervals [78]:
|
324 |
+
xmin = 19.93
|
325 |
+
xmax = 20.11
|
326 |
+
text = "i"
|
327 |
+
intervals [79]:
|
328 |
+
xmin = 20.11
|
329 |
+
xmax = 20.4
|
330 |
+
text = "find"
|
331 |
+
intervals [80]:
|
332 |
+
xmin = 20.4
|
333 |
+
xmax = 20.92
|
334 |
+
text = "interesting"
|
335 |
+
intervals [81]:
|
336 |
+
xmin = 20.92
|
337 |
+
xmax = 21.15
|
338 |
+
text = "such"
|
339 |
+
intervals [82]:
|
340 |
+
xmin = 21.15
|
341 |
+
xmax = 21.3
|
342 |
+
text = "as"
|
343 |
+
intervals [83]:
|
344 |
+
xmin = 21.3
|
345 |
+
xmax = 21.62
|
346 |
+
text = "fashion"
|
347 |
+
intervals [84]:
|
348 |
+
xmin = 21.62
|
349 |
+
xmax = 22.19
|
350 |
+
text = "magazines"
|
351 |
+
intervals [85]:
|
352 |
+
xmin = 22.19
|
353 |
+
xmax = 22.8
|
354 |
+
text = "inspirational"
|
355 |
+
intervals [86]:
|
356 |
+
xmin = 22.8
|
357 |
+
xmax = 23.15
|
358 |
+
text = "books"
|
359 |
+
intervals [87]:
|
360 |
+
xmin = 23.15
|
361 |
+
xmax = 23.44
|
362 |
+
text = "and"
|
363 |
+
intervals [88]:
|
364 |
+
xmin = 23.44
|
365 |
+
xmax = 24.04
|
366 |
+
text = "professional"
|
367 |
+
intervals [89]:
|
368 |
+
xmin = 24.04
|
369 |
+
xmax = 24.46
|
370 |
+
text = "books"
|
371 |
+
intervals [90]:
|
372 |
+
xmin = 24.46
|
373 |
+
xmax = 24.83
|
374 |
+
text = ""
|
375 |
+
intervals [91]:
|
376 |
+
xmin = 24.83
|
377 |
+
xmax = 25.06
|
378 |
+
text = "these"
|
379 |
+
intervals [92]:
|
380 |
+
xmin = 25.06
|
381 |
+
xmax = 25.37
|
382 |
+
text = "books"
|
383 |
+
intervals [93]:
|
384 |
+
xmin = 25.37
|
385 |
+
xmax = 25.54
|
386 |
+
text = "can"
|
387 |
+
intervals [94]:
|
388 |
+
xmin = 25.54
|
389 |
+
xmax = 25.66
|
390 |
+
text = "give"
|
391 |
+
intervals [95]:
|
392 |
+
xmin = 25.66
|
393 |
+
xmax = 25.76
|
394 |
+
text = "me"
|
395 |
+
intervals [96]:
|
396 |
+
xmin = 25.76
|
397 |
+
xmax = 25.86
|
398 |
+
text = "the"
|
399 |
+
intervals [97]:
|
400 |
+
xmin = 25.86
|
401 |
+
xmax = 26.85
|
402 |
+
text = "motivation"
|
403 |
+
intervals [98]:
|
404 |
+
xmin = 26.85
|
405 |
+
xmax = 26.88
|
406 |
+
text = ""
|
407 |
+
intervals [99]:
|
408 |
+
xmin = 26.88
|
409 |
+
xmax = 27.07
|
410 |
+
text = "to"
|
411 |
+
intervals [100]:
|
412 |
+
xmin = 27.07
|
413 |
+
xmax = 27.37
|
414 |
+
text = "be"
|
415 |
+
intervals [101]:
|
416 |
+
xmin = 27.37
|
417 |
+
xmax = 28.01
|
418 |
+
text = "healthier"
|
419 |
+
intervals [102]:
|
420 |
+
xmin = 28.01
|
421 |
+
xmax = 28.18
|
422 |
+
text = "and"
|
423 |
+
intervals [103]:
|
424 |
+
xmin = 28.18
|
425 |
+
xmax = 28.9
|
426 |
+
text = "energetic"
|
427 |
+
intervals [104]:
|
428 |
+
xmin = 28.9
|
429 |
+
xmax = 29.1
|
430 |
+
text = ""
|
431 |
+
intervals [105]:
|
432 |
+
xmin = 29.1
|
433 |
+
xmax = 29.3
|
434 |
+
text = "and"
|
435 |
+
intervals [106]:
|
436 |
+
xmin = 29.3
|
437 |
+
xmax = 29.37
|
438 |
+
text = "the"
|
439 |
+
intervals [107]:
|
440 |
+
xmin = 29.37
|
441 |
+
xmax = 29.74
|
442 |
+
text = "last"
|
443 |
+
intervals [108]:
|
444 |
+
xmin = 29.74
|
445 |
+
xmax = 29.94
|
446 |
+
text = "thing"
|
447 |
+
intervals [109]:
|
448 |
+
xmin = 29.94
|
449 |
+
xmax = 30.14
|
450 |
+
text = "i"
|
451 |
+
intervals [110]:
|
452 |
+
xmin = 30.14
|
453 |
+
xmax = 30.42
|
454 |
+
text = "like"
|
455 |
+
intervals [111]:
|
456 |
+
xmin = 30.42
|
457 |
+
xmax = 30.53
|
458 |
+
text = "to"
|
459 |
+
intervals [112]:
|
460 |
+
xmin = 30.53
|
461 |
+
xmax = 30.84
|
462 |
+
text = "do"
|
463 |
+
intervals [113]:
|
464 |
+
xmin = 30.84
|
465 |
+
xmax = 31.22
|
466 |
+
text = "when"
|
467 |
+
intervals [114]:
|
468 |
+
xmin = 31.22
|
469 |
+
xmax = 31.43
|
470 |
+
text = "i'm"
|
471 |
+
intervals [115]:
|
472 |
+
xmin = 31.43
|
473 |
+
xmax = 31.87
|
474 |
+
text = "free"
|
475 |
+
intervals [116]:
|
476 |
+
xmin = 31.87
|
477 |
+
xmax = 31.99
|
478 |
+
text = "is"
|
479 |
+
intervals [117]:
|
480 |
+
xmin = 31.99
|
481 |
+
xmax = 32.11
|
482 |
+
text = "it"
|
483 |
+
intervals [118]:
|
484 |
+
xmin = 32.11
|
485 |
+
xmax = 32.23
|
486 |
+
text = "out"
|
487 |
+
intervals [119]:
|
488 |
+
xmin = 32.23
|
489 |
+
xmax = 32.35
|
490 |
+
text = "with"
|
491 |
+
intervals [120]:
|
492 |
+
xmin = 32.35
|
493 |
+
xmax = 32.48
|
494 |
+
text = "my"
|
495 |
+
intervals [121]:
|
496 |
+
xmin = 32.48
|
497 |
+
xmax = 32.86
|
498 |
+
text = "family"
|
499 |
+
intervals [122]:
|
500 |
+
xmin = 32.86
|
501 |
+
xmax = 33.33
|
502 |
+
text = "members"
|
503 |
+
intervals [123]:
|
504 |
+
xmin = 33.33
|
505 |
+
xmax = 33.51
|
506 |
+
text = ""
|
507 |
+
intervals [124]:
|
508 |
+
xmin = 33.51
|
509 |
+
xmax = 33.89
|
510 |
+
text = "you"
|
511 |
+
intervals [125]:
|
512 |
+
xmin = 33.89
|
513 |
+
xmax = 34.11
|
514 |
+
text = "would"
|
515 |
+
intervals [126]:
|
516 |
+
xmin = 34.11
|
517 |
+
xmax = 34.29
|
518 |
+
text = "be"
|
519 |
+
intervals [127]:
|
520 |
+
xmin = 34.29
|
521 |
+
xmax = 35.07
|
522 |
+
text = "surprised"
|
523 |
+
intervals [128]:
|
524 |
+
xmin = 35.07
|
525 |
+
xmax = 35.16
|
526 |
+
text = "to"
|
527 |
+
intervals [129]:
|
528 |
+
xmin = 35.16
|
529 |
+
xmax = 35.36
|
530 |
+
text = "know"
|
531 |
+
intervals [130]:
|
532 |
+
xmin = 35.36
|
533 |
+
xmax = 35.5
|
534 |
+
text = "that"
|
535 |
+
intervals [131]:
|
536 |
+
xmin = 35.5
|
537 |
+
xmax = 35.64
|
538 |
+
text = "i"
|
539 |
+
intervals [132]:
|
540 |
+
xmin = 35.64
|
541 |
+
xmax = 35.84
|
542 |
+
text = "have"
|
543 |
+
intervals [133]:
|
544 |
+
xmin = 35.84
|
545 |
+
xmax = 36.3
|
546 |
+
text = "tried"
|
547 |
+
intervals [134]:
|
548 |
+
xmin = 36.3
|
549 |
+
xmax = 36.57
|
550 |
+
text = ""
|
551 |
+
intervals [135]:
|
552 |
+
xmin = 36.57
|
553 |
+
xmax = 36.99
|
554 |
+
text = "all"
|
555 |
+
intervals [136]:
|
556 |
+
xmin = 36.99
|
557 |
+
xmax = 37.08
|
558 |
+
text = "the"
|
559 |
+
intervals [137]:
|
560 |
+
xmin = 37.08
|
561 |
+
xmax = 37.68
|
562 |
+
text = "restaurants"
|
563 |
+
intervals [138]:
|
564 |
+
xmin = 37.68
|
565 |
+
xmax = 37.71
|
566 |
+
text = ""
|
567 |
+
intervals [139]:
|
568 |
+
xmin = 37.71
|
569 |
+
xmax = 37.83
|
570 |
+
text = "in"
|
571 |
+
intervals [140]:
|
572 |
+
xmin = 37.83
|
573 |
+
xmax = 37.95
|
574 |
+
text = "our"
|
575 |
+
intervals [141]:
|
576 |
+
xmin = 37.95
|
577 |
+
xmax = 38.5
|
578 |
+
text = "huge"
|
579 |
+
intervals [142]:
|
580 |
+
xmin = 38.5
|
581 |
+
xmax = 39.07
|
582 |
+
text = "community"
|
583 |
+
intervals [143]:
|
584 |
+
xmin = 39.07
|
585 |
+
xmax = 39.23
|
586 |
+
text = ""
|
587 |
+
intervals [144]:
|
588 |
+
xmin = 39.23
|
589 |
+
xmax = 39.6
|
590 |
+
text = "i"
|
591 |
+
intervals [145]:
|
592 |
+
xmin = 39.6
|
593 |
+
xmax = 40.09
|
594 |
+
text = "actually"
|
595 |
+
intervals [146]:
|
596 |
+
xmin = 40.09
|
597 |
+
xmax = 40.32
|
598 |
+
text = "give"
|
599 |
+
intervals [147]:
|
600 |
+
xmin = 40.32
|
601 |
+
xmax = 40.61
|
602 |
+
text = "each"
|
603 |
+
intervals [148]:
|
604 |
+
xmin = 40.61
|
605 |
+
xmax = 41.08
|
606 |
+
text = "restaurant"
|
607 |
+
intervals [149]:
|
608 |
+
xmin = 41.08
|
609 |
+
xmax = 41.15
|
610 |
+
text = "a"
|
611 |
+
intervals [150]:
|
612 |
+
xmin = 41.15
|
613 |
+
xmax = 41.55
|
614 |
+
text = "score"
|
615 |
+
intervals [151]:
|
616 |
+
xmin = 41.55
|
617 |
+
xmax = 41.82
|
618 |
+
text = "based"
|
619 |
+
intervals [152]:
|
620 |
+
xmin = 41.82
|
621 |
+
xmax = 41.89
|
622 |
+
text = "on"
|
623 |
+
intervals [153]:
|
624 |
+
xmin = 41.89
|
625 |
+
xmax = 42.05
|
626 |
+
text = "how"
|
627 |
+
intervals [154]:
|
628 |
+
xmin = 42.05
|
629 |
+
xmax = 42.17
|
630 |
+
text = "good"
|
631 |
+
intervals [155]:
|
632 |
+
xmin = 42.17
|
633 |
+
xmax = 42.23
|
634 |
+
text = "the"
|
635 |
+
intervals [156]:
|
636 |
+
xmin = 42.23
|
637 |
+
xmax = 42.51
|
638 |
+
text = "food"
|
639 |
+
intervals [157]:
|
640 |
+
xmin = 42.51
|
641 |
+
xmax = 42.85
|
642 |
+
text = "is"
|
643 |
+
intervals [158]:
|
644 |
+
xmin = 42.85
|
645 |
+
xmax = 43.13
|
646 |
+
text = ""
|
647 |
+
intervals [159]:
|
648 |
+
xmin = 43.13
|
649 |
+
xmax = 43.36
|
650 |
+
text = "how"
|
651 |
+
intervals [160]:
|
652 |
+
xmin = 43.36
|
653 |
+
xmax = 43.51
|
654 |
+
text = "good"
|
655 |
+
intervals [161]:
|
656 |
+
xmin = 43.51
|
657 |
+
xmax = 43.62
|
658 |
+
text = "the"
|
659 |
+
intervals [162]:
|
660 |
+
xmin = 43.62
|
661 |
+
xmax = 44.1
|
662 |
+
text = "environment"
|
663 |
+
intervals [163]:
|
664 |
+
xmin = 44.1
|
665 |
+
xmax = 44.4
|
666 |
+
text = "is"
|
667 |
+
intervals [164]:
|
668 |
+
xmin = 44.4
|
669 |
+
xmax = 44.49
|
670 |
+
text = ""
|
671 |
+
intervals [165]:
|
672 |
+
xmin = 44.49
|
673 |
+
xmax = 44.98
|
674 |
+
text = "and"
|
675 |
+
intervals [166]:
|
676 |
+
xmin = 44.98
|
677 |
+
xmax = 45.34
|
678 |
+
text = "at"
|
679 |
+
intervals [167]:
|
680 |
+
xmin = 45.34
|
681 |
+
xmax = 45.62
|
682 |
+
text = "the"
|
683 |
+
intervals [168]:
|
684 |
+
xmin = 45.62
|
685 |
+
xmax = 45.91
|
686 |
+
text = "same"
|
687 |
+
intervals [169]:
|
688 |
+
xmin = 45.91
|
689 |
+
xmax = 46.29
|
690 |
+
text = "time"
|
691 |
+
intervals [170]:
|
692 |
+
xmin = 46.29
|
693 |
+
xmax = 46.42
|
694 |
+
text = "i"
|
695 |
+
intervals [171]:
|
696 |
+
xmin = 46.42
|
697 |
+
xmax = 46.54
|
698 |
+
text = "will"
|
699 |
+
intervals [172]:
|
700 |
+
xmin = 46.54
|
701 |
+
xmax = 46.74
|
702 |
+
text = "write"
|
703 |
+
intervals [173]:
|
704 |
+
xmin = 46.74
|
705 |
+
xmax = 46.94
|
706 |
+
text = "down"
|
707 |
+
intervals [174]:
|
708 |
+
xmin = 46.94
|
709 |
+
xmax = 47.02
|
710 |
+
text = "the"
|
711 |
+
intervals [175]:
|
712 |
+
xmin = 47.02
|
713 |
+
xmax = 47.24
|
714 |
+
text = "type"
|
715 |
+
intervals [176]:
|
716 |
+
xmin = 47.24
|
717 |
+
xmax = 47.39
|
718 |
+
text = "of"
|
719 |
+
intervals [177]:
|
720 |
+
xmin = 47.39
|
721 |
+
xmax = 47.8
|
722 |
+
text = "food"
|
723 |
+
intervals [178]:
|
724 |
+
xmin = 47.8
|
725 |
+
xmax = 48.03
|
726 |
+
text = ""
|
727 |
+
intervals [179]:
|
728 |
+
xmin = 48.03
|
729 |
+
xmax = 48.24
|
730 |
+
text = "they"
|
731 |
+
intervals [180]:
|
732 |
+
xmin = 48.24
|
733 |
+
xmax = 48.76
|
734 |
+
text = "serve"
|
735 |
+
intervals [181]:
|
736 |
+
xmin = 48.76
|
737 |
+
xmax = 49.42
|
738 |
+
text = ""
|
739 |
+
intervals [182]:
|
740 |
+
xmin = 49.42
|
741 |
+
xmax = 49.9
|
742 |
+
text = "so"
|
743 |
+
intervals [183]:
|
744 |
+
xmin = 49.9
|
745 |
+
xmax = 50.46
|
746 |
+
text = "when"
|
747 |
+
intervals [184]:
|
748 |
+
xmin = 50.46
|
749 |
+
xmax = 50.49
|
750 |
+
text = ""
|
751 |
+
intervals [185]:
|
752 |
+
xmin = 50.49
|
753 |
+
xmax = 50.85
|
754 |
+
text = "you're"
|
755 |
+
intervals [186]:
|
756 |
+
xmin = 50.85
|
757 |
+
xmax = 50.98
|
758 |
+
text = "so"
|
759 |
+
intervals [187]:
|
760 |
+
xmin = 50.98
|
761 |
+
xmax = 51.13
|
762 |
+
text = "when"
|
763 |
+
intervals [188]:
|
764 |
+
xmin = 51.13
|
765 |
+
xmax = 51.35
|
766 |
+
text = "each"
|
767 |
+
intervals [189]:
|
768 |
+
xmin = 51.35
|
769 |
+
xmax = 51.55
|
770 |
+
text = "time"
|
771 |
+
intervals [190]:
|
772 |
+
xmin = 51.55
|
773 |
+
xmax = 51.62
|
774 |
+
text = "a"
|
775 |
+
intervals [191]:
|
776 |
+
xmin = 51.62
|
777 |
+
xmax = 51.91
|
778 |
+
text = "friend"
|
779 |
+
intervals [192]:
|
780 |
+
xmin = 51.91
|
781 |
+
xmax = 52.32
|
782 |
+
text = "comes"
|
783 |
+
intervals [193]:
|
784 |
+
xmin = 52.32
|
785 |
+
xmax = 52.46
|
786 |
+
text = "to"
|
787 |
+
intervals [194]:
|
788 |
+
xmin = 52.46
|
789 |
+
xmax = 52.59
|
790 |
+
text = "the"
|
791 |
+
intervals [195]:
|
792 |
+
xmin = 52.59
|
793 |
+
xmax = 52.9
|
794 |
+
text = "city"
|
795 |
+
intervals [196]:
|
796 |
+
xmin = 52.9
|
797 |
+
xmax = 53.07
|
798 |
+
text = "to"
|
799 |
+
intervals [197]:
|
800 |
+
xmin = 53.07
|
801 |
+
xmax = 53.35
|
802 |
+
text = "enjoy"
|
803 |
+
intervals [198]:
|
804 |
+
xmin = 53.35
|
805 |
+
xmax = 53.62
|
806 |
+
text = "time"
|
807 |
+
intervals [199]:
|
808 |
+
xmin = 53.62
|
809 |
+
xmax = 53.74
|
810 |
+
text = "with"
|
811 |
+
intervals [200]:
|
812 |
+
xmin = 53.74
|
813 |
+
xmax = 54.02
|
814 |
+
text = "me"
|
815 |
+
intervals [201]:
|
816 |
+
xmin = 54.02
|
817 |
+
xmax = 54.31
|
818 |
+
text = ""
|
819 |
+
intervals [202]:
|
820 |
+
xmin = 54.31
|
821 |
+
xmax = 54.54
|
822 |
+
text = "i"
|
823 |
+
intervals [203]:
|
824 |
+
xmin = 54.54
|
825 |
+
xmax = 54.69
|
826 |
+
text = "will"
|
827 |
+
intervals [204]:
|
828 |
+
xmin = 54.69
|
829 |
+
xmax = 54.84
|
830 |
+
text = "give"
|
831 |
+
intervals [205]:
|
832 |
+
xmin = 54.84
|
833 |
+
xmax = 54.97
|
834 |
+
text = "them"
|
835 |
+
intervals [206]:
|
836 |
+
xmin = 54.97
|
837 |
+
xmax = 55.07
|
838 |
+
text = "the"
|
839 |
+
intervals [207]:
|
840 |
+
xmin = 55.07
|
841 |
+
xmax = 55.38
|
842 |
+
text = "top"
|
843 |
+
intervals [208]:
|
844 |
+
xmin = 55.38
|
845 |
+
xmax = 55.53
|
846 |
+
text = "5"
|
847 |
+
intervals [209]:
|
848 |
+
xmin = 55.53
|
849 |
+
xmax = 56.1
|
850 |
+
text = "restaurants"
|
851 |
+
intervals [210]:
|
852 |
+
xmin = 56.1
|
853 |
+
xmax = 56.44
|
854 |
+
text = "based"
|
855 |
+
intervals [211]:
|
856 |
+
xmin = 56.44
|
857 |
+
xmax = 56.68
|
858 |
+
text = "on"
|
859 |
+
intervals [212]:
|
860 |
+
xmin = 56.68
|
861 |
+
xmax = 56.99
|
862 |
+
text = "this"
|
863 |
+
intervals [213]:
|
864 |
+
xmin = 56.99
|
865 |
+
xmax = 57.35
|
866 |
+
text = "ranking"
|
867 |
+
intervals [214]:
|
868 |
+
xmin = 57.35
|
869 |
+
xmax = 57.53
|
870 |
+
text = "and"
|
871 |
+
intervals [215]:
|
872 |
+
xmin = 57.53
|
873 |
+
xmax = 57.86
|
874 |
+
text = "every"
|
875 |
+
intervals [216]:
|
876 |
+
xmin = 57.86
|
877 |
+
xmax = 58.44
|
878 |
+
text = "time"
|
879 |
+
intervals [217]:
|
880 |
+
xmin = 58.44
|
881 |
+
xmax = 59.02
|
882 |
+
text = ""
|
883 |
+
intervals [218]:
|
884 |
+
xmin = 59.02
|
885 |
+
xmax = 59.2
|
886 |
+
text = "you're"
|
887 |
+
intervals [219]:
|
888 |
+
xmin = 59.2
|
889 |
+
xmax = 59.72
|
890 |
+
text = "satisfied"
|
891 |
+
intervals [220]:
|
892 |
+
xmin = 59.72
|
893 |
+
xmax = 59.85
|
894 |
+
text = "with"
|
895 |
+
intervals [221]:
|
896 |
+
xmin = 59.85
|
897 |
+
xmax = 60.1
|
898 |
+
text = "these"
|
899 |
+
intervals [222]:
|
900 |
+
xmin = 60.1
|
901 |
+
xmax = 60.81
|
902 |
+
text = "restaurants"
|
903 |
+
intervals [223]:
|
904 |
+
xmin = 60.81
|
905 |
+
xmax = 62
|
906 |
+
text = ""
|
907 |
+
item [2]:
|
908 |
+
class = "IntervalTier"
|
909 |
+
name = "phones"
|
910 |
+
xmin = 0.0
|
911 |
+
xmax = 62
|
912 |
+
intervals: size = 701
|
913 |
+
intervals [1]:
|
914 |
+
xmin = 0.0
|
915 |
+
xmax = 1.45
|
916 |
+
text = ""
|
917 |
+
intervals [2]:
|
918 |
+
xmin = 1.45
|
919 |
+
xmax = 1.64
|
920 |
+
text = "S"
|
921 |
+
intervals [3]:
|
922 |
+
xmin = 1.64
|
923 |
+
xmax = 1.87
|
924 |
+
text = "OW1"
|
925 |
+
intervals [4]:
|
926 |
+
xmin = 1.87
|
927 |
+
xmax = 1.94
|
928 |
+
text = "W"
|
929 |
+
intervals [5]:
|
930 |
+
xmin = 1.94
|
931 |
+
xmax = 1.97
|
932 |
+
text = "EH1"
|
933 |
+
intervals [6]:
|
934 |
+
xmin = 1.97
|
935 |
+
xmax = 2.02
|
936 |
+
text = "N"
|
937 |
+
intervals [7]:
|
938 |
+
xmin = 2.02
|
939 |
+
xmax = 2.13
|
940 |
+
text = "AY1"
|
941 |
+
intervals [8]:
|
942 |
+
xmin = 2.13
|
943 |
+
xmax = 2.21
|
944 |
+
text = "HH"
|
945 |
+
intervals [9]:
|
946 |
+
xmin = 2.21
|
947 |
+
xmax = 2.29
|
948 |
+
text = "AE1"
|
949 |
+
intervals [10]:
|
950 |
+
xmin = 2.29
|
951 |
+
xmax = 2.35
|
952 |
+
text = "V"
|
953 |
+
intervals [11]:
|
954 |
+
xmin = 2.35
|
955 |
+
xmax = 2.43
|
956 |
+
text = "T"
|
957 |
+
intervals [12]:
|
958 |
+
xmin = 2.43
|
959 |
+
xmax = 2.52
|
960 |
+
text = "AY1"
|
961 |
+
intervals [13]:
|
962 |
+
xmin = 2.52
|
963 |
+
xmax = 2.57
|
964 |
+
text = "M"
|
965 |
+
intervals [14]:
|
966 |
+
xmin = 2.57
|
967 |
+
xmax = 2.6
|
968 |
+
text = "T"
|
969 |
+
intervals [15]:
|
970 |
+
xmin = 2.6
|
971 |
+
xmax = 2.65
|
972 |
+
text = "AH0"
|
973 |
+
intervals [16]:
|
974 |
+
xmin = 2.65
|
975 |
+
xmax = 2.75
|
976 |
+
text = "K"
|
977 |
+
intervals [17]:
|
978 |
+
xmin = 2.75
|
979 |
+
xmax = 2.81
|
980 |
+
text = "IH1"
|
981 |
+
intervals [18]:
|
982 |
+
xmin = 2.81
|
983 |
+
xmax = 3.18
|
984 |
+
text = "L"
|
985 |
+
intervals [19]:
|
986 |
+
xmin = 3.18
|
987 |
+
xmax = 3.22
|
988 |
+
text = ""
|
989 |
+
intervals [20]:
|
990 |
+
xmin = 3.22
|
991 |
+
xmax = 3.41
|
992 |
+
text = "AY1"
|
993 |
+
intervals [21]:
|
994 |
+
xmin = 3.41
|
995 |
+
xmax = 3.46
|
996 |
+
text = "L"
|
997 |
+
intervals [22]:
|
998 |
+
xmin = 3.46
|
999 |
+
xmax = 3.57
|
1000 |
+
text = "AY1"
|
1001 |
+
intervals [23]:
|
1002 |
+
xmin = 3.57
|
1003 |
+
xmax = 3.6
|
1004 |
+
text = "K"
|
1005 |
+
intervals [24]:
|
1006 |
+
xmin = 3.6
|
1007 |
+
xmax = 3.63
|
1008 |
+
text = "T"
|
1009 |
+
intervals [25]:
|
1010 |
+
xmin = 3.63
|
1011 |
+
xmax = 3.68
|
1012 |
+
text = "IH0"
|
1013 |
+
intervals [26]:
|
1014 |
+
xmin = 3.68
|
1015 |
+
xmax = 3.75
|
1016 |
+
text = "P"
|
1017 |
+
intervals [27]:
|
1018 |
+
xmin = 3.75
|
1019 |
+
xmax = 3.83
|
1020 |
+
text = "L"
|
1021 |
+
intervals [28]:
|
1022 |
+
xmin = 3.83
|
1023 |
+
xmax = 3.88
|
1024 |
+
text = "EY1"
|
1025 |
+
intervals [29]:
|
1026 |
+
xmin = 3.88
|
1027 |
+
xmax = 3.93
|
1028 |
+
text = "AA1"
|
1029 |
+
intervals [30]:
|
1030 |
+
xmin = 3.93
|
1031 |
+
xmax = 3.96
|
1032 |
+
text = "N"
|
1033 |
+
intervals [31]:
|
1034 |
+
xmin = 3.96
|
1035 |
+
xmax = 4.01
|
1036 |
+
text = "DH"
|
1037 |
+
intervals [32]:
|
1038 |
+
xmin = 4.01
|
1039 |
+
xmax = 4.08
|
1040 |
+
text = "IY0"
|
1041 |
+
intervals [33]:
|
1042 |
+
xmin = 4.08
|
1043 |
+
xmax = 4.13
|
1044 |
+
text = "IH1"
|
1045 |
+
intervals [34]:
|
1046 |
+
xmin = 4.13
|
1047 |
+
xmax = 4.16
|
1048 |
+
text = "N"
|
1049 |
+
intervals [35]:
|
1050 |
+
xmin = 4.16
|
1051 |
+
xmax = 4.19
|
1052 |
+
text = "T"
|
1053 |
+
intervals [36]:
|
1054 |
+
xmin = 4.19
|
1055 |
+
xmax = 4.25
|
1056 |
+
text = "ER0"
|
1057 |
+
intervals [37]:
|
1058 |
+
xmin = 4.25
|
1059 |
+
xmax = 4.29
|
1060 |
+
text = "N"
|
1061 |
+
intervals [38]:
|
1062 |
+
xmin = 4.29
|
1063 |
+
xmax = 4.42
|
1064 |
+
text = "EH2"
|
1065 |
+
intervals [39]:
|
1066 |
+
xmin = 4.42
|
1067 |
+
xmax = 4.5
|
1068 |
+
text = "T"
|
1069 |
+
intervals [40]:
|
1070 |
+
xmin = 4.5
|
1071 |
+
xmax = 4.58
|
1072 |
+
text = "AE1"
|
1073 |
+
intervals [41]:
|
1074 |
+
xmin = 4.58
|
1075 |
+
xmax = 4.62
|
1076 |
+
text = "N"
|
1077 |
+
intervals [42]:
|
1078 |
+
xmin = 4.62
|
1079 |
+
xmax = 4.66
|
1080 |
+
text = "D"
|
1081 |
+
intervals [43]:
|
1082 |
+
xmin = 4.66
|
1083 |
+
xmax = 4.71
|
1084 |
+
text = "P"
|
1085 |
+
intervals [44]:
|
1086 |
+
xmin = 4.71
|
1087 |
+
xmax = 4.8
|
1088 |
+
text = "L"
|
1089 |
+
intervals [45]:
|
1090 |
+
xmin = 4.8
|
1091 |
+
xmax = 4.87
|
1092 |
+
text = "EY1"
|
1093 |
+
intervals [46]:
|
1094 |
+
xmin = 4.87
|
1095 |
+
xmax = 4.97
|
1096 |
+
text = "K"
|
1097 |
+
intervals [47]:
|
1098 |
+
xmin = 4.97
|
1099 |
+
xmax = 5.02
|
1100 |
+
text = "L"
|
1101 |
+
intervals [48]:
|
1102 |
+
xmin = 5.02
|
1103 |
+
xmax = 5.09
|
1104 |
+
text = "OW1"
|
1105 |
+
intervals [49]:
|
1106 |
+
xmin = 5.09
|
1107 |
+
xmax = 5.19
|
1108 |
+
text = "S"
|
1109 |
+
intervals [50]:
|
1110 |
+
xmin = 5.19
|
1111 |
+
xmax = 5.23
|
1112 |
+
text = "AH0"
|
1113 |
+
intervals [51]:
|
1114 |
+
xmin = 5.23
|
1115 |
+
xmax = 5.32
|
1116 |
+
text = "T"
|
1117 |
+
intervals [52]:
|
1118 |
+
xmin = 5.32
|
1119 |
+
xmax = 5.36
|
1120 |
+
text = "EH1"
|
1121 |
+
intervals [53]:
|
1122 |
+
xmin = 5.36
|
1123 |
+
xmax = 5.42
|
1124 |
+
text = "N"
|
1125 |
+
intervals [54]:
|
1126 |
+
xmin = 5.42
|
1127 |
+
xmax = 5.49
|
1128 |
+
text = "SH"
|
1129 |
+
intervals [55]:
|
1130 |
+
xmin = 5.49
|
1131 |
+
xmax = 5.55
|
1132 |
+
text = "AH0"
|
1133 |
+
intervals [56]:
|
1134 |
+
xmin = 5.55
|
1135 |
+
xmax = 5.67
|
1136 |
+
text = "N"
|
1137 |
+
intervals [57]:
|
1138 |
+
xmin = 5.67
|
1139 |
+
xmax = 5.8
|
1140 |
+
text = "T"
|
1141 |
+
intervals [58]:
|
1142 |
+
xmin = 5.8
|
1143 |
+
xmax = 6.0
|
1144 |
+
text = "UW1"
|
1145 |
+
intervals [59]:
|
1146 |
+
xmin = 6.0
|
1147 |
+
xmax = 6.03
|
1148 |
+
text = "N"
|
1149 |
+
intervals [60]:
|
1150 |
+
xmin = 6.03
|
1151 |
+
xmax = 6.15
|
1152 |
+
text = "Y"
|
1153 |
+
intervals [61]:
|
1154 |
+
xmin = 6.15
|
1155 |
+
xmax = 6.26
|
1156 |
+
text = "UW1"
|
1157 |
+
intervals [62]:
|
1158 |
+
xmin = 6.26
|
1159 |
+
xmax = 6.41
|
1160 |
+
text = "F"
|
1161 |
+
intervals [63]:
|
1162 |
+
xmin = 6.41
|
1163 |
+
xmax = 6.54
|
1164 |
+
text = "AE1"
|
1165 |
+
intervals [64]:
|
1166 |
+
xmin = 6.54
|
1167 |
+
xmax = 6.63
|
1168 |
+
text = "SH"
|
1169 |
+
intervals [65]:
|
1170 |
+
xmin = 6.63
|
1171 |
+
xmax = 6.66
|
1172 |
+
text = "AH0"
|
1173 |
+
intervals [66]:
|
1174 |
+
xmin = 6.66
|
1175 |
+
xmax = 6.71
|
1176 |
+
text = "N"
|
1177 |
+
intervals [67]:
|
1178 |
+
xmin = 6.71
|
1179 |
+
xmax = 6.75
|
1180 |
+
text = "IH0"
|
1181 |
+
intervals [68]:
|
1182 |
+
xmin = 6.75
|
1183 |
+
xmax = 6.81
|
1184 |
+
text = "V"
|
1185 |
+
intervals [69]:
|
1186 |
+
xmin = 6.81
|
1187 |
+
xmax = 6.93
|
1188 |
+
text = "EH1"
|
1189 |
+
intervals [70]:
|
1190 |
+
xmin = 6.93
|
1191 |
+
xmax = 6.97
|
1192 |
+
text = "N"
|
1193 |
+
intervals [71]:
|
1194 |
+
xmin = 6.97
|
1195 |
+
xmax = 7.02
|
1196 |
+
text = "T"
|
1197 |
+
intervals [72]:
|
1198 |
+
xmin = 7.02
|
1199 |
+
xmax = 7.17
|
1200 |
+
text = "S"
|
1201 |
+
intervals [73]:
|
1202 |
+
xmin = 7.17
|
1203 |
+
xmax = 7.43
|
1204 |
+
text = ""
|
1205 |
+
intervals [74]:
|
1206 |
+
xmin = 7.43
|
1207 |
+
xmax = 7.55
|
1208 |
+
text = "S"
|
1209 |
+
intervals [75]:
|
1210 |
+
xmin = 7.55
|
1211 |
+
xmax = 7.63
|
1212 |
+
text = "AH1"
|
1213 |
+
intervals [76]:
|
1214 |
+
xmin = 7.63
|
1215 |
+
xmax = 7.76
|
1216 |
+
text = "CH"
|
1217 |
+
intervals [77]:
|
1218 |
+
xmin = 7.76
|
1219 |
+
xmax = 7.94
|
1220 |
+
text = "EH1"
|
1221 |
+
intervals [78]:
|
1222 |
+
xmin = 7.94
|
1223 |
+
xmax = 8.14
|
1224 |
+
text = "Z"
|
1225 |
+
intervals [79]:
|
1226 |
+
xmin = 8.14
|
1227 |
+
xmax = 8.19
|
1228 |
+
text = ""
|
1229 |
+
intervals [80]:
|
1230 |
+
xmin = 8.19
|
1231 |
+
xmax = 8.28
|
1232 |
+
text = "DH"
|
1233 |
+
intervals [81]:
|
1234 |
+
xmin = 8.28
|
1235 |
+
xmax = 8.34
|
1236 |
+
text = "AH0"
|
1237 |
+
intervals [82]:
|
1238 |
+
xmin = 8.34
|
1239 |
+
xmax = 8.44
|
1240 |
+
text = "N"
|
1241 |
+
intervals [83]:
|
1242 |
+
xmin = 8.44
|
1243 |
+
xmax = 8.47
|
1244 |
+
text = "UW1"
|
1245 |
+
intervals [84]:
|
1246 |
+
xmin = 8.47
|
1247 |
+
xmax = 8.52
|
1248 |
+
text = "Y"
|
1249 |
+
intervals [85]:
|
1250 |
+
xmin = 8.52
|
1251 |
+
xmax = 8.56
|
1252 |
+
text = "AO1"
|
1253 |
+
intervals [86]:
|
1254 |
+
xmin = 8.56
|
1255 |
+
xmax = 8.62
|
1256 |
+
text = "R"
|
1257 |
+
intervals [87]:
|
1258 |
+
xmin = 8.62
|
1259 |
+
xmax = 8.68
|
1260 |
+
text = "K"
|
1261 |
+
intervals [88]:
|
1262 |
+
xmin = 8.68
|
1263 |
+
xmax = 8.79
|
1264 |
+
text = "F"
|
1265 |
+
intervals [89]:
|
1266 |
+
xmin = 8.79
|
1267 |
+
xmax = 8.93
|
1268 |
+
text = "AE1"
|
1269 |
+
intervals [90]:
|
1270 |
+
xmin = 8.93
|
1271 |
+
xmax = 9.03
|
1272 |
+
text = "SH"
|
1273 |
+
intervals [91]:
|
1274 |
+
xmin = 9.03
|
1275 |
+
xmax = 9.07
|
1276 |
+
text = "AH0"
|
1277 |
+
intervals [92]:
|
1278 |
+
xmin = 9.07
|
1279 |
+
xmax = 9.12
|
1280 |
+
text = "N"
|
1281 |
+
intervals [93]:
|
1282 |
+
xmin = 9.12
|
1283 |
+
xmax = 9.19
|
1284 |
+
text = "W"
|
1285 |
+
intervals [94]:
|
1286 |
+
xmin = 9.19
|
1287 |
+
xmax = 9.33
|
1288 |
+
text = "IY1"
|
1289 |
+
intervals [95]:
|
1290 |
+
xmin = 9.33
|
1291 |
+
xmax = 9.42
|
1292 |
+
text = "K"
|
1293 |
+
intervals [96]:
|
1294 |
+
xmin = 9.42
|
1295 |
+
xmax = 9.46
|
1296 |
+
text = "DH"
|
1297 |
+
intervals [97]:
|
1298 |
+
xmin = 9.46
|
1299 |
+
xmax = 9.49
|
1300 |
+
text = "AH0"
|
1301 |
+
intervals [98]:
|
1302 |
+
xmin = 9.49
|
1303 |
+
xmax = 9.57
|
1304 |
+
text = "P"
|
1305 |
+
intervals [99]:
|
1306 |
+
xmin = 9.57
|
1307 |
+
xmax = 9.64
|
1308 |
+
text = "EH1"
|
1309 |
+
intervals [100]:
|
1310 |
+
xmin = 9.64
|
1311 |
+
xmax = 9.75
|
1312 |
+
text = "R"
|
1313 |
+
intervals [101]:
|
1314 |
+
xmin = 9.75
|
1315 |
+
xmax = 9.8
|
1316 |
+
text = "IH0"
|
1317 |
+
intervals [102]:
|
1318 |
+
xmin = 9.8
|
1319 |
+
xmax = 9.87
|
1320 |
+
text = "S"
|
1321 |
+
intervals [103]:
|
1322 |
+
xmin = 9.87
|
1323 |
+
xmax = 9.93
|
1324 |
+
text = "F"
|
1325 |
+
intervals [104]:
|
1326 |
+
xmin = 9.93
|
1327 |
+
xmax = 10.09
|
1328 |
+
text = "AE1"
|
1329 |
+
intervals [105]:
|
1330 |
+
xmin = 10.09
|
1331 |
+
xmax = 10.19
|
1332 |
+
text = "SH"
|
1333 |
+
intervals [106]:
|
1334 |
+
xmin = 10.19
|
1335 |
+
xmax = 10.22
|
1336 |
+
text = "AH0"
|
1337 |
+
intervals [107]:
|
1338 |
+
xmin = 10.22
|
1339 |
+
xmax = 10.25
|
1340 |
+
text = "N"
|
1341 |
+
intervals [108]:
|
1342 |
+
xmin = 10.25
|
1343 |
+
xmax = 10.32
|
1344 |
+
text = "W"
|
1345 |
+
intervals [109]:
|
1346 |
+
xmin = 10.32
|
1347 |
+
xmax = 10.49
|
1348 |
+
text = "IY1"
|
1349 |
+
intervals [110]:
|
1350 |
+
xmin = 10.49
|
1351 |
+
xmax = 10.56
|
1352 |
+
text = "K"
|
1353 |
+
intervals [111]:
|
1354 |
+
xmin = 10.56
|
1355 |
+
xmax = 10.6
|
1356 |
+
text = "DH"
|
1357 |
+
intervals [112]:
|
1358 |
+
xmin = 10.6
|
1359 |
+
xmax = 10.66
|
1360 |
+
text = "AH0"
|
1361 |
+
intervals [113]:
|
1362 |
+
xmin = 10.66
|
1363 |
+
xmax = 10.76
|
1364 |
+
text = "L"
|
1365 |
+
intervals [114]:
|
1366 |
+
xmin = 10.76
|
1367 |
+
xmax = 10.81
|
1368 |
+
text = "AH1"
|
1369 |
+
intervals [115]:
|
1370 |
+
xmin = 10.81
|
1371 |
+
xmax = 10.87
|
1372 |
+
text = "N"
|
1373 |
+
intervals [116]:
|
1374 |
+
xmin = 10.87
|
1375 |
+
xmax = 10.92
|
1376 |
+
text = "D"
|
1377 |
+
intervals [117]:
|
1378 |
+
xmin = 10.92
|
1379 |
+
xmax = 10.97
|
1380 |
+
text = "AH0"
|
1381 |
+
intervals [118]:
|
1382 |
+
xmin = 10.97
|
1383 |
+
xmax = 11.07
|
1384 |
+
text = "N"
|
1385 |
+
intervals [119]:
|
1386 |
+
xmin = 11.07
|
1387 |
+
xmax = 11.18
|
1388 |
+
text = "F"
|
1389 |
+
intervals [120]:
|
1390 |
+
xmin = 11.18
|
1391 |
+
xmax = 11.31
|
1392 |
+
text = "AE1"
|
1393 |
+
intervals [121]:
|
1394 |
+
xmin = 11.31
|
1395 |
+
xmax = 11.42
|
1396 |
+
text = "SH"
|
1397 |
+
intervals [122]:
|
1398 |
+
xmin = 11.42
|
1399 |
+
xmax = 11.46
|
1400 |
+
text = "AH0"
|
1401 |
+
intervals [123]:
|
1402 |
+
xmin = 11.46
|
1403 |
+
xmax = 11.51
|
1404 |
+
text = "N"
|
1405 |
+
intervals [124]:
|
1406 |
+
xmin = 11.51
|
1407 |
+
xmax = 11.56
|
1408 |
+
text = "W"
|
1409 |
+
intervals [125]:
|
1410 |
+
xmin = 11.56
|
1411 |
+
xmax = 11.69
|
1412 |
+
text = "IY1"
|
1413 |
+
intervals [126]:
|
1414 |
+
xmin = 11.69
|
1415 |
+
xmax = 11.78
|
1416 |
+
text = "K"
|
1417 |
+
intervals [127]:
|
1418 |
+
xmin = 11.78
|
1419 |
+
xmax = 11.84
|
1420 |
+
text = "AE1"
|
1421 |
+
intervals [128]:
|
1422 |
+
xmin = 11.84
|
1423 |
+
xmax = 11.99
|
1424 |
+
text = "N"
|
1425 |
+
intervals [129]:
|
1426 |
+
xmin = 11.99
|
1427 |
+
xmax = 12.17
|
1428 |
+
text = "D"
|
1429 |
+
intervals [130]:
|
1430 |
+
xmin = 12.17
|
1431 |
+
xmax = 12.21
|
1432 |
+
text = ""
|
1433 |
+
intervals [131]:
|
1434 |
+
xmin = 12.21
|
1435 |
+
xmax = 12.36
|
1436 |
+
text = "M"
|
1437 |
+
intervals [132]:
|
1438 |
+
xmin = 12.36
|
1439 |
+
xmax = 12.48
|
1440 |
+
text = "IH0"
|
1441 |
+
intervals [133]:
|
1442 |
+
xmin = 12.48
|
1443 |
+
xmax = 12.55
|
1444 |
+
text = "L"
|
1445 |
+
intervals [134]:
|
1446 |
+
xmin = 12.55
|
1447 |
+
xmax = 12.73
|
1448 |
+
text = "AA1"
|
1449 |
+
intervals [135]:
|
1450 |
+
xmin = 12.73
|
1451 |
+
xmax = 12.83
|
1452 |
+
text = "N"
|
1453 |
+
intervals [136]:
|
1454 |
+
xmin = 12.83
|
1455 |
+
xmax = 12.92
|
1456 |
+
text = "F"
|
1457 |
+
intervals [137]:
|
1458 |
+
xmin = 12.92
|
1459 |
+
xmax = 13.06
|
1460 |
+
text = "AE1"
|
1461 |
+
intervals [138]:
|
1462 |
+
xmin = 13.06
|
1463 |
+
xmax = 13.16
|
1464 |
+
text = "SH"
|
1465 |
+
intervals [139]:
|
1466 |
+
xmin = 13.16
|
1467 |
+
xmax = 13.21
|
1468 |
+
text = "AH0"
|
1469 |
+
intervals [140]:
|
1470 |
+
xmin = 13.21
|
1471 |
+
xmax = 13.24
|
1472 |
+
text = "N"
|
1473 |
+
intervals [141]:
|
1474 |
+
xmin = 13.24
|
1475 |
+
xmax = 13.29
|
1476 |
+
text = "W"
|
1477 |
+
intervals [142]:
|
1478 |
+
xmin = 13.29
|
1479 |
+
xmax = 13.41
|
1480 |
+
text = "IY1"
|
1481 |
+
intervals [143]:
|
1482 |
+
xmin = 13.41
|
1483 |
+
xmax = 13.62
|
1484 |
+
text = "K"
|
1485 |
+
intervals [144]:
|
1486 |
+
xmin = 13.62
|
1487 |
+
xmax = 14.03
|
1488 |
+
text = ""
|
1489 |
+
intervals [145]:
|
1490 |
+
xmin = 14.03
|
1491 |
+
xmax = 14.11
|
1492 |
+
text = "DH"
|
1493 |
+
intervals [146]:
|
1494 |
+
xmin = 14.11
|
1495 |
+
xmax = 14.15
|
1496 |
+
text = "AH1"
|
1497 |
+
intervals [147]:
|
1498 |
+
xmin = 14.15
|
1499 |
+
xmax = 14.22
|
1500 |
+
text = "R"
|
1501 |
+
intervals [148]:
|
1502 |
+
xmin = 14.22
|
1503 |
+
xmax = 14.26
|
1504 |
+
text = "EH1"
|
1505 |
+
intervals [149]:
|
1506 |
+
xmin = 14.26
|
1507 |
+
xmax = 14.31
|
1508 |
+
text = "S"
|
1509 |
+
intervals [150]:
|
1510 |
+
xmin = 14.31
|
1511 |
+
xmax = 14.35
|
1512 |
+
text = "T"
|
1513 |
+
intervals [151]:
|
1514 |
+
xmin = 14.35
|
1515 |
+
xmax = 14.4
|
1516 |
+
text = "AH0"
|
1517 |
+
intervals [152]:
|
1518 |
+
xmin = 14.4
|
1519 |
+
xmax = 14.43
|
1520 |
+
text = "V"
|
1521 |
+
intervals [153]:
|
1522 |
+
xmin = 14.43
|
1523 |
+
xmax = 14.46
|
1524 |
+
text = "DH"
|
1525 |
+
intervals [154]:
|
1526 |
+
xmin = 14.46
|
1527 |
+
xmax = 14.49
|
1528 |
+
text = "AH0"
|
1529 |
+
intervals [155]:
|
1530 |
+
xmin = 14.49
|
1531 |
+
xmax = 14.55
|
1532 |
+
text = "T"
|
1533 |
+
intervals [156]:
|
1534 |
+
xmin = 14.55
|
1535 |
+
xmax = 14.73
|
1536 |
+
text = "AY1"
|
1537 |
+
intervals [157]:
|
1538 |
+
xmin = 14.73
|
1539 |
+
xmax = 14.8
|
1540 |
+
text = "M"
|
1541 |
+
intervals [158]:
|
1542 |
+
xmin = 14.8
|
1543 |
+
xmax = 14.87
|
1544 |
+
text = "AY1"
|
1545 |
+
intervals [159]:
|
1546 |
+
xmin = 14.87
|
1547 |
+
xmax = 14.96
|
1548 |
+
text = "Y"
|
1549 |
+
intervals [160]:
|
1550 |
+
xmin = 14.96
|
1551 |
+
xmax = 14.99
|
1552 |
+
text = "UW1"
|
1553 |
+
intervals [161]:
|
1554 |
+
xmin = 14.99
|
1555 |
+
xmax = 15.08
|
1556 |
+
text = "ZH"
|
1557 |
+
intervals [162]:
|
1558 |
+
xmin = 15.08
|
1559 |
+
xmax = 15.11
|
1560 |
+
text = "AH0"
|
1561 |
+
intervals [163]:
|
1562 |
+
xmin = 15.11
|
1563 |
+
xmax = 15.14
|
1564 |
+
text = "L"
|
1565 |
+
intervals [164]:
|
1566 |
+
xmin = 15.14
|
1567 |
+
xmax = 15.2
|
1568 |
+
text = "IY0"
|
1569 |
+
intervals [165]:
|
1570 |
+
xmin = 15.2
|
1571 |
+
xmax = 15.23
|
1572 |
+
text = "G"
|
1573 |
+
intervals [166]:
|
1574 |
+
xmin = 15.23
|
1575 |
+
xmax = 15.3
|
1576 |
+
text = "OW1"
|
1577 |
+
intervals [167]:
|
1578 |
+
xmin = 15.3
|
1579 |
+
xmax = 15.33
|
1580 |
+
text = "T"
|
1581 |
+
intervals [168]:
|
1582 |
+
xmin = 15.33
|
1583 |
+
xmax = 15.36
|
1584 |
+
text = "AH0"
|
1585 |
+
intervals [169]:
|
1586 |
+
xmin = 15.36
|
1587 |
+
xmax = 15.39
|
1588 |
+
text = "DH"
|
1589 |
+
intervals [170]:
|
1590 |
+
xmin = 15.39
|
1591 |
+
xmax = 15.44
|
1592 |
+
text = "AH1"
|
1593 |
+
intervals [171]:
|
1594 |
+
xmin = 15.44
|
1595 |
+
xmax = 15.51
|
1596 |
+
text = "L"
|
1597 |
+
intervals [172]:
|
1598 |
+
xmin = 15.51
|
1599 |
+
xmax = 15.67
|
1600 |
+
text = "AY1"
|
1601 |
+
intervals [173]:
|
1602 |
+
xmin = 15.67
|
1603 |
+
xmax = 15.71
|
1604 |
+
text = "B"
|
1605 |
+
intervals [174]:
|
1606 |
+
xmin = 15.71
|
1607 |
+
xmax = 15.74
|
1608 |
+
text = "R"
|
1609 |
+
intervals [175]:
|
1610 |
+
xmin = 15.74
|
1611 |
+
xmax = 15.83
|
1612 |
+
text = "EH2"
|
1613 |
+
intervals [176]:
|
1614 |
+
xmin = 15.83
|
1615 |
+
xmax = 15.9
|
1616 |
+
text = "R"
|
1617 |
+
intervals [177]:
|
1618 |
+
xmin = 15.9
|
1619 |
+
xmax = 15.93
|
1620 |
+
text = "IY0"
|
1621 |
+
intervals [178]:
|
1622 |
+
xmin = 15.93
|
1623 |
+
xmax = 15.96
|
1624 |
+
text = "AH0"
|
1625 |
+
intervals [179]:
|
1626 |
+
xmin = 15.96
|
1627 |
+
xmax = 15.99
|
1628 |
+
text = "N"
|
1629 |
+
intervals [180]:
|
1630 |
+
xmin = 15.99
|
1631 |
+
xmax = 16.04
|
1632 |
+
text = "D"
|
1633 |
+
intervals [181]:
|
1634 |
+
xmin = 16.04
|
1635 |
+
xmax = 16.11
|
1636 |
+
text = "F"
|
1637 |
+
intervals [182]:
|
1638 |
+
xmin = 16.11
|
1639 |
+
xmax = 16.18
|
1640 |
+
text = "AY1"
|
1641 |
+
intervals [183]:
|
1642 |
+
xmin = 16.18
|
1643 |
+
xmax = 16.21
|
1644 |
+
text = "N"
|
1645 |
+
intervals [184]:
|
1646 |
+
xmin = 16.21
|
1647 |
+
xmax = 16.25
|
1648 |
+
text = "D"
|
1649 |
+
intervals [185]:
|
1650 |
+
xmin = 16.25
|
1651 |
+
xmax = 16.29
|
1652 |
+
text = "S"
|
1653 |
+
intervals [186]:
|
1654 |
+
xmin = 16.29
|
1655 |
+
xmax = 16.32
|
1656 |
+
text = "AH1"
|
1657 |
+
intervals [187]:
|
1658 |
+
xmin = 16.32
|
1659 |
+
xmax = 16.35
|
1660 |
+
text = "M"
|
1661 |
+
intervals [188]:
|
1662 |
+
xmin = 16.35
|
1663 |
+
xmax = 16.38
|
1664 |
+
text = "IH1"
|
1665 |
+
intervals [189]:
|
1666 |
+
xmin = 16.38
|
1667 |
+
xmax = 16.41
|
1668 |
+
text = "N"
|
1669 |
+
intervals [190]:
|
1670 |
+
xmin = 16.41
|
1671 |
+
xmax = 16.46
|
1672 |
+
text = "T"
|
1673 |
+
intervals [191]:
|
1674 |
+
xmin = 16.46
|
1675 |
+
xmax = 16.49
|
1676 |
+
text = "R"
|
1677 |
+
intervals [192]:
|
1678 |
+
xmin = 16.49
|
1679 |
+
xmax = 16.53
|
1680 |
+
text = "IH0"
|
1681 |
+
intervals [193]:
|
1682 |
+
xmin = 16.53
|
1683 |
+
xmax = 16.57
|
1684 |
+
text = "S"
|
1685 |
+
intervals [194]:
|
1686 |
+
xmin = 16.57
|
1687 |
+
xmax = 16.6
|
1688 |
+
text = "T"
|
1689 |
+
intervals [195]:
|
1690 |
+
xmin = 16.6
|
1691 |
+
xmax = 16.64
|
1692 |
+
text = "IH0"
|
1693 |
+
intervals [196]:
|
1694 |
+
xmin = 16.64
|
1695 |
+
xmax = 16.71
|
1696 |
+
text = "NG"
|
1697 |
+
intervals [197]:
|
1698 |
+
xmin = 16.71
|
1699 |
+
xmax = 16.78
|
1700 |
+
text = "B"
|
1701 |
+
intervals [198]:
|
1702 |
+
xmin = 16.78
|
1703 |
+
xmax = 17.0
|
1704 |
+
text = "UH1"
|
1705 |
+
intervals [199]:
|
1706 |
+
xmin = 17.0
|
1707 |
+
xmax = 17.09
|
1708 |
+
text = "K"
|
1709 |
+
intervals [200]:
|
1710 |
+
xmin = 17.09
|
1711 |
+
xmax = 17.19
|
1712 |
+
text = "S"
|
1713 |
+
intervals [201]:
|
1714 |
+
xmin = 17.19
|
1715 |
+
xmax = 17.25
|
1716 |
+
text = "AH0"
|
1717 |
+
intervals [202]:
|
1718 |
+
xmin = 17.25
|
1719 |
+
xmax = 17.28
|
1720 |
+
text = "N"
|
1721 |
+
intervals [203]:
|
1722 |
+
xmin = 17.28
|
1723 |
+
xmax = 17.31
|
1724 |
+
text = "D"
|
1725 |
+
intervals [204]:
|
1726 |
+
xmin = 17.31
|
1727 |
+
xmax = 17.34
|
1728 |
+
text = "DH"
|
1729 |
+
intervals [205]:
|
1730 |
+
xmin = 17.34
|
1731 |
+
xmax = 17.42
|
1732 |
+
text = "EH1"
|
1733 |
+
intervals [206]:
|
1734 |
+
xmin = 17.42
|
1735 |
+
xmax = 17.51
|
1736 |
+
text = "N"
|
1737 |
+
intervals [207]:
|
1738 |
+
xmin = 17.51
|
1739 |
+
xmax = 17.58
|
1740 |
+
text = "G"
|
1741 |
+
intervals [208]:
|
1742 |
+
xmin = 17.58
|
1743 |
+
xmax = 17.63
|
1744 |
+
text = "OW1"
|
1745 |
+
intervals [209]:
|
1746 |
+
xmin = 17.63
|
1747 |
+
xmax = 17.67
|
1748 |
+
text = "T"
|
1749 |
+
intervals [210]:
|
1750 |
+
xmin = 17.67
|
1751 |
+
xmax = 17.7
|
1752 |
+
text = "AH0"
|
1753 |
+
intervals [211]:
|
1754 |
+
xmin = 17.7
|
1755 |
+
xmax = 17.78
|
1756 |
+
text = "AH0"
|
1757 |
+
intervals [212]:
|
1758 |
+
xmin = 17.78
|
1759 |
+
xmax = 17.89
|
1760 |
+
text = "P"
|
1761 |
+
intervals [213]:
|
1762 |
+
xmin = 17.89
|
1763 |
+
xmax = 17.95
|
1764 |
+
text = "AA1"
|
1765 |
+
intervals [214]:
|
1766 |
+
xmin = 17.95
|
1767 |
+
xmax = 18.04
|
1768 |
+
text = "R"
|
1769 |
+
intervals [215]:
|
1770 |
+
xmin = 18.04
|
1771 |
+
xmax = 18.08
|
1772 |
+
text = "K"
|
1773 |
+
intervals [216]:
|
1774 |
+
xmin = 18.08
|
1775 |
+
xmax = 18.11
|
1776 |
+
text = "AH0"
|
1777 |
+
intervals [217]:
|
1778 |
+
xmin = 18.11
|
1779 |
+
xmax = 18.14
|
1780 |
+
text = "N"
|
1781 |
+
intervals [218]:
|
1782 |
+
xmin = 18.14
|
1783 |
+
xmax = 18.17
|
1784 |
+
text = "D"
|
1785 |
+
intervals [219]:
|
1786 |
+
xmin = 18.17
|
1787 |
+
xmax = 18.2
|
1788 |
+
text = "R"
|
1789 |
+
intervals [220]:
|
1790 |
+
xmin = 18.2
|
1791 |
+
xmax = 18.25
|
1792 |
+
text = "IH0"
|
1793 |
+
intervals [221]:
|
1794 |
+
xmin = 18.25
|
1795 |
+
xmax = 18.33
|
1796 |
+
text = "L"
|
1797 |
+
intervals [222]:
|
1798 |
+
xmin = 18.33
|
1799 |
+
xmax = 18.53
|
1800 |
+
text = "AE1"
|
1801 |
+
intervals [223]:
|
1802 |
+
xmin = 18.53
|
1803 |
+
xmax = 18.58
|
1804 |
+
text = "K"
|
1805 |
+
intervals [224]:
|
1806 |
+
xmin = 18.58
|
1807 |
+
xmax = 18.75
|
1808 |
+
text = "S"
|
1809 |
+
intervals [225]:
|
1810 |
+
xmin = 18.75
|
1811 |
+
xmax = 19.04
|
1812 |
+
text = ""
|
1813 |
+
intervals [226]:
|
1814 |
+
xmin = 19.04
|
1815 |
+
xmax = 19.14
|
1816 |
+
text = "DH"
|
1817 |
+
intervals [227]:
|
1818 |
+
xmin = 19.14
|
1819 |
+
xmax = 19.18
|
1820 |
+
text = "EH1"
|
1821 |
+
intervals [228]:
|
1822 |
+
xmin = 19.18
|
1823 |
+
xmax = 19.22
|
1824 |
+
text = "R"
|
1825 |
+
intervals [229]:
|
1826 |
+
xmin = 19.22
|
1827 |
+
xmax = 19.27
|
1828 |
+
text = "ER0"
|
1829 |
+
intervals [230]:
|
1830 |
+
xmin = 19.27
|
1831 |
+
xmax = 19.34
|
1832 |
+
text = "M"
|
1833 |
+
intervals [231]:
|
1834 |
+
xmin = 19.34
|
1835 |
+
xmax = 19.39
|
1836 |
+
text = "EH1"
|
1837 |
+
intervals [232]:
|
1838 |
+
xmin = 19.39
|
1839 |
+
xmax = 19.43
|
1840 |
+
text = "N"
|
1841 |
+
intervals [233]:
|
1842 |
+
xmin = 19.43
|
1843 |
+
xmax = 19.5
|
1844 |
+
text = "IY0"
|
1845 |
+
intervals [234]:
|
1846 |
+
xmin = 19.5
|
1847 |
+
xmax = 19.56
|
1848 |
+
text = "B"
|
1849 |
+
intervals [235]:
|
1850 |
+
xmin = 19.56
|
1851 |
+
xmax = 19.66
|
1852 |
+
text = "UH1"
|
1853 |
+
intervals [236]:
|
1854 |
+
xmin = 19.66
|
1855 |
+
xmax = 19.72
|
1856 |
+
text = "K"
|
1857 |
+
intervals [237]:
|
1858 |
+
xmin = 19.72
|
1859 |
+
xmax = 19.78
|
1860 |
+
text = "S"
|
1861 |
+
intervals [238]:
|
1862 |
+
xmin = 19.78
|
1863 |
+
xmax = 19.81
|
1864 |
+
text = "DH"
|
1865 |
+
intervals [239]:
|
1866 |
+
xmin = 19.81
|
1867 |
+
xmax = 19.84
|
1868 |
+
text = "AH0"
|
1869 |
+
intervals [240]:
|
1870 |
+
xmin = 19.84
|
1871 |
+
xmax = 19.93
|
1872 |
+
text = "T"
|
1873 |
+
intervals [241]:
|
1874 |
+
xmin = 19.93
|
1875 |
+
xmax = 20.11
|
1876 |
+
text = "AY1"
|
1877 |
+
intervals [242]:
|
1878 |
+
xmin = 20.11
|
1879 |
+
xmax = 20.22
|
1880 |
+
text = "F"
|
1881 |
+
intervals [243]:
|
1882 |
+
xmin = 20.22
|
1883 |
+
xmax = 20.3
|
1884 |
+
text = "AY1"
|
1885 |
+
intervals [244]:
|
1886 |
+
xmin = 20.3
|
1887 |
+
xmax = 20.37
|
1888 |
+
text = "N"
|
1889 |
+
intervals [245]:
|
1890 |
+
xmin = 20.37
|
1891 |
+
xmax = 20.4
|
1892 |
+
text = "D"
|
1893 |
+
intervals [246]:
|
1894 |
+
xmin = 20.4
|
1895 |
+
xmax = 20.52
|
1896 |
+
text = "IH1"
|
1897 |
+
intervals [247]:
|
1898 |
+
xmin = 20.52
|
1899 |
+
xmax = 20.55
|
1900 |
+
text = "N"
|
1901 |
+
intervals [248]:
|
1902 |
+
xmin = 20.55
|
1903 |
+
xmax = 20.59
|
1904 |
+
text = "T"
|
1905 |
+
intervals [249]:
|
1906 |
+
xmin = 20.59
|
1907 |
+
xmax = 20.62
|
1908 |
+
text = "R"
|
1909 |
+
intervals [250]:
|
1910 |
+
xmin = 20.62
|
1911 |
+
xmax = 20.67
|
1912 |
+
text = "AH0"
|
1913 |
+
intervals [251]:
|
1914 |
+
xmin = 20.67
|
1915 |
+
xmax = 20.74
|
1916 |
+
text = "S"
|
1917 |
+
intervals [252]:
|
1918 |
+
xmin = 20.74
|
1919 |
+
xmax = 20.78
|
1920 |
+
text = "T"
|
1921 |
+
intervals [253]:
|
1922 |
+
xmin = 20.78
|
1923 |
+
xmax = 20.85
|
1924 |
+
text = "IH0"
|
1925 |
+
intervals [254]:
|
1926 |
+
xmin = 20.85
|
1927 |
+
xmax = 20.92
|
1928 |
+
text = "NG"
|
1929 |
+
intervals [255]:
|
1930 |
+
xmin = 20.92
|
1931 |
+
xmax = 21.02
|
1932 |
+
text = "S"
|
1933 |
+
intervals [256]:
|
1934 |
+
xmin = 21.02
|
1935 |
+
xmax = 21.06
|
1936 |
+
text = "AH1"
|
1937 |
+
intervals [257]:
|
1938 |
+
xmin = 21.06
|
1939 |
+
xmax = 21.15
|
1940 |
+
text = "CH"
|
1941 |
+
intervals [258]:
|
1942 |
+
xmin = 21.15
|
1943 |
+
xmax = 21.2
|
1944 |
+
text = "EH1"
|
1945 |
+
intervals [259]:
|
1946 |
+
xmin = 21.2
|
1947 |
+
xmax = 21.3
|
1948 |
+
text = "Z"
|
1949 |
+
intervals [260]:
|
1950 |
+
xmin = 21.3
|
1951 |
+
xmax = 21.36
|
1952 |
+
text = "F"
|
1953 |
+
intervals [261]:
|
1954 |
+
xmin = 21.36
|
1955 |
+
xmax = 21.47
|
1956 |
+
text = "AE1"
|
1957 |
+
intervals [262]:
|
1958 |
+
xmin = 21.47
|
1959 |
+
xmax = 21.56
|
1960 |
+
text = "SH"
|
1961 |
+
intervals [263]:
|
1962 |
+
xmin = 21.56
|
1963 |
+
xmax = 21.59
|
1964 |
+
text = "AH0"
|
1965 |
+
intervals [264]:
|
1966 |
+
xmin = 21.59
|
1967 |
+
xmax = 21.62
|
1968 |
+
text = "N"
|
1969 |
+
intervals [265]:
|
1970 |
+
xmin = 21.62
|
1971 |
+
xmax = 21.68
|
1972 |
+
text = "M"
|
1973 |
+
intervals [266]:
|
1974 |
+
xmin = 21.68
|
1975 |
+
xmax = 21.76
|
1976 |
+
text = "AE1"
|
1977 |
+
intervals [267]:
|
1978 |
+
xmin = 21.76
|
1979 |
+
xmax = 21.81
|
1980 |
+
text = "G"
|
1981 |
+
intervals [268]:
|
1982 |
+
xmin = 21.81
|
1983 |
+
xmax = 21.85
|
1984 |
+
text = "AH0"
|
1985 |
+
intervals [269]:
|
1986 |
+
xmin = 21.85
|
1987 |
+
xmax = 21.9
|
1988 |
+
text = "Z"
|
1989 |
+
intervals [270]:
|
1990 |
+
xmin = 21.9
|
1991 |
+
xmax = 22.0
|
1992 |
+
text = "IY2"
|
1993 |
+
intervals [271]:
|
1994 |
+
xmin = 22.0
|
1995 |
+
xmax = 22.1
|
1996 |
+
text = "N"
|
1997 |
+
intervals [272]:
|
1998 |
+
xmin = 22.1
|
1999 |
+
xmax = 22.19
|
2000 |
+
text = "Z"
|
2001 |
+
intervals [273]:
|
2002 |
+
xmin = 22.19
|
2003 |
+
xmax = 22.22
|
2004 |
+
text = "IH2"
|
2005 |
+
intervals [274]:
|
2006 |
+
xmin = 22.22
|
2007 |
+
xmax = 22.29
|
2008 |
+
text = "N"
|
2009 |
+
intervals [275]:
|
2010 |
+
xmin = 22.29
|
2011 |
+
xmax = 22.34
|
2012 |
+
text = "S"
|
2013 |
+
intervals [276]:
|
2014 |
+
xmin = 22.34
|
2015 |
+
xmax = 22.38
|
2016 |
+
text = "P"
|
2017 |
+
intervals [277]:
|
2018 |
+
xmin = 22.38
|
2019 |
+
xmax = 22.48
|
2020 |
+
text = "ER0"
|
2021 |
+
intervals [278]:
|
2022 |
+
xmin = 22.48
|
2023 |
+
xmax = 22.55
|
2024 |
+
text = "EY1"
|
2025 |
+
intervals [279]:
|
2026 |
+
xmin = 22.55
|
2027 |
+
xmax = 22.64
|
2028 |
+
text = "SH"
|
2029 |
+
intervals [280]:
|
2030 |
+
xmin = 22.64
|
2031 |
+
xmax = 22.67
|
2032 |
+
text = "AH0"
|
2033 |
+
intervals [281]:
|
2034 |
+
xmin = 22.67
|
2035 |
+
xmax = 22.7
|
2036 |
+
text = "N"
|
2037 |
+
intervals [282]:
|
2038 |
+
xmin = 22.7
|
2039 |
+
xmax = 22.73
|
2040 |
+
text = "AH0"
|
2041 |
+
intervals [283]:
|
2042 |
+
xmin = 22.73
|
2043 |
+
xmax = 22.8
|
2044 |
+
text = "L"
|
2045 |
+
intervals [284]:
|
2046 |
+
xmin = 22.8
|
2047 |
+
xmax = 22.88
|
2048 |
+
text = "B"
|
2049 |
+
intervals [285]:
|
2050 |
+
xmin = 22.88
|
2051 |
+
xmax = 23.03
|
2052 |
+
text = "UH1"
|
2053 |
+
intervals [286]:
|
2054 |
+
xmin = 23.03
|
2055 |
+
xmax = 23.09
|
2056 |
+
text = "K"
|
2057 |
+
intervals [287]:
|
2058 |
+
xmin = 23.09
|
2059 |
+
xmax = 23.15
|
2060 |
+
text = "S"
|
2061 |
+
intervals [288]:
|
2062 |
+
xmin = 23.15
|
2063 |
+
xmax = 23.24
|
2064 |
+
text = "AH0"
|
2065 |
+
intervals [289]:
|
2066 |
+
xmin = 23.24
|
2067 |
+
xmax = 23.35
|
2068 |
+
text = "N"
|
2069 |
+
intervals [290]:
|
2070 |
+
xmin = 23.35
|
2071 |
+
xmax = 23.44
|
2072 |
+
text = "D"
|
2073 |
+
intervals [291]:
|
2074 |
+
xmin = 23.44
|
2075 |
+
xmax = 23.5
|
2076 |
+
text = "P"
|
2077 |
+
intervals [292]:
|
2078 |
+
xmin = 23.5
|
2079 |
+
xmax = 23.55
|
2080 |
+
text = "R"
|
2081 |
+
intervals [293]:
|
2082 |
+
xmin = 23.55
|
2083 |
+
xmax = 23.59
|
2084 |
+
text = "AH0"
|
2085 |
+
intervals [294]:
|
2086 |
+
xmin = 23.59
|
2087 |
+
xmax = 23.69
|
2088 |
+
text = "F"
|
2089 |
+
intervals [295]:
|
2090 |
+
xmin = 23.69
|
2091 |
+
xmax = 23.76
|
2092 |
+
text = "EH1"
|
2093 |
+
intervals [296]:
|
2094 |
+
xmin = 23.76
|
2095 |
+
xmax = 23.87
|
2096 |
+
text = "SH"
|
2097 |
+
intervals [297]:
|
2098 |
+
xmin = 23.87
|
2099 |
+
xmax = 23.9
|
2100 |
+
text = "AH0"
|
2101 |
+
intervals [298]:
|
2102 |
+
xmin = 23.9
|
2103 |
+
xmax = 23.94
|
2104 |
+
text = "N"
|
2105 |
+
intervals [299]:
|
2106 |
+
xmin = 23.94
|
2107 |
+
xmax = 23.98
|
2108 |
+
text = "AH0"
|
2109 |
+
intervals [300]:
|
2110 |
+
xmin = 23.98
|
2111 |
+
xmax = 24.04
|
2112 |
+
text = "L"
|
2113 |
+
intervals [301]:
|
2114 |
+
xmin = 24.04
|
2115 |
+
xmax = 24.12
|
2116 |
+
text = "B"
|
2117 |
+
intervals [302]:
|
2118 |
+
xmin = 24.12
|
2119 |
+
xmax = 24.24
|
2120 |
+
text = "UH1"
|
2121 |
+
intervals [303]:
|
2122 |
+
xmin = 24.24
|
2123 |
+
xmax = 24.32
|
2124 |
+
text = "K"
|
2125 |
+
intervals [304]:
|
2126 |
+
xmin = 24.32
|
2127 |
+
xmax = 24.46
|
2128 |
+
text = "S"
|
2129 |
+
intervals [305]:
|
2130 |
+
xmin = 24.46
|
2131 |
+
xmax = 24.83
|
2132 |
+
text = ""
|
2133 |
+
intervals [306]:
|
2134 |
+
xmin = 24.83
|
2135 |
+
xmax = 24.91
|
2136 |
+
text = "DH"
|
2137 |
+
intervals [307]:
|
2138 |
+
xmin = 24.91
|
2139 |
+
xmax = 24.98
|
2140 |
+
text = "IY1"
|
2141 |
+
intervals [308]:
|
2142 |
+
xmin = 24.98
|
2143 |
+
xmax = 25.06
|
2144 |
+
text = "Z"
|
2145 |
+
intervals [309]:
|
2146 |
+
xmin = 25.06
|
2147 |
+
xmax = 25.13
|
2148 |
+
text = "B"
|
2149 |
+
intervals [310]:
|
2150 |
+
xmin = 25.13
|
2151 |
+
xmax = 25.23
|
2152 |
+
text = "UH1"
|
2153 |
+
intervals [311]:
|
2154 |
+
xmin = 25.23
|
2155 |
+
xmax = 25.3
|
2156 |
+
text = "K"
|
2157 |
+
intervals [312]:
|
2158 |
+
xmin = 25.3
|
2159 |
+
xmax = 25.37
|
2160 |
+
text = "S"
|
2161 |
+
intervals [313]:
|
2162 |
+
xmin = 25.37
|
2163 |
+
xmax = 25.44
|
2164 |
+
text = "K"
|
2165 |
+
intervals [314]:
|
2166 |
+
xmin = 25.44
|
2167 |
+
xmax = 25.51
|
2168 |
+
text = "AH0"
|
2169 |
+
intervals [315]:
|
2170 |
+
xmin = 25.51
|
2171 |
+
xmax = 25.54
|
2172 |
+
text = "N"
|
2173 |
+
intervals [316]:
|
2174 |
+
xmin = 25.54
|
2175 |
+
xmax = 25.59
|
2176 |
+
text = "G"
|
2177 |
+
intervals [317]:
|
2178 |
+
xmin = 25.59
|
2179 |
+
xmax = 25.63
|
2180 |
+
text = "IH1"
|
2181 |
+
intervals [318]:
|
2182 |
+
xmin = 25.63
|
2183 |
+
xmax = 25.66
|
2184 |
+
text = "V"
|
2185 |
+
intervals [319]:
|
2186 |
+
xmin = 25.66
|
2187 |
+
xmax = 25.71
|
2188 |
+
text = "M"
|
2189 |
+
intervals [320]:
|
2190 |
+
xmin = 25.71
|
2191 |
+
xmax = 25.76
|
2192 |
+
text = "IY1"
|
2193 |
+
intervals [321]:
|
2194 |
+
xmin = 25.76
|
2195 |
+
xmax = 25.82
|
2196 |
+
text = "DH"
|
2197 |
+
intervals [322]:
|
2198 |
+
xmin = 25.82
|
2199 |
+
xmax = 25.86
|
2200 |
+
text = "AH0"
|
2201 |
+
intervals [323]:
|
2202 |
+
xmin = 25.86
|
2203 |
+
xmax = 25.95
|
2204 |
+
text = "M"
|
2205 |
+
intervals [324]:
|
2206 |
+
xmin = 25.95
|
2207 |
+
xmax = 26.01
|
2208 |
+
text = "OW2"
|
2209 |
+
intervals [325]:
|
2210 |
+
xmin = 26.01
|
2211 |
+
xmax = 26.06
|
2212 |
+
text = "T"
|
2213 |
+
intervals [326]:
|
2214 |
+
xmin = 26.06
|
2215 |
+
xmax = 26.1
|
2216 |
+
text = "AH0"
|
2217 |
+
intervals [327]:
|
2218 |
+
xmin = 26.1
|
2219 |
+
xmax = 26.19
|
2220 |
+
text = "V"
|
2221 |
+
intervals [328]:
|
2222 |
+
xmin = 26.19
|
2223 |
+
xmax = 26.32
|
2224 |
+
text = "EY1"
|
2225 |
+
intervals [329]:
|
2226 |
+
xmin = 26.32
|
2227 |
+
xmax = 26.42
|
2228 |
+
text = "SH"
|
2229 |
+
intervals [330]:
|
2230 |
+
xmin = 26.42
|
2231 |
+
xmax = 26.51
|
2232 |
+
text = "AH0"
|
2233 |
+
intervals [331]:
|
2234 |
+
xmin = 26.51
|
2235 |
+
xmax = 26.85
|
2236 |
+
text = "N"
|
2237 |
+
intervals [332]:
|
2238 |
+
xmin = 26.85
|
2239 |
+
xmax = 26.88
|
2240 |
+
text = ""
|
2241 |
+
intervals [333]:
|
2242 |
+
xmin = 26.88
|
2243 |
+
xmax = 27.0
|
2244 |
+
text = "T"
|
2245 |
+
intervals [334]:
|
2246 |
+
xmin = 27.0
|
2247 |
+
xmax = 27.07
|
2248 |
+
text = "IH0"
|
2249 |
+
intervals [335]:
|
2250 |
+
xmin = 27.07
|
2251 |
+
xmax = 27.13
|
2252 |
+
text = "B"
|
2253 |
+
intervals [336]:
|
2254 |
+
xmin = 27.13
|
2255 |
+
xmax = 27.37
|
2256 |
+
text = "IY1"
|
2257 |
+
intervals [337]:
|
2258 |
+
xmin = 27.37
|
2259 |
+
xmax = 27.5
|
2260 |
+
text = "HH"
|
2261 |
+
intervals [338]:
|
2262 |
+
xmin = 27.5
|
2263 |
+
xmax = 27.55
|
2264 |
+
text = "EH1"
|
2265 |
+
intervals [339]:
|
2266 |
+
xmin = 27.55
|
2267 |
+
xmax = 27.68
|
2268 |
+
text = "L"
|
2269 |
+
intervals [340]:
|
2270 |
+
xmin = 27.68
|
2271 |
+
xmax = 27.72
|
2272 |
+
text = "TH"
|
2273 |
+
intervals [341]:
|
2274 |
+
xmin = 27.72
|
2275 |
+
xmax = 27.86
|
2276 |
+
text = "IY0"
|
2277 |
+
intervals [342]:
|
2278 |
+
xmin = 27.86
|
2279 |
+
xmax = 28.01
|
2280 |
+
text = "ER0"
|
2281 |
+
intervals [343]:
|
2282 |
+
xmin = 28.01
|
2283 |
+
xmax = 28.09
|
2284 |
+
text = "AE1"
|
2285 |
+
intervals [344]:
|
2286 |
+
xmin = 28.09
|
2287 |
+
xmax = 28.12
|
2288 |
+
text = "N"
|
2289 |
+
intervals [345]:
|
2290 |
+
xmin = 28.12
|
2291 |
+
xmax = 28.18
|
2292 |
+
text = "D"
|
2293 |
+
intervals [346]:
|
2294 |
+
xmin = 28.18
|
2295 |
+
xmax = 28.25
|
2296 |
+
text = "EH2"
|
2297 |
+
intervals [347]:
|
2298 |
+
xmin = 28.25
|
2299 |
+
xmax = 28.32
|
2300 |
+
text = "N"
|
2301 |
+
intervals [348]:
|
2302 |
+
xmin = 28.32
|
2303 |
+
xmax = 28.41
|
2304 |
+
text = "ER0"
|
2305 |
+
intervals [349]:
|
2306 |
+
xmin = 28.41
|
2307 |
+
xmax = 28.51
|
2308 |
+
text = "JH"
|
2309 |
+
intervals [350]:
|
2310 |
+
xmin = 28.51
|
2311 |
+
xmax = 28.59
|
2312 |
+
text = "EH1"
|
2313 |
+
intervals [351]:
|
2314 |
+
xmin = 28.59
|
2315 |
+
xmax = 28.62
|
2316 |
+
text = "T"
|
2317 |
+
intervals [352]:
|
2318 |
+
xmin = 28.62
|
2319 |
+
xmax = 28.71
|
2320 |
+
text = "IH0"
|
2321 |
+
intervals [353]:
|
2322 |
+
xmin = 28.71
|
2323 |
+
xmax = 28.9
|
2324 |
+
text = "K"
|
2325 |
+
intervals [354]:
|
2326 |
+
xmin = 28.9
|
2327 |
+
xmax = 29.1
|
2328 |
+
text = ""
|
2329 |
+
intervals [355]:
|
2330 |
+
xmin = 29.1
|
2331 |
+
xmax = 29.24
|
2332 |
+
text = "AE1"
|
2333 |
+
intervals [356]:
|
2334 |
+
xmin = 29.24
|
2335 |
+
xmax = 29.27
|
2336 |
+
text = "N"
|
2337 |
+
intervals [357]:
|
2338 |
+
xmin = 29.27
|
2339 |
+
xmax = 29.3
|
2340 |
+
text = "D"
|
2341 |
+
intervals [358]:
|
2342 |
+
xmin = 29.3
|
2343 |
+
xmax = 29.33
|
2344 |
+
text = "DH"
|
2345 |
+
intervals [359]:
|
2346 |
+
xmin = 29.33
|
2347 |
+
xmax = 29.37
|
2348 |
+
text = "AH0"
|
2349 |
+
intervals [360]:
|
2350 |
+
xmin = 29.37
|
2351 |
+
xmax = 29.47
|
2352 |
+
text = "L"
|
2353 |
+
intervals [361]:
|
2354 |
+
xmin = 29.47
|
2355 |
+
xmax = 29.62
|
2356 |
+
text = "AE1"
|
2357 |
+
intervals [362]:
|
2358 |
+
xmin = 29.62
|
2359 |
+
xmax = 29.74
|
2360 |
+
text = "S"
|
2361 |
+
intervals [363]:
|
2362 |
+
xmin = 29.74
|
2363 |
+
xmax = 29.8
|
2364 |
+
text = "TH"
|
2365 |
+
intervals [364]:
|
2366 |
+
xmin = 29.8
|
2367 |
+
xmax = 29.86
|
2368 |
+
text = "IH1"
|
2369 |
+
intervals [365]:
|
2370 |
+
xmin = 29.86
|
2371 |
+
xmax = 29.94
|
2372 |
+
text = "NG"
|
2373 |
+
intervals [366]:
|
2374 |
+
xmin = 29.94
|
2375 |
+
xmax = 30.14
|
2376 |
+
text = "AY1"
|
2377 |
+
intervals [367]:
|
2378 |
+
xmin = 30.14
|
2379 |
+
xmax = 30.23
|
2380 |
+
text = "L"
|
2381 |
+
intervals [368]:
|
2382 |
+
xmin = 30.23
|
2383 |
+
xmax = 30.38
|
2384 |
+
text = "AY1"
|
2385 |
+
intervals [369]:
|
2386 |
+
xmin = 30.38
|
2387 |
+
xmax = 30.42
|
2388 |
+
text = "K"
|
2389 |
+
intervals [370]:
|
2390 |
+
xmin = 30.42
|
2391 |
+
xmax = 30.48
|
2392 |
+
text = "T"
|
2393 |
+
intervals [371]:
|
2394 |
+
xmin = 30.48
|
2395 |
+
xmax = 30.53
|
2396 |
+
text = "IH0"
|
2397 |
+
intervals [372]:
|
2398 |
+
xmin = 30.53
|
2399 |
+
xmax = 30.59
|
2400 |
+
text = "D"
|
2401 |
+
intervals [373]:
|
2402 |
+
xmin = 30.59
|
2403 |
+
xmax = 30.84
|
2404 |
+
text = "UW1"
|
2405 |
+
intervals [374]:
|
2406 |
+
xmin = 30.84
|
2407 |
+
xmax = 30.97
|
2408 |
+
text = "W"
|
2409 |
+
intervals [375]:
|
2410 |
+
xmin = 30.97
|
2411 |
+
xmax = 31.03
|
2412 |
+
text = "EH1"
|
2413 |
+
intervals [376]:
|
2414 |
+
xmin = 31.03
|
2415 |
+
xmax = 31.22
|
2416 |
+
text = "N"
|
2417 |
+
intervals [377]:
|
2418 |
+
xmin = 31.22
|
2419 |
+
xmax = 31.35
|
2420 |
+
text = "AY1"
|
2421 |
+
intervals [378]:
|
2422 |
+
xmin = 31.35
|
2423 |
+
xmax = 31.43
|
2424 |
+
text = "M"
|
2425 |
+
intervals [379]:
|
2426 |
+
xmin = 31.43
|
2427 |
+
xmax = 31.55
|
2428 |
+
text = "F"
|
2429 |
+
intervals [380]:
|
2430 |
+
xmin = 31.55
|
2431 |
+
xmax = 31.65
|
2432 |
+
text = "R"
|
2433 |
+
intervals [381]:
|
2434 |
+
xmin = 31.65
|
2435 |
+
xmax = 31.87
|
2436 |
+
text = "IY1"
|
2437 |
+
intervals [382]:
|
2438 |
+
xmin = 31.87
|
2439 |
+
xmax = 31.91
|
2440 |
+
text = "IH1"
|
2441 |
+
intervals [383]:
|
2442 |
+
xmin = 31.91
|
2443 |
+
xmax = 31.99
|
2444 |
+
text = "Z"
|
2445 |
+
intervals [384]:
|
2446 |
+
xmin = 31.99
|
2447 |
+
xmax = 32.06
|
2448 |
+
text = "IH1"
|
2449 |
+
intervals [385]:
|
2450 |
+
xmin = 32.06
|
2451 |
+
xmax = 32.11
|
2452 |
+
text = "T"
|
2453 |
+
intervals [386]:
|
2454 |
+
xmin = 32.11
|
2455 |
+
xmax = 32.2
|
2456 |
+
text = "AW1"
|
2457 |
+
intervals [387]:
|
2458 |
+
xmin = 32.2
|
2459 |
+
xmax = 32.23
|
2460 |
+
text = "T"
|
2461 |
+
intervals [388]:
|
2462 |
+
xmin = 32.23
|
2463 |
+
xmax = 32.27
|
2464 |
+
text = "W"
|
2465 |
+
intervals [389]:
|
2466 |
+
xmin = 32.27
|
2467 |
+
xmax = 32.32
|
2468 |
+
text = "IH0"
|
2469 |
+
intervals [390]:
|
2470 |
+
xmin = 32.32
|
2471 |
+
xmax = 32.35
|
2472 |
+
text = "TH"
|
2473 |
+
intervals [391]:
|
2474 |
+
xmin = 32.35
|
2475 |
+
xmax = 32.39
|
2476 |
+
text = "M"
|
2477 |
+
intervals [392]:
|
2478 |
+
xmin = 32.39
|
2479 |
+
xmax = 32.48
|
2480 |
+
text = "AY1"
|
2481 |
+
intervals [393]:
|
2482 |
+
xmin = 32.48
|
2483 |
+
xmax = 32.61
|
2484 |
+
text = "F"
|
2485 |
+
intervals [394]:
|
2486 |
+
xmin = 32.61
|
2487 |
+
xmax = 32.72
|
2488 |
+
text = "AE1"
|
2489 |
+
intervals [395]:
|
2490 |
+
xmin = 32.72
|
2491 |
+
xmax = 32.76
|
2492 |
+
text = "M"
|
2493 |
+
intervals [396]:
|
2494 |
+
xmin = 32.76
|
2495 |
+
xmax = 32.81
|
2496 |
+
text = "L"
|
2497 |
+
intervals [397]:
|
2498 |
+
xmin = 32.81
|
2499 |
+
xmax = 32.86
|
2500 |
+
text = "IY0"
|
2501 |
+
intervals [398]:
|
2502 |
+
xmin = 32.86
|
2503 |
+
xmax = 32.92
|
2504 |
+
text = "M"
|
2505 |
+
intervals [399]:
|
2506 |
+
xmin = 32.92
|
2507 |
+
xmax = 32.97
|
2508 |
+
text = "EH1"
|
2509 |
+
intervals [400]:
|
2510 |
+
xmin = 32.97
|
2511 |
+
xmax = 33.0
|
2512 |
+
text = "M"
|
2513 |
+
intervals [401]:
|
2514 |
+
xmin = 33.0
|
2515 |
+
xmax = 33.05
|
2516 |
+
text = "B"
|
2517 |
+
intervals [402]:
|
2518 |
+
xmin = 33.05
|
2519 |
+
xmax = 33.16
|
2520 |
+
text = "ER0"
|
2521 |
+
intervals [403]:
|
2522 |
+
xmin = 33.16
|
2523 |
+
xmax = 33.33
|
2524 |
+
text = "Z"
|
2525 |
+
intervals [404]:
|
2526 |
+
xmin = 33.33
|
2527 |
+
xmax = 33.51
|
2528 |
+
text = ""
|
2529 |
+
intervals [405]:
|
2530 |
+
xmin = 33.51
|
2531 |
+
xmax = 33.75
|
2532 |
+
text = "Y"
|
2533 |
+
intervals [406]:
|
2534 |
+
xmin = 33.75
|
2535 |
+
xmax = 33.89
|
2536 |
+
text = "UW1"
|
2537 |
+
intervals [407]:
|
2538 |
+
xmin = 33.89
|
2539 |
+
xmax = 33.97
|
2540 |
+
text = "W"
|
2541 |
+
intervals [408]:
|
2542 |
+
xmin = 33.97
|
2543 |
+
xmax = 34.02
|
2544 |
+
text = "UH1"
|
2545 |
+
intervals [409]:
|
2546 |
+
xmin = 34.02
|
2547 |
+
xmax = 34.11
|
2548 |
+
text = "D"
|
2549 |
+
intervals [410]:
|
2550 |
+
xmin = 34.11
|
2551 |
+
xmax = 34.16
|
2552 |
+
text = "B"
|
2553 |
+
intervals [411]:
|
2554 |
+
xmin = 34.16
|
2555 |
+
xmax = 34.29
|
2556 |
+
text = "IY1"
|
2557 |
+
intervals [412]:
|
2558 |
+
xmin = 34.29
|
2559 |
+
xmax = 34.36
|
2560 |
+
text = "S"
|
2561 |
+
intervals [413]:
|
2562 |
+
xmin = 34.36
|
2563 |
+
xmax = 34.42
|
2564 |
+
text = "AH0"
|
2565 |
+
intervals [414]:
|
2566 |
+
xmin = 34.42
|
2567 |
+
xmax = 34.53
|
2568 |
+
text = "P"
|
2569 |
+
intervals [415]:
|
2570 |
+
xmin = 34.53
|
2571 |
+
xmax = 34.63
|
2572 |
+
text = "R"
|
2573 |
+
intervals [416]:
|
2574 |
+
xmin = 34.63
|
2575 |
+
xmax = 34.91
|
2576 |
+
text = "AY1"
|
2577 |
+
intervals [417]:
|
2578 |
+
xmin = 34.91
|
2579 |
+
xmax = 35.02
|
2580 |
+
text = "Z"
|
2581 |
+
intervals [418]:
|
2582 |
+
xmin = 35.02
|
2583 |
+
xmax = 35.07
|
2584 |
+
text = "D"
|
2585 |
+
intervals [419]:
|
2586 |
+
xmin = 35.07
|
2587 |
+
xmax = 35.1
|
2588 |
+
text = "T"
|
2589 |
+
intervals [420]:
|
2590 |
+
xmin = 35.1
|
2591 |
+
xmax = 35.16
|
2592 |
+
text = "IH0"
|
2593 |
+
intervals [421]:
|
2594 |
+
xmin = 35.16
|
2595 |
+
xmax = 35.26
|
2596 |
+
text = "N"
|
2597 |
+
intervals [422]:
|
2598 |
+
xmin = 35.26
|
2599 |
+
xmax = 35.36
|
2600 |
+
text = "OW1"
|
2601 |
+
intervals [423]:
|
2602 |
+
xmin = 35.36
|
2603 |
+
xmax = 35.44
|
2604 |
+
text = "DH"
|
2605 |
+
intervals [424]:
|
2606 |
+
xmin = 35.44
|
2607 |
+
xmax = 35.47
|
2608 |
+
text = "AE1"
|
2609 |
+
intervals [425]:
|
2610 |
+
xmin = 35.47
|
2611 |
+
xmax = 35.5
|
2612 |
+
text = "T"
|
2613 |
+
intervals [426]:
|
2614 |
+
xmin = 35.5
|
2615 |
+
xmax = 35.64
|
2616 |
+
text = "AY1"
|
2617 |
+
intervals [427]:
|
2618 |
+
xmin = 35.64
|
2619 |
+
xmax = 35.7
|
2620 |
+
text = "HH"
|
2621 |
+
intervals [428]:
|
2622 |
+
xmin = 35.7
|
2623 |
+
xmax = 35.75
|
2624 |
+
text = "AE1"
|
2625 |
+
intervals [429]:
|
2626 |
+
xmin = 35.75
|
2627 |
+
xmax = 35.84
|
2628 |
+
text = "V"
|
2629 |
+
intervals [430]:
|
2630 |
+
xmin = 35.84
|
2631 |
+
xmax = 35.9
|
2632 |
+
text = "T"
|
2633 |
+
intervals [431]:
|
2634 |
+
xmin = 35.9
|
2635 |
+
xmax = 35.98
|
2636 |
+
text = "R"
|
2637 |
+
intervals [432]:
|
2638 |
+
xmin = 35.98
|
2639 |
+
xmax = 36.15
|
2640 |
+
text = "AY1"
|
2641 |
+
intervals [433]:
|
2642 |
+
xmin = 36.15
|
2643 |
+
xmax = 36.3
|
2644 |
+
text = "D"
|
2645 |
+
intervals [434]:
|
2646 |
+
xmin = 36.3
|
2647 |
+
xmax = 36.57
|
2648 |
+
text = ""
|
2649 |
+
intervals [435]:
|
2650 |
+
xmin = 36.57
|
2651 |
+
xmax = 36.92
|
2652 |
+
text = "AO1"
|
2653 |
+
intervals [436]:
|
2654 |
+
xmin = 36.92
|
2655 |
+
xmax = 36.99
|
2656 |
+
text = "L"
|
2657 |
+
intervals [437]:
|
2658 |
+
xmin = 36.99
|
2659 |
+
xmax = 37.03
|
2660 |
+
text = "DH"
|
2661 |
+
intervals [438]:
|
2662 |
+
xmin = 37.03
|
2663 |
+
xmax = 37.08
|
2664 |
+
text = "AH1"
|
2665 |
+
intervals [439]:
|
2666 |
+
xmin = 37.08
|
2667 |
+
xmax = 37.17
|
2668 |
+
text = "R"
|
2669 |
+
intervals [440]:
|
2670 |
+
xmin = 37.17
|
2671 |
+
xmax = 37.28
|
2672 |
+
text = "EH1"
|
2673 |
+
intervals [441]:
|
2674 |
+
xmin = 37.28
|
2675 |
+
xmax = 37.34
|
2676 |
+
text = "S"
|
2677 |
+
intervals [442]:
|
2678 |
+
xmin = 37.34
|
2679 |
+
xmax = 37.39
|
2680 |
+
text = "T"
|
2681 |
+
intervals [443]:
|
2682 |
+
xmin = 37.39
|
2683 |
+
xmax = 37.44
|
2684 |
+
text = "R"
|
2685 |
+
intervals [444]:
|
2686 |
+
xmin = 37.44
|
2687 |
+
xmax = 37.55
|
2688 |
+
text = "AA2"
|
2689 |
+
intervals [445]:
|
2690 |
+
xmin = 37.55
|
2691 |
+
xmax = 37.6
|
2692 |
+
text = "N"
|
2693 |
+
intervals [446]:
|
2694 |
+
xmin = 37.6
|
2695 |
+
xmax = 37.64
|
2696 |
+
text = "T"
|
2697 |
+
intervals [447]:
|
2698 |
+
xmin = 37.64
|
2699 |
+
xmax = 37.68
|
2700 |
+
text = "S"
|
2701 |
+
intervals [448]:
|
2702 |
+
xmin = 37.68
|
2703 |
+
xmax = 37.71
|
2704 |
+
text = ""
|
2705 |
+
intervals [449]:
|
2706 |
+
xmin = 37.71
|
2707 |
+
xmax = 37.77
|
2708 |
+
text = "IH0"
|
2709 |
+
intervals [450]:
|
2710 |
+
xmin = 37.77
|
2711 |
+
xmax = 37.83
|
2712 |
+
text = "N"
|
2713 |
+
intervals [451]:
|
2714 |
+
xmin = 37.83
|
2715 |
+
xmax = 37.87
|
2716 |
+
text = "AA1"
|
2717 |
+
intervals [452]:
|
2718 |
+
xmin = 37.87
|
2719 |
+
xmax = 37.95
|
2720 |
+
text = "R"
|
2721 |
+
intervals [453]:
|
2722 |
+
xmin = 37.95
|
2723 |
+
xmax = 38.12
|
2724 |
+
text = "HH"
|
2725 |
+
intervals [454]:
|
2726 |
+
xmin = 38.12
|
2727 |
+
xmax = 38.2
|
2728 |
+
text = "Y"
|
2729 |
+
intervals [455]:
|
2730 |
+
xmin = 38.2
|
2731 |
+
xmax = 38.33
|
2732 |
+
text = "UW1"
|
2733 |
+
intervals [456]:
|
2734 |
+
xmin = 38.33
|
2735 |
+
xmax = 38.5
|
2736 |
+
text = "JH"
|
2737 |
+
intervals [457]:
|
2738 |
+
xmin = 38.5
|
2739 |
+
xmax = 38.53
|
2740 |
+
text = "K"
|
2741 |
+
intervals [458]:
|
2742 |
+
xmin = 38.53
|
2743 |
+
xmax = 38.59
|
2744 |
+
text = "AH0"
|
2745 |
+
intervals [459]:
|
2746 |
+
xmin = 38.59
|
2747 |
+
xmax = 38.64
|
2748 |
+
text = "M"
|
2749 |
+
intervals [460]:
|
2750 |
+
xmin = 38.64
|
2751 |
+
xmax = 38.67
|
2752 |
+
text = "Y"
|
2753 |
+
intervals [461]:
|
2754 |
+
xmin = 38.67
|
2755 |
+
xmax = 38.7
|
2756 |
+
text = "UW1"
|
2757 |
+
intervals [462]:
|
2758 |
+
xmin = 38.7
|
2759 |
+
xmax = 38.76
|
2760 |
+
text = "N"
|
2761 |
+
intervals [463]:
|
2762 |
+
xmin = 38.76
|
2763 |
+
xmax = 38.79
|
2764 |
+
text = "AH0"
|
2765 |
+
intervals [464]:
|
2766 |
+
xmin = 38.79
|
2767 |
+
xmax = 38.82
|
2768 |
+
text = "T"
|
2769 |
+
intervals [465]:
|
2770 |
+
xmin = 38.82
|
2771 |
+
xmax = 39.07
|
2772 |
+
text = "IY0"
|
2773 |
+
intervals [466]:
|
2774 |
+
xmin = 39.07
|
2775 |
+
xmax = 39.23
|
2776 |
+
text = ""
|
2777 |
+
intervals [467]:
|
2778 |
+
xmin = 39.23
|
2779 |
+
xmax = 39.6
|
2780 |
+
text = "AY1"
|
2781 |
+
intervals [468]:
|
2782 |
+
xmin = 39.6
|
2783 |
+
xmax = 39.81
|
2784 |
+
text = "AE1"
|
2785 |
+
intervals [469]:
|
2786 |
+
xmin = 39.81
|
2787 |
+
xmax = 39.86
|
2788 |
+
text = "K"
|
2789 |
+
intervals [470]:
|
2790 |
+
xmin = 39.86
|
2791 |
+
xmax = 39.93
|
2792 |
+
text = "SH"
|
2793 |
+
intervals [471]:
|
2794 |
+
xmin = 39.93
|
2795 |
+
xmax = 39.97
|
2796 |
+
text = "AH0"
|
2797 |
+
intervals [472]:
|
2798 |
+
xmin = 39.97
|
2799 |
+
xmax = 40.0
|
2800 |
+
text = "L"
|
2801 |
+
intervals [473]:
|
2802 |
+
xmin = 40.0
|
2803 |
+
xmax = 40.09
|
2804 |
+
text = "IY0"
|
2805 |
+
intervals [474]:
|
2806 |
+
xmin = 40.09
|
2807 |
+
xmax = 40.17
|
2808 |
+
text = "G"
|
2809 |
+
intervals [475]:
|
2810 |
+
xmin = 40.17
|
2811 |
+
xmax = 40.26
|
2812 |
+
text = "IH1"
|
2813 |
+
intervals [476]:
|
2814 |
+
xmin = 40.26
|
2815 |
+
xmax = 40.32
|
2816 |
+
text = "V"
|
2817 |
+
intervals [477]:
|
2818 |
+
xmin = 40.32
|
2819 |
+
xmax = 40.5
|
2820 |
+
text = "IY1"
|
2821 |
+
intervals [478]:
|
2822 |
+
xmin = 40.5
|
2823 |
+
xmax = 40.61
|
2824 |
+
text = "CH"
|
2825 |
+
intervals [479]:
|
2826 |
+
xmin = 40.61
|
2827 |
+
xmax = 40.7
|
2828 |
+
text = "R"
|
2829 |
+
intervals [480]:
|
2830 |
+
xmin = 40.7
|
2831 |
+
xmax = 40.78
|
2832 |
+
text = "EH1"
|
2833 |
+
intervals [481]:
|
2834 |
+
xmin = 40.78
|
2835 |
+
xmax = 40.83
|
2836 |
+
text = "S"
|
2837 |
+
intervals [482]:
|
2838 |
+
xmin = 40.83
|
2839 |
+
xmax = 40.9
|
2840 |
+
text = "T"
|
2841 |
+
intervals [483]:
|
2842 |
+
xmin = 40.9
|
2843 |
+
xmax = 40.94
|
2844 |
+
text = "R"
|
2845 |
+
intervals [484]:
|
2846 |
+
xmin = 40.94
|
2847 |
+
xmax = 41.02
|
2848 |
+
text = "AA2"
|
2849 |
+
intervals [485]:
|
2850 |
+
xmin = 41.02
|
2851 |
+
xmax = 41.05
|
2852 |
+
text = "N"
|
2853 |
+
intervals [486]:
|
2854 |
+
xmin = 41.05
|
2855 |
+
xmax = 41.08
|
2856 |
+
text = "T"
|
2857 |
+
intervals [487]:
|
2858 |
+
xmin = 41.08
|
2859 |
+
xmax = 41.15
|
2860 |
+
text = "AH0"
|
2861 |
+
intervals [488]:
|
2862 |
+
xmin = 41.15
|
2863 |
+
xmax = 41.29
|
2864 |
+
text = "S"
|
2865 |
+
intervals [489]:
|
2866 |
+
xmin = 41.29
|
2867 |
+
xmax = 41.33
|
2868 |
+
text = "K"
|
2869 |
+
intervals [490]:
|
2870 |
+
xmin = 41.33
|
2871 |
+
xmax = 41.44
|
2872 |
+
text = "AO1"
|
2873 |
+
intervals [491]:
|
2874 |
+
xmin = 41.44
|
2875 |
+
xmax = 41.55
|
2876 |
+
text = "R"
|
2877 |
+
intervals [492]:
|
2878 |
+
xmin = 41.55
|
2879 |
+
xmax = 41.61
|
2880 |
+
text = "B"
|
2881 |
+
intervals [493]:
|
2882 |
+
xmin = 41.61
|
2883 |
+
xmax = 41.73
|
2884 |
+
text = "EY1"
|
2885 |
+
intervals [494]:
|
2886 |
+
xmin = 41.73
|
2887 |
+
xmax = 41.77
|
2888 |
+
text = "S"
|
2889 |
+
intervals [495]:
|
2890 |
+
xmin = 41.77
|
2891 |
+
xmax = 41.82
|
2892 |
+
text = "T"
|
2893 |
+
intervals [496]:
|
2894 |
+
xmin = 41.82
|
2895 |
+
xmax = 41.85
|
2896 |
+
text = "AA1"
|
2897 |
+
intervals [497]:
|
2898 |
+
xmin = 41.85
|
2899 |
+
xmax = 41.89
|
2900 |
+
text = "N"
|
2901 |
+
intervals [498]:
|
2902 |
+
xmin = 41.89
|
2903 |
+
xmax = 41.98
|
2904 |
+
text = "HH"
|
2905 |
+
intervals [499]:
|
2906 |
+
xmin = 41.98
|
2907 |
+
xmax = 42.05
|
2908 |
+
text = "AW1"
|
2909 |
+
intervals [500]:
|
2910 |
+
xmin = 42.05
|
2911 |
+
xmax = 42.11
|
2912 |
+
text = "G"
|
2913 |
+
intervals [501]:
|
2914 |
+
xmin = 42.11
|
2915 |
+
xmax = 42.14
|
2916 |
+
text = "IH0"
|
2917 |
+
intervals [502]:
|
2918 |
+
xmin = 42.14
|
2919 |
+
xmax = 42.17
|
2920 |
+
text = "D"
|
2921 |
+
intervals [503]:
|
2922 |
+
xmin = 42.17
|
2923 |
+
xmax = 42.2
|
2924 |
+
text = "DH"
|
2925 |
+
intervals [504]:
|
2926 |
+
xmin = 42.2
|
2927 |
+
xmax = 42.23
|
2928 |
+
text = "IY0"
|
2929 |
+
intervals [505]:
|
2930 |
+
xmin = 42.23
|
2931 |
+
xmax = 42.35
|
2932 |
+
text = "F"
|
2933 |
+
intervals [506]:
|
2934 |
+
xmin = 42.35
|
2935 |
+
xmax = 42.48
|
2936 |
+
text = "UW1"
|
2937 |
+
intervals [507]:
|
2938 |
+
xmin = 42.48
|
2939 |
+
xmax = 42.51
|
2940 |
+
text = "D"
|
2941 |
+
intervals [508]:
|
2942 |
+
xmin = 42.51
|
2943 |
+
xmax = 42.71
|
2944 |
+
text = "IH1"
|
2945 |
+
intervals [509]:
|
2946 |
+
xmin = 42.71
|
2947 |
+
xmax = 42.85
|
2948 |
+
text = "Z"
|
2949 |
+
intervals [510]:
|
2950 |
+
xmin = 42.85
|
2951 |
+
xmax = 43.13
|
2952 |
+
text = ""
|
2953 |
+
intervals [511]:
|
2954 |
+
xmin = 43.13
|
2955 |
+
xmax = 43.28
|
2956 |
+
text = "HH"
|
2957 |
+
intervals [512]:
|
2958 |
+
xmin = 43.28
|
2959 |
+
xmax = 43.36
|
2960 |
+
text = "AW1"
|
2961 |
+
intervals [513]:
|
2962 |
+
xmin = 43.36
|
2963 |
+
xmax = 43.43
|
2964 |
+
text = "G"
|
2965 |
+
intervals [514]:
|
2966 |
+
xmin = 43.43
|
2967 |
+
xmax = 43.46
|
2968 |
+
text = "IH0"
|
2969 |
+
intervals [515]:
|
2970 |
+
xmin = 43.46
|
2971 |
+
xmax = 43.51
|
2972 |
+
text = "D"
|
2973 |
+
intervals [516]:
|
2974 |
+
xmin = 43.51
|
2975 |
+
xmax = 43.56
|
2976 |
+
text = "DH"
|
2977 |
+
intervals [517]:
|
2978 |
+
xmin = 43.56
|
2979 |
+
xmax = 43.62
|
2980 |
+
text = "IY0"
|
2981 |
+
intervals [518]:
|
2982 |
+
xmin = 43.62
|
2983 |
+
xmax = 43.65
|
2984 |
+
text = "IH0"
|
2985 |
+
intervals [519]:
|
2986 |
+
xmin = 43.65
|
2987 |
+
xmax = 43.69
|
2988 |
+
text = "N"
|
2989 |
+
intervals [520]:
|
2990 |
+
xmin = 43.69
|
2991 |
+
xmax = 43.78
|
2992 |
+
text = "V"
|
2993 |
+
intervals [521]:
|
2994 |
+
xmin = 43.78
|
2995 |
+
xmax = 43.89
|
2996 |
+
text = "AY1"
|
2997 |
+
intervals [522]:
|
2998 |
+
xmin = 43.89
|
2999 |
+
xmax = 43.92
|
3000 |
+
text = "R"
|
3001 |
+
intervals [523]:
|
3002 |
+
xmin = 43.92
|
3003 |
+
xmax = 43.95
|
3004 |
+
text = "AH0"
|
3005 |
+
intervals [524]:
|
3006 |
+
xmin = 43.95
|
3007 |
+
xmax = 43.98
|
3008 |
+
text = "N"
|
3009 |
+
intervals [525]:
|
3010 |
+
xmin = 43.98
|
3011 |
+
xmax = 44.01
|
3012 |
+
text = "M"
|
3013 |
+
intervals [526]:
|
3014 |
+
xmin = 44.01
|
3015 |
+
xmax = 44.04
|
3016 |
+
text = "AH0"
|
3017 |
+
intervals [527]:
|
3018 |
+
xmin = 44.04
|
3019 |
+
xmax = 44.07
|
3020 |
+
text = "N"
|
3021 |
+
intervals [528]:
|
3022 |
+
xmin = 44.07
|
3023 |
+
xmax = 44.1
|
3024 |
+
text = "T"
|
3025 |
+
intervals [529]:
|
3026 |
+
xmin = 44.1
|
3027 |
+
xmax = 44.25
|
3028 |
+
text = "IH1"
|
3029 |
+
intervals [530]:
|
3030 |
+
xmin = 44.25
|
3031 |
+
xmax = 44.4
|
3032 |
+
text = "Z"
|
3033 |
+
intervals [531]:
|
3034 |
+
xmin = 44.4
|
3035 |
+
xmax = 44.49
|
3036 |
+
text = ""
|
3037 |
+
intervals [532]:
|
3038 |
+
xmin = 44.49
|
3039 |
+
xmax = 44.79
|
3040 |
+
text = "AE1"
|
3041 |
+
intervals [533]:
|
3042 |
+
xmin = 44.79
|
3043 |
+
xmax = 44.9
|
3044 |
+
text = "N"
|
3045 |
+
intervals [534]:
|
3046 |
+
xmin = 44.9
|
3047 |
+
xmax = 44.98
|
3048 |
+
text = "D"
|
3049 |
+
intervals [535]:
|
3050 |
+
xmin = 44.98
|
3051 |
+
xmax = 45.26
|
3052 |
+
text = "AE1"
|
3053 |
+
intervals [536]:
|
3054 |
+
xmin = 45.26
|
3055 |
+
xmax = 45.34
|
3056 |
+
text = "T"
|
3057 |
+
intervals [537]:
|
3058 |
+
xmin = 45.34
|
3059 |
+
xmax = 45.39
|
3060 |
+
text = "DH"
|
3061 |
+
intervals [538]:
|
3062 |
+
xmin = 45.39
|
3063 |
+
xmax = 45.62
|
3064 |
+
text = "AH1"
|
3065 |
+
intervals [539]:
|
3066 |
+
xmin = 45.62
|
3067 |
+
xmax = 45.75
|
3068 |
+
text = "S"
|
3069 |
+
intervals [540]:
|
3070 |
+
xmin = 45.75
|
3071 |
+
xmax = 45.87
|
3072 |
+
text = "EY1"
|
3073 |
+
intervals [541]:
|
3074 |
+
xmin = 45.87
|
3075 |
+
xmax = 45.91
|
3076 |
+
text = "M"
|
3077 |
+
intervals [542]:
|
3078 |
+
xmin = 45.91
|
3079 |
+
xmax = 46.01
|
3080 |
+
text = "T"
|
3081 |
+
intervals [543]:
|
3082 |
+
xmin = 46.01
|
3083 |
+
xmax = 46.19
|
3084 |
+
text = "AY1"
|
3085 |
+
intervals [544]:
|
3086 |
+
xmin = 46.19
|
3087 |
+
xmax = 46.29
|
3088 |
+
text = "M"
|
3089 |
+
intervals [545]:
|
3090 |
+
xmin = 46.29
|
3091 |
+
xmax = 46.42
|
3092 |
+
text = "AY1"
|
3093 |
+
intervals [546]:
|
3094 |
+
xmin = 46.42
|
3095 |
+
xmax = 46.45
|
3096 |
+
text = "W"
|
3097 |
+
intervals [547]:
|
3098 |
+
xmin = 46.45
|
3099 |
+
xmax = 46.48
|
3100 |
+
text = "AH0"
|
3101 |
+
intervals [548]:
|
3102 |
+
xmin = 46.48
|
3103 |
+
xmax = 46.54
|
3104 |
+
text = "L"
|
3105 |
+
intervals [549]:
|
3106 |
+
xmin = 46.54
|
3107 |
+
xmax = 46.62
|
3108 |
+
text = "R"
|
3109 |
+
intervals [550]:
|
3110 |
+
xmin = 46.62
|
3111 |
+
xmax = 46.69
|
3112 |
+
text = "AY1"
|
3113 |
+
intervals [551]:
|
3114 |
+
xmin = 46.69
|
3115 |
+
xmax = 46.74
|
3116 |
+
text = "T"
|
3117 |
+
intervals [552]:
|
3118 |
+
xmin = 46.74
|
3119 |
+
xmax = 46.82
|
3120 |
+
text = "D"
|
3121 |
+
intervals [553]:
|
3122 |
+
xmin = 46.82
|
3123 |
+
xmax = 46.91
|
3124 |
+
text = "AW1"
|
3125 |
+
intervals [554]:
|
3126 |
+
xmin = 46.91
|
3127 |
+
xmax = 46.94
|
3128 |
+
text = "N"
|
3129 |
+
intervals [555]:
|
3130 |
+
xmin = 46.94
|
3131 |
+
xmax = 46.97
|
3132 |
+
text = "DH"
|
3133 |
+
intervals [556]:
|
3134 |
+
xmin = 46.97
|
3135 |
+
xmax = 47.02
|
3136 |
+
text = "AH1"
|
3137 |
+
intervals [557]:
|
3138 |
+
xmin = 47.02
|
3139 |
+
xmax = 47.1
|
3140 |
+
text = "T"
|
3141 |
+
intervals [558]:
|
3142 |
+
xmin = 47.1
|
3143 |
+
xmax = 47.19
|
3144 |
+
text = "AY1"
|
3145 |
+
intervals [559]:
|
3146 |
+
xmin = 47.19
|
3147 |
+
xmax = 47.24
|
3148 |
+
text = "P"
|
3149 |
+
intervals [560]:
|
3150 |
+
xmin = 47.24
|
3151 |
+
xmax = 47.29
|
3152 |
+
text = "AH0"
|
3153 |
+
intervals [561]:
|
3154 |
+
xmin = 47.29
|
3155 |
+
xmax = 47.39
|
3156 |
+
text = "V"
|
3157 |
+
intervals [562]:
|
3158 |
+
xmin = 47.39
|
3159 |
+
xmax = 47.45
|
3160 |
+
text = "F"
|
3161 |
+
intervals [563]:
|
3162 |
+
xmin = 47.45
|
3163 |
+
xmax = 47.64
|
3164 |
+
text = "UW1"
|
3165 |
+
intervals [564]:
|
3166 |
+
xmin = 47.64
|
3167 |
+
xmax = 47.8
|
3168 |
+
text = "D"
|
3169 |
+
intervals [565]:
|
3170 |
+
xmin = 47.8
|
3171 |
+
xmax = 48.03
|
3172 |
+
text = ""
|
3173 |
+
intervals [566]:
|
3174 |
+
xmin = 48.03
|
3175 |
+
xmax = 48.1
|
3176 |
+
text = "DH"
|
3177 |
+
intervals [567]:
|
3178 |
+
xmin = 48.1
|
3179 |
+
xmax = 48.24
|
3180 |
+
text = "EY1"
|
3181 |
+
intervals [568]:
|
3182 |
+
xmin = 48.24
|
3183 |
+
xmax = 48.37
|
3184 |
+
text = "S"
|
3185 |
+
intervals [569]:
|
3186 |
+
xmin = 48.37
|
3187 |
+
xmax = 48.58
|
3188 |
+
text = "ER1"
|
3189 |
+
intervals [570]:
|
3190 |
+
xmin = 48.58
|
3191 |
+
xmax = 48.76
|
3192 |
+
text = "V"
|
3193 |
+
intervals [571]:
|
3194 |
+
xmin = 48.76
|
3195 |
+
xmax = 49.42
|
3196 |
+
text = ""
|
3197 |
+
intervals [572]:
|
3198 |
+
xmin = 49.42
|
3199 |
+
xmax = 49.61
|
3200 |
+
text = "S"
|
3201 |
+
intervals [573]:
|
3202 |
+
xmin = 49.61
|
3203 |
+
xmax = 49.9
|
3204 |
+
text = "OW1"
|
3205 |
+
intervals [574]:
|
3206 |
+
xmin = 49.9
|
3207 |
+
xmax = 50.09
|
3208 |
+
text = "W"
|
3209 |
+
intervals [575]:
|
3210 |
+
xmin = 50.09
|
3211 |
+
xmax = 50.22
|
3212 |
+
text = "EH1"
|
3213 |
+
intervals [576]:
|
3214 |
+
xmin = 50.22
|
3215 |
+
xmax = 50.46
|
3216 |
+
text = "N"
|
3217 |
+
intervals [577]:
|
3218 |
+
xmin = 50.46
|
3219 |
+
xmax = 50.49
|
3220 |
+
text = ""
|
3221 |
+
intervals [578]:
|
3222 |
+
xmin = 50.49
|
3223 |
+
xmax = 50.58
|
3224 |
+
text = "Y"
|
3225 |
+
intervals [579]:
|
3226 |
+
xmin = 50.58
|
3227 |
+
xmax = 50.67
|
3228 |
+
text = "UW1"
|
3229 |
+
intervals [580]:
|
3230 |
+
xmin = 50.67
|
3231 |
+
xmax = 50.85
|
3232 |
+
text = "R"
|
3233 |
+
intervals [581]:
|
3234 |
+
xmin = 50.85
|
3235 |
+
xmax = 50.94
|
3236 |
+
text = "S"
|
3237 |
+
intervals [582]:
|
3238 |
+
xmin = 50.94
|
3239 |
+
xmax = 50.98
|
3240 |
+
text = "OW1"
|
3241 |
+
intervals [583]:
|
3242 |
+
xmin = 50.98
|
3243 |
+
xmax = 51.03
|
3244 |
+
text = "W"
|
3245 |
+
intervals [584]:
|
3246 |
+
xmin = 51.03
|
3247 |
+
xmax = 51.06
|
3248 |
+
text = "EH1"
|
3249 |
+
intervals [585]:
|
3250 |
+
xmin = 51.06
|
3251 |
+
xmax = 51.13
|
3252 |
+
text = "N"
|
3253 |
+
intervals [586]:
|
3254 |
+
xmin = 51.13
|
3255 |
+
xmax = 51.24
|
3256 |
+
text = "IY1"
|
3257 |
+
intervals [587]:
|
3258 |
+
xmin = 51.24
|
3259 |
+
xmax = 51.35
|
3260 |
+
text = "CH"
|
3261 |
+
intervals [588]:
|
3262 |
+
xmin = 51.35
|
3263 |
+
xmax = 51.41
|
3264 |
+
text = "T"
|
3265 |
+
intervals [589]:
|
3266 |
+
xmin = 51.41
|
3267 |
+
xmax = 51.49
|
3268 |
+
text = "AY1"
|
3269 |
+
intervals [590]:
|
3270 |
+
xmin = 51.49
|
3271 |
+
xmax = 51.55
|
3272 |
+
text = "M"
|
3273 |
+
intervals [591]:
|
3274 |
+
xmin = 51.55
|
3275 |
+
xmax = 51.62
|
3276 |
+
text = "AH0"
|
3277 |
+
intervals [592]:
|
3278 |
+
xmin = 51.62
|
3279 |
+
xmax = 51.69
|
3280 |
+
text = "F"
|
3281 |
+
intervals [593]:
|
3282 |
+
xmin = 51.69
|
3283 |
+
xmax = 51.74
|
3284 |
+
text = "R"
|
3285 |
+
intervals [594]:
|
3286 |
+
xmin = 51.74
|
3287 |
+
xmax = 51.8
|
3288 |
+
text = "EH1"
|
3289 |
+
intervals [595]:
|
3290 |
+
xmin = 51.8
|
3291 |
+
xmax = 51.85
|
3292 |
+
text = "N"
|
3293 |
+
intervals [596]:
|
3294 |
+
xmin = 51.85
|
3295 |
+
xmax = 51.91
|
3296 |
+
text = "D"
|
3297 |
+
intervals [597]:
|
3298 |
+
xmin = 51.91
|
3299 |
+
xmax = 51.98
|
3300 |
+
text = "K"
|
3301 |
+
intervals [598]:
|
3302 |
+
xmin = 51.98
|
3303 |
+
xmax = 52.03
|
3304 |
+
text = "AH1"
|
3305 |
+
intervals [599]:
|
3306 |
+
xmin = 52.03
|
3307 |
+
xmax = 52.14
|
3308 |
+
text = "M"
|
3309 |
+
intervals [600]:
|
3310 |
+
xmin = 52.14
|
3311 |
+
xmax = 52.32
|
3312 |
+
text = "Z"
|
3313 |
+
intervals [601]:
|
3314 |
+
xmin = 52.32
|
3315 |
+
xmax = 52.37
|
3316 |
+
text = "T"
|
3317 |
+
intervals [602]:
|
3318 |
+
xmin = 52.37
|
3319 |
+
xmax = 52.46
|
3320 |
+
text = "UW1"
|
3321 |
+
intervals [603]:
|
3322 |
+
xmin = 52.46
|
3323 |
+
xmax = 52.53
|
3324 |
+
text = "DH"
|
3325 |
+
intervals [604]:
|
3326 |
+
xmin = 52.53
|
3327 |
+
xmax = 52.59
|
3328 |
+
text = "AH0"
|
3329 |
+
intervals [605]:
|
3330 |
+
xmin = 52.59
|
3331 |
+
xmax = 52.68
|
3332 |
+
text = "S"
|
3333 |
+
intervals [606]:
|
3334 |
+
xmin = 52.68
|
3335 |
+
xmax = 52.74
|
3336 |
+
text = "IH1"
|
3337 |
+
intervals [607]:
|
3338 |
+
xmin = 52.74
|
3339 |
+
xmax = 52.77
|
3340 |
+
text = "T"
|
3341 |
+
intervals [608]:
|
3342 |
+
xmin = 52.77
|
3343 |
+
xmax = 52.9
|
3344 |
+
text = "IY0"
|
3345 |
+
intervals [609]:
|
3346 |
+
xmin = 52.9
|
3347 |
+
xmax = 52.97
|
3348 |
+
text = "T"
|
3349 |
+
intervals [610]:
|
3350 |
+
xmin = 52.97
|
3351 |
+
xmax = 53.07
|
3352 |
+
text = "UW1"
|
3353 |
+
intervals [611]:
|
3354 |
+
xmin = 53.07
|
3355 |
+
xmax = 53.12
|
3356 |
+
text = "IH0"
|
3357 |
+
intervals [612]:
|
3358 |
+
xmin = 53.12
|
3359 |
+
xmax = 53.17
|
3360 |
+
text = "N"
|
3361 |
+
intervals [613]:
|
3362 |
+
xmin = 53.17
|
3363 |
+
xmax = 53.26
|
3364 |
+
text = "JH"
|
3365 |
+
intervals [614]:
|
3366 |
+
xmin = 53.26
|
3367 |
+
xmax = 53.35
|
3368 |
+
text = "OY1"
|
3369 |
+
intervals [615]:
|
3370 |
+
xmin = 53.35
|
3371 |
+
xmax = 53.46
|
3372 |
+
text = "T"
|
3373 |
+
intervals [616]:
|
3374 |
+
xmin = 53.46
|
3375 |
+
xmax = 53.59
|
3376 |
+
text = "AY1"
|
3377 |
+
intervals [617]:
|
3378 |
+
xmin = 53.59
|
3379 |
+
xmax = 53.62
|
3380 |
+
text = "M"
|
3381 |
+
intervals [618]:
|
3382 |
+
xmin = 53.62
|
3383 |
+
xmax = 53.65
|
3384 |
+
text = "W"
|
3385 |
+
intervals [619]:
|
3386 |
+
xmin = 53.65
|
3387 |
+
xmax = 53.7
|
3388 |
+
text = "IH1"
|
3389 |
+
intervals [620]:
|
3390 |
+
xmin = 53.7
|
3391 |
+
xmax = 53.74
|
3392 |
+
text = "DH"
|
3393 |
+
intervals [621]:
|
3394 |
+
xmin = 53.74
|
3395 |
+
xmax = 53.81
|
3396 |
+
text = "M"
|
3397 |
+
intervals [622]:
|
3398 |
+
xmin = 53.81
|
3399 |
+
xmax = 54.02
|
3400 |
+
text = "IY1"
|
3401 |
+
intervals [623]:
|
3402 |
+
xmin = 54.02
|
3403 |
+
xmax = 54.31
|
3404 |
+
text = ""
|
3405 |
+
intervals [624]:
|
3406 |
+
xmin = 54.31
|
3407 |
+
xmax = 54.54
|
3408 |
+
text = "AY1"
|
3409 |
+
intervals [625]:
|
3410 |
+
xmin = 54.54
|
3411 |
+
xmax = 54.6
|
3412 |
+
text = "W"
|
3413 |
+
intervals [626]:
|
3414 |
+
xmin = 54.6
|
3415 |
+
xmax = 54.66
|
3416 |
+
text = "AH0"
|
3417 |
+
intervals [627]:
|
3418 |
+
xmin = 54.66
|
3419 |
+
xmax = 54.69
|
3420 |
+
text = "L"
|
3421 |
+
intervals [628]:
|
3422 |
+
xmin = 54.69
|
3423 |
+
xmax = 54.77
|
3424 |
+
text = "G"
|
3425 |
+
intervals [629]:
|
3426 |
+
xmin = 54.77
|
3427 |
+
xmax = 54.81
|
3428 |
+
text = "IH1"
|
3429 |
+
intervals [630]:
|
3430 |
+
xmin = 54.81
|
3431 |
+
xmax = 54.84
|
3432 |
+
text = "V"
|
3433 |
+
intervals [631]:
|
3434 |
+
xmin = 54.84
|
3435 |
+
xmax = 54.87
|
3436 |
+
text = "DH"
|
3437 |
+
intervals [632]:
|
3438 |
+
xmin = 54.87
|
3439 |
+
xmax = 54.94
|
3440 |
+
text = "AH0"
|
3441 |
+
intervals [633]:
|
3442 |
+
xmin = 54.94
|
3443 |
+
xmax = 54.97
|
3444 |
+
text = "M"
|
3445 |
+
intervals [634]:
|
3446 |
+
xmin = 54.97
|
3447 |
+
xmax = 55.0
|
3448 |
+
text = "DH"
|
3449 |
+
intervals [635]:
|
3450 |
+
xmin = 55.0
|
3451 |
+
xmax = 55.07
|
3452 |
+
text = "AH0"
|
3453 |
+
intervals [636]:
|
3454 |
+
xmin = 55.07
|
3455 |
+
xmax = 55.17
|
3456 |
+
text = "T"
|
3457 |
+
intervals [637]:
|
3458 |
+
xmin = 55.17
|
3459 |
+
xmax = 55.27
|
3460 |
+
text = "AA1"
|
3461 |
+
intervals [638]:
|
3462 |
+
xmin = 55.27
|
3463 |
+
xmax = 55.38
|
3464 |
+
text = "P"
|
3465 |
+
intervals [639]:
|
3466 |
+
xmin = 55.38
|
3467 |
+
xmax = 55.53
|
3468 |
+
text = "spn"
|
3469 |
+
intervals [640]:
|
3470 |
+
xmin = 55.53
|
3471 |
+
xmax = 55.62
|
3472 |
+
text = "R"
|
3473 |
+
intervals [641]:
|
3474 |
+
xmin = 55.62
|
3475 |
+
xmax = 55.7
|
3476 |
+
text = "EH1"
|
3477 |
+
intervals [642]:
|
3478 |
+
xmin = 55.7
|
3479 |
+
xmax = 55.76
|
3480 |
+
text = "S"
|
3481 |
+
intervals [643]:
|
3482 |
+
xmin = 55.76
|
3483 |
+
xmax = 55.83
|
3484 |
+
text = "T"
|
3485 |
+
intervals [644]:
|
3486 |
+
xmin = 55.83
|
3487 |
+
xmax = 55.86
|
3488 |
+
text = "R"
|
3489 |
+
intervals [645]:
|
3490 |
+
xmin = 55.86
|
3491 |
+
xmax = 55.97
|
3492 |
+
text = "AA2"
|
3493 |
+
intervals [646]:
|
3494 |
+
xmin = 55.97
|
3495 |
+
xmax = 56.01
|
3496 |
+
text = "N"
|
3497 |
+
intervals [647]:
|
3498 |
+
xmin = 56.01
|
3499 |
+
xmax = 56.04
|
3500 |
+
text = "T"
|
3501 |
+
intervals [648]:
|
3502 |
+
xmin = 56.04
|
3503 |
+
xmax = 56.1
|
3504 |
+
text = "S"
|
3505 |
+
intervals [649]:
|
3506 |
+
xmin = 56.1
|
3507 |
+
xmax = 56.17
|
3508 |
+
text = "B"
|
3509 |
+
intervals [650]:
|
3510 |
+
xmin = 56.17
|
3511 |
+
xmax = 56.32
|
3512 |
+
text = "EY1"
|
3513 |
+
intervals [651]:
|
3514 |
+
xmin = 56.32
|
3515 |
+
xmax = 56.37
|
3516 |
+
text = "S"
|
3517 |
+
intervals [652]:
|
3518 |
+
xmin = 56.37
|
3519 |
+
xmax = 56.44
|
3520 |
+
text = "T"
|
3521 |
+
intervals [653]:
|
3522 |
+
xmin = 56.44
|
3523 |
+
xmax = 56.64
|
3524 |
+
text = "AA1"
|
3525 |
+
intervals [654]:
|
3526 |
+
xmin = 56.64
|
3527 |
+
xmax = 56.68
|
3528 |
+
text = "N"
|
3529 |
+
intervals [655]:
|
3530 |
+
xmin = 56.68
|
3531 |
+
xmax = 56.72
|
3532 |
+
text = "DH"
|
3533 |
+
intervals [656]:
|
3534 |
+
xmin = 56.72
|
3535 |
+
xmax = 56.9
|
3536 |
+
text = "IH0"
|
3537 |
+
intervals [657]:
|
3538 |
+
xmin = 56.9
|
3539 |
+
xmax = 56.99
|
3540 |
+
text = "S"
|
3541 |
+
intervals [658]:
|
3542 |
+
xmin = 56.99
|
3543 |
+
xmax = 57.05
|
3544 |
+
text = "R"
|
3545 |
+
intervals [659]:
|
3546 |
+
xmin = 57.05
|
3547 |
+
xmax = 57.11
|
3548 |
+
text = "AE1"
|
3549 |
+
intervals [660]:
|
3550 |
+
xmin = 57.11
|
3551 |
+
xmax = 57.16
|
3552 |
+
text = "NG"
|
3553 |
+
intervals [661]:
|
3554 |
+
xmin = 57.16
|
3555 |
+
xmax = 57.22
|
3556 |
+
text = "K"
|
3557 |
+
intervals [662]:
|
3558 |
+
xmin = 57.22
|
3559 |
+
xmax = 57.29
|
3560 |
+
text = "IH0"
|
3561 |
+
intervals [663]:
|
3562 |
+
xmin = 57.29
|
3563 |
+
xmax = 57.35
|
3564 |
+
text = "NG"
|
3565 |
+
intervals [664]:
|
3566 |
+
xmin = 57.35
|
3567 |
+
xmax = 57.4
|
3568 |
+
text = "AH0"
|
3569 |
+
intervals [665]:
|
3570 |
+
xmin = 57.4
|
3571 |
+
xmax = 57.43
|
3572 |
+
text = "N"
|
3573 |
+
intervals [666]:
|
3574 |
+
xmin = 57.43
|
3575 |
+
xmax = 57.53
|
3576 |
+
text = "D"
|
3577 |
+
intervals [667]:
|
3578 |
+
xmin = 57.53
|
3579 |
+
xmax = 57.7
|
3580 |
+
text = "EH1"
|
3581 |
+
intervals [668]:
|
3582 |
+
xmin = 57.7
|
3583 |
+
xmax = 57.76
|
3584 |
+
text = "V"
|
3585 |
+
intervals [669]:
|
3586 |
+
xmin = 57.76
|
3587 |
+
xmax = 57.82
|
3588 |
+
text = "R"
|
3589 |
+
intervals [670]:
|
3590 |
+
xmin = 57.82
|
3591 |
+
xmax = 57.86
|
3592 |
+
text = "IY0"
|
3593 |
+
intervals [671]:
|
3594 |
+
xmin = 57.86
|
3595 |
+
xmax = 57.95
|
3596 |
+
text = "T"
|
3597 |
+
intervals [672]:
|
3598 |
+
xmin = 57.95
|
3599 |
+
xmax = 58.19
|
3600 |
+
text = "AY1"
|
3601 |
+
intervals [673]:
|
3602 |
+
xmin = 58.19
|
3603 |
+
xmax = 58.44
|
3604 |
+
text = "M"
|
3605 |
+
intervals [674]:
|
3606 |
+
xmin = 58.44
|
3607 |
+
xmax = 59.02
|
3608 |
+
text = ""
|
3609 |
+
intervals [675]:
|
3610 |
+
xmin = 59.02
|
3611 |
+
xmax = 59.12
|
3612 |
+
text = "Y"
|
3613 |
+
intervals [676]:
|
3614 |
+
xmin = 59.12
|
3615 |
+
xmax = 59.15
|
3616 |
+
text = "UH1"
|
3617 |
+
intervals [677]:
|
3618 |
+
xmin = 59.15
|
3619 |
+
xmax = 59.2
|
3620 |
+
text = "R"
|
3621 |
+
intervals [678]:
|
3622 |
+
xmin = 59.2
|
3623 |
+
xmax = 59.32
|
3624 |
+
text = "S"
|
3625 |
+
intervals [679]:
|
3626 |
+
xmin = 59.32
|
3627 |
+
xmax = 59.41
|
3628 |
+
text = "AE1"
|
3629 |
+
intervals [680]:
|
3630 |
+
xmin = 59.41
|
3631 |
+
xmax = 59.44
|
3632 |
+
text = "T"
|
3633 |
+
intervals [681]:
|
3634 |
+
xmin = 59.44
|
3635 |
+
xmax = 59.49
|
3636 |
+
text = "AH0"
|
3637 |
+
intervals [682]:
|
3638 |
+
xmin = 59.49
|
3639 |
+
xmax = 59.55
|
3640 |
+
text = "S"
|
3641 |
+
intervals [683]:
|
3642 |
+
xmin = 59.55
|
3643 |
+
xmax = 59.62
|
3644 |
+
text = "F"
|
3645 |
+
intervals [684]:
|
3646 |
+
xmin = 59.62
|
3647 |
+
xmax = 59.69
|
3648 |
+
text = "AY2"
|
3649 |
+
intervals [685]:
|
3650 |
+
xmin = 59.69
|
3651 |
+
xmax = 59.72
|
3652 |
+
text = "D"
|
3653 |
+
intervals [686]:
|
3654 |
+
xmin = 59.72
|
3655 |
+
xmax = 59.77
|
3656 |
+
text = "W"
|
3657 |
+
intervals [687]:
|
3658 |
+
xmin = 59.77
|
3659 |
+
xmax = 59.82
|
3660 |
+
text = "IH0"
|
3661 |
+
intervals [688]:
|
3662 |
+
xmin = 59.82
|
3663 |
+
xmax = 59.85
|
3664 |
+
text = "DH"
|
3665 |
+
intervals [689]:
|
3666 |
+
xmin = 59.85
|
3667 |
+
xmax = 59.88
|
3668 |
+
text = "DH"
|
3669 |
+
intervals [690]:
|
3670 |
+
xmin = 59.88
|
3671 |
+
xmax = 60.0
|
3672 |
+
text = "IY1"
|
3673 |
+
intervals [691]:
|
3674 |
+
xmin = 60.0
|
3675 |
+
xmax = 60.1
|
3676 |
+
text = "Z"
|
3677 |
+
intervals [692]:
|
3678 |
+
xmin = 60.1
|
3679 |
+
xmax = 60.15
|
3680 |
+
text = "R"
|
3681 |
+
intervals [693]:
|
3682 |
+
xmin = 60.15
|
3683 |
+
xmax = 60.23
|
3684 |
+
text = "EH1"
|
3685 |
+
intervals [694]:
|
3686 |
+
xmin = 60.23
|
3687 |
+
xmax = 60.28
|
3688 |
+
text = "S"
|
3689 |
+
intervals [695]:
|
3690 |
+
xmin = 60.28
|
3691 |
+
xmax = 60.34
|
3692 |
+
text = "T"
|
3693 |
+
intervals [696]:
|
3694 |
+
xmin = 60.34
|
3695 |
+
xmax = 60.4
|
3696 |
+
text = "R"
|
3697 |
+
intervals [697]:
|
3698 |
+
xmin = 60.4
|
3699 |
+
xmax = 60.52
|
3700 |
+
text = "AA2"
|
3701 |
+
intervals [698]:
|
3702 |
+
xmin = 60.52
|
3703 |
+
xmax = 60.57
|
3704 |
+
text = "N"
|
3705 |
+
intervals [699]:
|
3706 |
+
xmin = 60.57
|
3707 |
+
xmax = 60.62
|
3708 |
+
text = "T"
|
3709 |
+
intervals [700]:
|
3710 |
+
xmin = 60.62
|
3711 |
+
xmax = 60.81
|
3712 |
+
text = "S"
|
3713 |
+
intervals [701]:
|
3714 |
+
xmin = 60.81
|
3715 |
+
xmax = 62
|
3716 |
+
text = ""
|
EMAGE/test_sequences/textgrid/2_scott_0_3_3.TextGrid
ADDED
@@ -0,0 +1,3676 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
File type = "ooTextFile"
|
2 |
+
Object class = "TextGrid"
|
3 |
+
|
4 |
+
xmin = 0.0
|
5 |
+
xmax = 68
|
6 |
+
tiers? <exists>
|
7 |
+
size = 2
|
8 |
+
item []:
|
9 |
+
item [1]:
|
10 |
+
class = "IntervalTier"
|
11 |
+
name = "words"
|
12 |
+
xmin = 0.0
|
13 |
+
xmax = 68
|
14 |
+
intervals: size = 213
|
15 |
+
intervals [1]:
|
16 |
+
xmin = 0.0
|
17 |
+
xmax = 1.47
|
18 |
+
text = ""
|
19 |
+
intervals [2]:
|
20 |
+
xmin = 1.47
|
21 |
+
xmax = 2.36
|
22 |
+
text = "well"
|
23 |
+
intervals [3]:
|
24 |
+
xmin = 2.36
|
25 |
+
xmax = 2.56
|
26 |
+
text = ""
|
27 |
+
intervals [4]:
|
28 |
+
xmin = 2.56
|
29 |
+
xmax = 3.05
|
30 |
+
text = "in"
|
31 |
+
intervals [5]:
|
32 |
+
xmin = 3.05
|
33 |
+
xmax = 3.43
|
34 |
+
text = "my"
|
35 |
+
intervals [6]:
|
36 |
+
xmin = 3.43
|
37 |
+
xmax = 4.29
|
38 |
+
text = "opinion"
|
39 |
+
intervals [7]:
|
40 |
+
xmin = 4.29
|
41 |
+
xmax = 4.43
|
42 |
+
text = "i"
|
43 |
+
intervals [8]:
|
44 |
+
xmin = 4.43
|
45 |
+
xmax = 4.7
|
46 |
+
text = "think"
|
47 |
+
intervals [9]:
|
48 |
+
xmin = 4.7
|
49 |
+
xmax = 4.77
|
50 |
+
text = "the"
|
51 |
+
intervals [10]:
|
52 |
+
xmin = 4.77
|
53 |
+
xmax = 5.06
|
54 |
+
text = "best"
|
55 |
+
intervals [11]:
|
56 |
+
xmin = 5.06
|
57 |
+
xmax = 5.31
|
58 |
+
text = "job"
|
59 |
+
intervals [12]:
|
60 |
+
xmin = 5.31
|
61 |
+
xmax = 5.41
|
62 |
+
text = "for"
|
63 |
+
intervals [13]:
|
64 |
+
xmin = 5.41
|
65 |
+
xmax = 5.62
|
66 |
+
text = "me"
|
67 |
+
intervals [14]:
|
68 |
+
xmin = 5.62
|
69 |
+
xmax = 5.76
|
70 |
+
text = "is"
|
71 |
+
intervals [15]:
|
72 |
+
xmin = 5.76
|
73 |
+
xmax = 5.84
|
74 |
+
text = "to"
|
75 |
+
intervals [16]:
|
76 |
+
xmin = 5.84
|
77 |
+
xmax = 6.11
|
78 |
+
text = "become"
|
79 |
+
intervals [17]:
|
80 |
+
xmin = 6.11
|
81 |
+
xmax = 6.2
|
82 |
+
text = "a"
|
83 |
+
intervals [18]:
|
84 |
+
xmin = 6.2
|
85 |
+
xmax = 6.93
|
86 |
+
text = "journalist"
|
87 |
+
intervals [19]:
|
88 |
+
xmin = 6.93
|
89 |
+
xmax = 7.3
|
90 |
+
text = "cuz"
|
91 |
+
intervals [20]:
|
92 |
+
xmin = 7.3
|
93 |
+
xmax = 7.53
|
94 |
+
text = "this"
|
95 |
+
intervals [21]:
|
96 |
+
xmin = 7.53
|
97 |
+
xmax = 7.63
|
98 |
+
text = "is"
|
99 |
+
intervals [22]:
|
100 |
+
xmin = 7.63
|
101 |
+
xmax = 7.79
|
102 |
+
text = "my"
|
103 |
+
intervals [23]:
|
104 |
+
xmin = 7.79
|
105 |
+
xmax = 8.14
|
106 |
+
text = "dream"
|
107 |
+
intervals [24]:
|
108 |
+
xmin = 8.14
|
109 |
+
xmax = 8.53
|
110 |
+
text = "job"
|
111 |
+
intervals [25]:
|
112 |
+
xmin = 8.53
|
113 |
+
xmax = 8.71
|
114 |
+
text = "i've"
|
115 |
+
intervals [26]:
|
116 |
+
xmin = 8.71
|
117 |
+
xmax = 9.13
|
118 |
+
text = "always"
|
119 |
+
intervals [27]:
|
120 |
+
xmin = 9.13
|
121 |
+
xmax = 9.53
|
122 |
+
text = "wanted"
|
123 |
+
intervals [28]:
|
124 |
+
xmin = 9.53
|
125 |
+
xmax = 9.6
|
126 |
+
text = "to"
|
127 |
+
intervals [29]:
|
128 |
+
xmin = 9.6
|
129 |
+
xmax = 9.77
|
130 |
+
text = "be"
|
131 |
+
intervals [30]:
|
132 |
+
xmin = 9.77
|
133 |
+
xmax = 9.84
|
134 |
+
text = "a"
|
135 |
+
intervals [31]:
|
136 |
+
xmin = 9.84
|
137 |
+
xmax = 10.29
|
138 |
+
text = "journalist"
|
139 |
+
intervals [32]:
|
140 |
+
xmin = 10.29
|
141 |
+
xmax = 10.48
|
142 |
+
text = "since"
|
143 |
+
intervals [33]:
|
144 |
+
xmin = 10.48
|
145 |
+
xmax = 10.54
|
146 |
+
text = "i"
|
147 |
+
intervals [34]:
|
148 |
+
xmin = 10.54
|
149 |
+
xmax = 10.71
|
150 |
+
text = "was"
|
151 |
+
intervals [35]:
|
152 |
+
xmin = 10.71
|
153 |
+
xmax = 10.78
|
154 |
+
text = "in"
|
155 |
+
intervals [36]:
|
156 |
+
xmin = 10.78
|
157 |
+
xmax = 11.01
|
158 |
+
text = "middle"
|
159 |
+
intervals [37]:
|
160 |
+
xmin = 11.01
|
161 |
+
xmax = 11.4
|
162 |
+
text = "school"
|
163 |
+
intervals [38]:
|
164 |
+
xmin = 11.4
|
165 |
+
xmax = 11.96
|
166 |
+
text = ""
|
167 |
+
intervals [39]:
|
168 |
+
xmin = 11.96
|
169 |
+
xmax = 12.92
|
170 |
+
text = "journalists"
|
171 |
+
intervals [40]:
|
172 |
+
xmin = 12.92
|
173 |
+
xmax = 13.73
|
174 |
+
text = "never"
|
175 |
+
intervals [41]:
|
176 |
+
xmin = 13.73
|
177 |
+
xmax = 13.81
|
178 |
+
text = ""
|
179 |
+
intervals [42]:
|
180 |
+
xmin = 13.81
|
181 |
+
xmax = 14.38
|
182 |
+
text = "tell"
|
183 |
+
intervals [43]:
|
184 |
+
xmin = 14.38
|
185 |
+
xmax = 15.08
|
186 |
+
text = "lies"
|
187 |
+
intervals [44]:
|
188 |
+
xmin = 15.08
|
189 |
+
xmax = 15.19
|
190 |
+
text = "and"
|
191 |
+
intervals [45]:
|
192 |
+
xmin = 15.19
|
193 |
+
xmax = 15.38
|
194 |
+
text = "are"
|
195 |
+
intervals [46]:
|
196 |
+
xmin = 15.38
|
197 |
+
xmax = 15.75
|
198 |
+
text = "always"
|
199 |
+
intervals [47]:
|
200 |
+
xmin = 15.75
|
201 |
+
xmax = 16.07
|
202 |
+
text = "seeking"
|
203 |
+
intervals [48]:
|
204 |
+
xmin = 16.07
|
205 |
+
xmax = 16.17
|
206 |
+
text = "the"
|
207 |
+
intervals [49]:
|
208 |
+
xmin = 16.17
|
209 |
+
xmax = 16.69
|
210 |
+
text = "truth"
|
211 |
+
intervals [50]:
|
212 |
+
xmin = 16.69
|
213 |
+
xmax = 16.85
|
214 |
+
text = ""
|
215 |
+
intervals [51]:
|
216 |
+
xmin = 16.85
|
217 |
+
xmax = 17.09
|
218 |
+
text = "i"
|
219 |
+
intervals [52]:
|
220 |
+
xmin = 17.09
|
221 |
+
xmax = 17.27
|
222 |
+
text = "want"
|
223 |
+
intervals [53]:
|
224 |
+
xmin = 17.27
|
225 |
+
xmax = 17.33
|
226 |
+
text = "to"
|
227 |
+
intervals [54]:
|
228 |
+
xmin = 17.33
|
229 |
+
xmax = 17.45
|
230 |
+
text = "be"
|
231 |
+
intervals [55]:
|
232 |
+
xmin = 17.45
|
233 |
+
xmax = 17.73
|
234 |
+
text = "just"
|
235 |
+
intervals [56]:
|
236 |
+
xmin = 17.73
|
237 |
+
xmax = 18.0
|
238 |
+
text = "like"
|
239 |
+
intervals [57]:
|
240 |
+
xmin = 18.0
|
241 |
+
xmax = 18.36
|
242 |
+
text = "that"
|
243 |
+
intervals [58]:
|
244 |
+
xmin = 18.36
|
245 |
+
xmax = 18.73
|
246 |
+
text = ""
|
247 |
+
intervals [59]:
|
248 |
+
xmin = 18.73
|
249 |
+
xmax = 19.54
|
250 |
+
text = "i"
|
251 |
+
intervals [60]:
|
252 |
+
xmin = 19.54
|
253 |
+
xmax = 19.71
|
254 |
+
text = ""
|
255 |
+
intervals [61]:
|
256 |
+
xmin = 19.71
|
257 |
+
xmax = 20.27
|
258 |
+
text = "usually"
|
259 |
+
intervals [62]:
|
260 |
+
xmin = 20.27
|
261 |
+
xmax = 20.52
|
262 |
+
text = "feel"
|
263 |
+
intervals [63]:
|
264 |
+
xmin = 20.52
|
265 |
+
xmax = 20.96
|
266 |
+
text = "shy"
|
267 |
+
intervals [64]:
|
268 |
+
xmin = 20.96
|
269 |
+
xmax = 21.14
|
270 |
+
text = "when"
|
271 |
+
intervals [65]:
|
272 |
+
xmin = 21.14
|
273 |
+
xmax = 21.26
|
274 |
+
text = "i"
|
275 |
+
intervals [66]:
|
276 |
+
xmin = 21.26
|
277 |
+
xmax = 21.38
|
278 |
+
text = "am"
|
279 |
+
intervals [67]:
|
280 |
+
xmin = 21.38
|
281 |
+
xmax = 21.75
|
282 |
+
text = "talking"
|
283 |
+
intervals [68]:
|
284 |
+
xmin = 21.75
|
285 |
+
xmax = 21.86
|
286 |
+
text = "to"
|
287 |
+
intervals [69]:
|
288 |
+
xmin = 21.86
|
289 |
+
xmax = 22.22
|
290 |
+
text = "others"
|
291 |
+
intervals [70]:
|
292 |
+
xmin = 22.22
|
293 |
+
xmax = 22.37
|
294 |
+
text = "and"
|
295 |
+
intervals [71]:
|
296 |
+
xmin = 22.37
|
297 |
+
xmax = 22.46
|
298 |
+
text = "i"
|
299 |
+
intervals [72]:
|
300 |
+
xmin = 22.46
|
301 |
+
xmax = 22.8
|
302 |
+
text = "know"
|
303 |
+
intervals [73]:
|
304 |
+
xmin = 22.8
|
305 |
+
xmax = 23.1
|
306 |
+
text = "that"
|
307 |
+
intervals [74]:
|
308 |
+
xmin = 23.1
|
309 |
+
xmax = 23.79
|
310 |
+
text = "journalists"
|
311 |
+
intervals [75]:
|
312 |
+
xmin = 23.79
|
313 |
+
xmax = 23.99
|
314 |
+
text = "are"
|
315 |
+
intervals [76]:
|
316 |
+
xmin = 23.99
|
317 |
+
xmax = 24.73
|
318 |
+
text = "very"
|
319 |
+
intervals [77]:
|
320 |
+
xmin = 24.73
|
321 |
+
xmax = 25.29
|
322 |
+
text = "good"
|
323 |
+
intervals [78]:
|
324 |
+
xmin = 25.29
|
325 |
+
xmax = 25.44
|
326 |
+
text = ""
|
327 |
+
intervals [79]:
|
328 |
+
xmin = 25.44
|
329 |
+
xmax = 25.7
|
330 |
+
text = "at"
|
331 |
+
intervals [80]:
|
332 |
+
xmin = 25.7
|
333 |
+
xmax = 26.41
|
334 |
+
text = "communicating"
|
335 |
+
intervals [81]:
|
336 |
+
xmin = 26.41
|
337 |
+
xmax = 26.94
|
338 |
+
text = "because"
|
339 |
+
intervals [82]:
|
340 |
+
xmin = 26.94
|
341 |
+
xmax = 26.98
|
342 |
+
text = ""
|
343 |
+
intervals [83]:
|
344 |
+
xmin = 26.98
|
345 |
+
xmax = 27.2
|
346 |
+
text = "good"
|
347 |
+
intervals [84]:
|
348 |
+
xmin = 27.2
|
349 |
+
xmax = 27.95
|
350 |
+
text = "communication"
|
351 |
+
intervals [85]:
|
352 |
+
xmin = 27.95
|
353 |
+
xmax = 28.36
|
354 |
+
text = "skills"
|
355 |
+
intervals [86]:
|
356 |
+
xmin = 28.36
|
357 |
+
xmax = 28.51
|
358 |
+
text = "are"
|
359 |
+
intervals [87]:
|
360 |
+
xmin = 28.51
|
361 |
+
xmax = 28.75
|
362 |
+
text = "very"
|
363 |
+
intervals [88]:
|
364 |
+
xmin = 28.75
|
365 |
+
xmax = 29.22
|
366 |
+
text = "important"
|
367 |
+
intervals [89]:
|
368 |
+
xmin = 29.22
|
369 |
+
xmax = 29.39
|
370 |
+
text = "when"
|
371 |
+
intervals [90]:
|
372 |
+
xmin = 29.39
|
373 |
+
xmax = 29.51
|
374 |
+
text = "you're"
|
375 |
+
intervals [91]:
|
376 |
+
xmin = 29.51
|
377 |
+
xmax = 29.85
|
378 |
+
text = "doing"
|
379 |
+
intervals [92]:
|
380 |
+
xmin = 29.85
|
381 |
+
xmax = 30.43
|
382 |
+
text = "interviews"
|
383 |
+
intervals [93]:
|
384 |
+
xmin = 30.43
|
385 |
+
xmax = 30.71
|
386 |
+
text = ""
|
387 |
+
intervals [94]:
|
388 |
+
xmin = 30.71
|
389 |
+
xmax = 30.99
|
390 |
+
text = "i"
|
391 |
+
intervals [95]:
|
392 |
+
xmin = 30.99
|
393 |
+
xmax = 31.21
|
394 |
+
text = "want"
|
395 |
+
intervals [96]:
|
396 |
+
xmin = 31.21
|
397 |
+
xmax = 31.3
|
398 |
+
text = "to"
|
399 |
+
intervals [97]:
|
400 |
+
xmin = 31.3
|
401 |
+
xmax = 31.71
|
402 |
+
text = "possess"
|
403 |
+
intervals [98]:
|
404 |
+
xmin = 31.71
|
405 |
+
xmax = 31.82
|
406 |
+
text = "the"
|
407 |
+
intervals [99]:
|
408 |
+
xmin = 31.82
|
409 |
+
xmax = 32.16
|
410 |
+
text = "skill"
|
411 |
+
intervals [100]:
|
412 |
+
xmin = 32.16
|
413 |
+
xmax = 32.93
|
414 |
+
text = "myself"
|
415 |
+
intervals [101]:
|
416 |
+
xmin = 32.93
|
417 |
+
xmax = 33.0
|
418 |
+
text = ""
|
419 |
+
intervals [102]:
|
420 |
+
xmin = 33.0
|
421 |
+
xmax = 33.53
|
422 |
+
text = "so"
|
423 |
+
intervals [103]:
|
424 |
+
xmin = 33.53
|
425 |
+
xmax = 33.56
|
426 |
+
text = ""
|
427 |
+
intervals [104]:
|
428 |
+
xmin = 33.56
|
429 |
+
xmax = 33.95
|
430 |
+
text = "that's"
|
431 |
+
intervals [105]:
|
432 |
+
xmin = 33.95
|
433 |
+
xmax = 34.31
|
434 |
+
text = "why"
|
435 |
+
intervals [106]:
|
436 |
+
xmin = 34.31
|
437 |
+
xmax = 34.53
|
438 |
+
text = "i"
|
439 |
+
intervals [107]:
|
440 |
+
xmin = 34.53
|
441 |
+
xmax = 34.83
|
442 |
+
text = "want"
|
443 |
+
intervals [108]:
|
444 |
+
xmin = 34.83
|
445 |
+
xmax = 34.89
|
446 |
+
text = "to"
|
447 |
+
intervals [109]:
|
448 |
+
xmin = 34.89
|
449 |
+
xmax = 35.42
|
450 |
+
text = "become"
|
451 |
+
intervals [110]:
|
452 |
+
xmin = 35.42
|
453 |
+
xmax = 35.46
|
454 |
+
text = ""
|
455 |
+
intervals [111]:
|
456 |
+
xmin = 35.46
|
457 |
+
xmax = 35.59
|
458 |
+
text = "a"
|
459 |
+
intervals [112]:
|
460 |
+
xmin = 35.59
|
461 |
+
xmax = 36.37
|
462 |
+
text = "journalist"
|
463 |
+
intervals [113]:
|
464 |
+
xmin = 36.37
|
465 |
+
xmax = 36.74
|
466 |
+
text = ""
|
467 |
+
intervals [114]:
|
468 |
+
xmin = 36.74
|
469 |
+
xmax = 37.02
|
470 |
+
text = "other"
|
471 |
+
intervals [115]:
|
472 |
+
xmin = 37.02
|
473 |
+
xmax = 37.18
|
474 |
+
text = "than"
|
475 |
+
intervals [116]:
|
476 |
+
xmin = 37.18
|
477 |
+
xmax = 37.73
|
478 |
+
text = "that"
|
479 |
+
intervals [117]:
|
480 |
+
xmin = 37.73
|
481 |
+
xmax = 37.76
|
482 |
+
text = ""
|
483 |
+
intervals [118]:
|
484 |
+
xmin = 37.76
|
485 |
+
xmax = 38.72
|
486 |
+
text = "photography"
|
487 |
+
intervals [119]:
|
488 |
+
xmin = 38.72
|
489 |
+
xmax = 38.96
|
490 |
+
text = ""
|
491 |
+
intervals [120]:
|
492 |
+
xmin = 38.96
|
493 |
+
xmax = 39.4
|
494 |
+
text = "often"
|
495 |
+
intervals [121]:
|
496 |
+
xmin = 39.4
|
497 |
+
xmax = 39.66
|
498 |
+
text = "makes"
|
499 |
+
intervals [122]:
|
500 |
+
xmin = 39.66
|
501 |
+
xmax = 39.8
|
502 |
+
text = "me"
|
503 |
+
intervals [123]:
|
504 |
+
xmin = 39.8
|
505 |
+
xmax = 40.39
|
506 |
+
text = "feel"
|
507 |
+
intervals [124]:
|
508 |
+
xmin = 40.39
|
509 |
+
xmax = 40.72
|
510 |
+
text = "like"
|
511 |
+
intervals [125]:
|
512 |
+
xmin = 40.72
|
513 |
+
xmax = 41.42
|
514 |
+
text = "i'm"
|
515 |
+
intervals [126]:
|
516 |
+
xmin = 41.42
|
517 |
+
xmax = 41.77
|
518 |
+
text = ""
|
519 |
+
intervals [127]:
|
520 |
+
xmin = 41.77
|
521 |
+
xmax = 42.06
|
522 |
+
text = "doing"
|
523 |
+
intervals [128]:
|
524 |
+
xmin = 42.06
|
525 |
+
xmax = 42.13
|
526 |
+
text = "a"
|
527 |
+
intervals [129]:
|
528 |
+
xmin = 42.13
|
529 |
+
xmax = 42.41
|
530 |
+
text = "job"
|
531 |
+
intervals [130]:
|
532 |
+
xmin = 42.41
|
533 |
+
xmax = 42.58
|
534 |
+
text = "full"
|
535 |
+
intervals [131]:
|
536 |
+
xmin = 42.58
|
537 |
+
xmax = 42.64
|
538 |
+
text = "of"
|
539 |
+
intervals [132]:
|
540 |
+
xmin = 42.64
|
541 |
+
xmax = 42.99
|
542 |
+
text = "design"
|
543 |
+
intervals [133]:
|
544 |
+
xmin = 42.99
|
545 |
+
xmax = 43.12
|
546 |
+
text = "and"
|
547 |
+
intervals [134]:
|
548 |
+
xmin = 43.12
|
549 |
+
xmax = 43.25
|
550 |
+
text = "in"
|
551 |
+
intervals [135]:
|
552 |
+
xmin = 43.25
|
553 |
+
xmax = 43.52
|
554 |
+
text = "for"
|
555 |
+
intervals [136]:
|
556 |
+
xmin = 43.52
|
557 |
+
xmax = 44.31
|
558 |
+
text = "innovation"
|
559 |
+
intervals [137]:
|
560 |
+
xmin = 44.31
|
561 |
+
xmax = 45.18
|
562 |
+
text = ""
|
563 |
+
intervals [138]:
|
564 |
+
xmin = 45.18
|
565 |
+
xmax = 45.73
|
566 |
+
text = "because"
|
567 |
+
intervals [139]:
|
568 |
+
xmin = 45.73
|
569 |
+
xmax = 45.89
|
570 |
+
text = "for"
|
571 |
+
intervals [140]:
|
572 |
+
xmin = 45.89
|
573 |
+
xmax = 45.99
|
574 |
+
text = "the"
|
575 |
+
intervals [141]:
|
576 |
+
xmin = 45.99
|
577 |
+
xmax = 46.35
|
578 |
+
text = "same"
|
579 |
+
intervals [142]:
|
580 |
+
xmin = 46.35
|
581 |
+
xmax = 46.88
|
582 |
+
text = "scenery"
|
583 |
+
intervals [143]:
|
584 |
+
xmin = 46.88
|
585 |
+
xmax = 47.01
|
586 |
+
text = "we"
|
587 |
+
intervals [144]:
|
588 |
+
xmin = 47.01
|
589 |
+
xmax = 47.12
|
590 |
+
text = "can"
|
591 |
+
intervals [145]:
|
592 |
+
xmin = 47.12
|
593 |
+
xmax = 47.34
|
594 |
+
text = "use"
|
595 |
+
intervals [146]:
|
596 |
+
xmin = 47.34
|
597 |
+
xmax = 47.61
|
598 |
+
text = "different"
|
599 |
+
intervals [147]:
|
600 |
+
xmin = 47.61
|
601 |
+
xmax = 48.12
|
602 |
+
text = "angles"
|
603 |
+
intervals [148]:
|
604 |
+
xmin = 48.12
|
605 |
+
xmax = 48.21
|
606 |
+
text = "and"
|
607 |
+
intervals [149]:
|
608 |
+
xmin = 48.21
|
609 |
+
xmax = 48.48
|
610 |
+
text = "different"
|
611 |
+
intervals [150]:
|
612 |
+
xmin = 48.48
|
613 |
+
xmax = 49.32
|
614 |
+
text = "compositions"
|
615 |
+
intervals [151]:
|
616 |
+
xmin = 49.32
|
617 |
+
xmax = 49.68
|
618 |
+
text = ""
|
619 |
+
intervals [152]:
|
620 |
+
xmin = 49.68
|
621 |
+
xmax = 49.98
|
622 |
+
text = "for"
|
623 |
+
intervals [153]:
|
624 |
+
xmin = 49.98
|
625 |
+
xmax = 50.4
|
626 |
+
text = "example"
|
627 |
+
intervals [154]:
|
628 |
+
xmin = 50.4
|
629 |
+
xmax = 50.91
|
630 |
+
text = "people"
|
631 |
+
intervals [155]:
|
632 |
+
xmin = 50.91
|
633 |
+
xmax = 51.42
|
634 |
+
text = "being"
|
635 |
+
intervals [156]:
|
636 |
+
xmin = 51.42
|
637 |
+
xmax = 51.91
|
638 |
+
text = "shifted"
|
639 |
+
intervals [157]:
|
640 |
+
xmin = 51.91
|
641 |
+
xmax = 52.06
|
642 |
+
text = "from"
|
643 |
+
intervals [158]:
|
644 |
+
xmin = 52.06
|
645 |
+
xmax = 52.15
|
646 |
+
text = "the"
|
647 |
+
intervals [159]:
|
648 |
+
xmin = 52.15
|
649 |
+
xmax = 52.47
|
650 |
+
text = "center"
|
651 |
+
intervals [160]:
|
652 |
+
xmin = 52.47
|
653 |
+
xmax = 52.54
|
654 |
+
text = "of"
|
655 |
+
intervals [161]:
|
656 |
+
xmin = 52.54
|
657 |
+
xmax = 52.63
|
658 |
+
text = "the"
|
659 |
+
intervals [162]:
|
660 |
+
xmin = 52.63
|
661 |
+
xmax = 52.95
|
662 |
+
text = "frame"
|
663 |
+
intervals [163]:
|
664 |
+
xmin = 52.95
|
665 |
+
xmax = 53.1
|
666 |
+
text = "to"
|
667 |
+
intervals [164]:
|
668 |
+
xmin = 53.1
|
669 |
+
xmax = 53.32
|
670 |
+
text = "left"
|
671 |
+
intervals [165]:
|
672 |
+
xmin = 53.32
|
673 |
+
xmax = 53.54
|
674 |
+
text = "side"
|
675 |
+
intervals [166]:
|
676 |
+
xmin = 53.54
|
677 |
+
xmax = 53.6
|
678 |
+
text = "of"
|
679 |
+
intervals [167]:
|
680 |
+
xmin = 53.6
|
681 |
+
xmax = 53.69
|
682 |
+
text = "the"
|
683 |
+
intervals [168]:
|
684 |
+
xmin = 53.69
|
685 |
+
xmax = 54.17
|
686 |
+
text = "frame"
|
687 |
+
intervals [169]:
|
688 |
+
xmin = 54.17
|
689 |
+
xmax = 54.62
|
690 |
+
text = ""
|
691 |
+
intervals [170]:
|
692 |
+
xmin = 54.62
|
693 |
+
xmax = 54.75
|
694 |
+
text = "it"
|
695 |
+
intervals [171]:
|
696 |
+
xmin = 54.75
|
697 |
+
xmax = 54.91
|
698 |
+
text = "can"
|
699 |
+
intervals [172]:
|
700 |
+
xmin = 54.91
|
701 |
+
xmax = 55.13
|
702 |
+
text = "make"
|
703 |
+
intervals [173]:
|
704 |
+
xmin = 55.13
|
705 |
+
xmax = 55.22
|
706 |
+
text = "a"
|
707 |
+
intervals [174]:
|
708 |
+
xmin = 55.22
|
709 |
+
xmax = 55.56
|
710 |
+
text = "different"
|
711 |
+
intervals [175]:
|
712 |
+
xmin = 55.56
|
713 |
+
xmax = 56.05
|
714 |
+
text = "feeling"
|
715 |
+
intervals [176]:
|
716 |
+
xmin = 56.05
|
717 |
+
xmax = 56.41
|
718 |
+
text = ""
|
719 |
+
intervals [177]:
|
720 |
+
xmin = 56.41
|
721 |
+
xmax = 56.69
|
722 |
+
text = "when"
|
723 |
+
intervals [178]:
|
724 |
+
xmin = 56.69
|
725 |
+
xmax = 57.25
|
726 |
+
text = "we"
|
727 |
+
intervals [179]:
|
728 |
+
xmin = 57.25
|
729 |
+
xmax = 57.5
|
730 |
+
text = ""
|
731 |
+
intervals [180]:
|
732 |
+
xmin = 57.5
|
733 |
+
xmax = 57.82
|
734 |
+
text = "when"
|
735 |
+
intervals [181]:
|
736 |
+
xmin = 57.82
|
737 |
+
xmax = 58.07
|
738 |
+
text = "seen"
|
739 |
+
intervals [182]:
|
740 |
+
xmin = 58.07
|
741 |
+
xmax = 58.17
|
742 |
+
text = "in"
|
743 |
+
intervals [183]:
|
744 |
+
xmin = 58.17
|
745 |
+
xmax = 58.77
|
746 |
+
text = "context"
|
747 |
+
intervals [184]:
|
748 |
+
xmin = 58.77
|
749 |
+
xmax = 58.86
|
750 |
+
text = "with"
|
751 |
+
intervals [185]:
|
752 |
+
xmin = 58.86
|
753 |
+
xmax = 58.93
|
754 |
+
text = "the"
|
755 |
+
intervals [186]:
|
756 |
+
xmin = 58.93
|
757 |
+
xmax = 59.61
|
758 |
+
text = "background"
|
759 |
+
intervals [187]:
|
760 |
+
xmin = 59.61
|
761 |
+
xmax = 59.96
|
762 |
+
text = ""
|
763 |
+
intervals [188]:
|
764 |
+
xmin = 59.96
|
765 |
+
xmax = 60.31
|
766 |
+
text = "when"
|
767 |
+
intervals [189]:
|
768 |
+
xmin = 60.31
|
769 |
+
xmax = 60.79
|
770 |
+
text = "everyone's"
|
771 |
+
intervals [190]:
|
772 |
+
xmin = 60.79
|
773 |
+
xmax = 61.08
|
774 |
+
text = "taking"
|
775 |
+
intervals [191]:
|
776 |
+
xmin = 61.08
|
777 |
+
xmax = 61.14
|
778 |
+
text = "a"
|
779 |
+
intervals [192]:
|
780 |
+
xmin = 61.14
|
781 |
+
xmax = 61.46
|
782 |
+
text = "picture"
|
783 |
+
intervals [193]:
|
784 |
+
xmin = 61.46
|
785 |
+
xmax = 61.53
|
786 |
+
text = "of"
|
787 |
+
intervals [194]:
|
788 |
+
xmin = 61.53
|
789 |
+
xmax = 61.6
|
790 |
+
text = "the"
|
791 |
+
intervals [195]:
|
792 |
+
xmin = 61.6
|
793 |
+
xmax = 61.98
|
794 |
+
text = "exact"
|
795 |
+
intervals [196]:
|
796 |
+
xmin = 61.98
|
797 |
+
xmax = 62.19
|
798 |
+
text = "same"
|
799 |
+
intervals [197]:
|
800 |
+
xmin = 62.19
|
801 |
+
xmax = 62.64
|
802 |
+
text = "scenery"
|
803 |
+
intervals [198]:
|
804 |
+
xmin = 62.64
|
805 |
+
xmax = 62.67
|
806 |
+
text = ""
|
807 |
+
intervals [199]:
|
808 |
+
xmin = 62.67
|
809 |
+
xmax = 62.89
|
810 |
+
text = "i'm"
|
811 |
+
intervals [200]:
|
812 |
+
xmin = 62.89
|
813 |
+
xmax = 63.28
|
814 |
+
text = "very"
|
815 |
+
intervals [201]:
|
816 |
+
xmin = 63.28
|
817 |
+
xmax = 63.75
|
818 |
+
text = "happy"
|
819 |
+
intervals [202]:
|
820 |
+
xmin = 63.75
|
821 |
+
xmax = 63.9
|
822 |
+
text = "when"
|
823 |
+
intervals [203]:
|
824 |
+
xmin = 63.9
|
825 |
+
xmax = 64.35
|
826 |
+
text = "people"
|
827 |
+
intervals [204]:
|
828 |
+
xmin = 64.35
|
829 |
+
xmax = 64.6
|
830 |
+
text = "say"
|
831 |
+
intervals [205]:
|
832 |
+
xmin = 64.6
|
833 |
+
xmax = 64.84
|
834 |
+
text = "my"
|
835 |
+
intervals [206]:
|
836 |
+
xmin = 64.84
|
837 |
+
xmax = 65.29
|
838 |
+
text = "photos"
|
839 |
+
intervals [207]:
|
840 |
+
xmin = 65.29
|
841 |
+
xmax = 65.47
|
842 |
+
text = "look"
|
843 |
+
intervals [208]:
|
844 |
+
xmin = 65.47
|
845 |
+
xmax = 66.11
|
846 |
+
text = "better"
|
847 |
+
intervals [209]:
|
848 |
+
xmin = 66.11
|
849 |
+
xmax = 66.43
|
850 |
+
text = ""
|
851 |
+
intervals [210]:
|
852 |
+
xmin = 66.43
|
853 |
+
xmax = 66.56
|
854 |
+
text = "than"
|
855 |
+
intervals [211]:
|
856 |
+
xmin = 66.56
|
857 |
+
xmax = 66.7
|
858 |
+
text = "the"
|
859 |
+
intervals [212]:
|
860 |
+
xmin = 66.7
|
861 |
+
xmax = 67.19
|
862 |
+
text = "others"
|
863 |
+
intervals [213]:
|
864 |
+
xmin = 67.19
|
865 |
+
xmax = 68
|
866 |
+
text = ""
|
867 |
+
item [2]:
|
868 |
+
class = "IntervalTier"
|
869 |
+
name = "phones"
|
870 |
+
xmin = 0.0
|
871 |
+
xmax = 68
|
872 |
+
intervals: size = 701
|
873 |
+
intervals [1]:
|
874 |
+
xmin = 0.0
|
875 |
+
xmax = 1.47
|
876 |
+
text = ""
|
877 |
+
intervals [2]:
|
878 |
+
xmin = 1.47
|
879 |
+
xmax = 1.59
|
880 |
+
text = "W"
|
881 |
+
intervals [3]:
|
882 |
+
xmin = 1.59
|
883 |
+
xmax = 1.99
|
884 |
+
text = "EH1"
|
885 |
+
intervals [4]:
|
886 |
+
xmin = 1.99
|
887 |
+
xmax = 2.36
|
888 |
+
text = "L"
|
889 |
+
intervals [5]:
|
890 |
+
xmin = 2.36
|
891 |
+
xmax = 2.56
|
892 |
+
text = ""
|
893 |
+
intervals [6]:
|
894 |
+
xmin = 2.56
|
895 |
+
xmax = 2.88
|
896 |
+
text = "IH0"
|
897 |
+
intervals [7]:
|
898 |
+
xmin = 2.88
|
899 |
+
xmax = 3.05
|
900 |
+
text = "N"
|
901 |
+
intervals [8]:
|
902 |
+
xmin = 3.05
|
903 |
+
xmax = 3.18
|
904 |
+
text = "M"
|
905 |
+
intervals [9]:
|
906 |
+
xmin = 3.18
|
907 |
+
xmax = 3.43
|
908 |
+
text = "AY1"
|
909 |
+
intervals [10]:
|
910 |
+
xmin = 3.43
|
911 |
+
xmax = 3.53
|
912 |
+
text = "AH0"
|
913 |
+
intervals [11]:
|
914 |
+
xmin = 3.53
|
915 |
+
xmax = 3.6
|
916 |
+
text = "P"
|
917 |
+
intervals [12]:
|
918 |
+
xmin = 3.6
|
919 |
+
xmax = 3.7
|
920 |
+
text = "IH1"
|
921 |
+
intervals [13]:
|
922 |
+
xmin = 3.7
|
923 |
+
xmax = 3.77
|
924 |
+
text = "N"
|
925 |
+
intervals [14]:
|
926 |
+
xmin = 3.77
|
927 |
+
xmax = 3.85
|
928 |
+
text = "Y"
|
929 |
+
intervals [15]:
|
930 |
+
xmin = 3.85
|
931 |
+
xmax = 3.92
|
932 |
+
text = "AH0"
|
933 |
+
intervals [16]:
|
934 |
+
xmin = 3.92
|
935 |
+
xmax = 4.29
|
936 |
+
text = "N"
|
937 |
+
intervals [17]:
|
938 |
+
xmin = 4.29
|
939 |
+
xmax = 4.43
|
940 |
+
text = "AY1"
|
941 |
+
intervals [18]:
|
942 |
+
xmin = 4.43
|
943 |
+
xmax = 4.5
|
944 |
+
text = "TH"
|
945 |
+
intervals [19]:
|
946 |
+
xmin = 4.5
|
947 |
+
xmax = 4.57
|
948 |
+
text = "IH1"
|
949 |
+
intervals [20]:
|
950 |
+
xmin = 4.57
|
951 |
+
xmax = 4.67
|
952 |
+
text = "NG"
|
953 |
+
intervals [21]:
|
954 |
+
xmin = 4.67
|
955 |
+
xmax = 4.7
|
956 |
+
text = "K"
|
957 |
+
intervals [22]:
|
958 |
+
xmin = 4.7
|
959 |
+
xmax = 4.73
|
960 |
+
text = "DH"
|
961 |
+
intervals [23]:
|
962 |
+
xmin = 4.73
|
963 |
+
xmax = 4.77
|
964 |
+
text = "AH0"
|
965 |
+
intervals [24]:
|
966 |
+
xmin = 4.77
|
967 |
+
xmax = 4.84
|
968 |
+
text = "B"
|
969 |
+
intervals [25]:
|
970 |
+
xmin = 4.84
|
971 |
+
xmax = 4.96
|
972 |
+
text = "EH1"
|
973 |
+
intervals [26]:
|
974 |
+
xmin = 4.96
|
975 |
+
xmax = 5.02
|
976 |
+
text = "S"
|
977 |
+
intervals [27]:
|
978 |
+
xmin = 5.02
|
979 |
+
xmax = 5.06
|
980 |
+
text = "T"
|
981 |
+
intervals [28]:
|
982 |
+
xmin = 5.06
|
983 |
+
xmax = 5.17
|
984 |
+
text = "JH"
|
985 |
+
intervals [29]:
|
986 |
+
xmin = 5.17
|
987 |
+
xmax = 5.25
|
988 |
+
text = "AA1"
|
989 |
+
intervals [30]:
|
990 |
+
xmin = 5.25
|
991 |
+
xmax = 5.31
|
992 |
+
text = "B"
|
993 |
+
intervals [31]:
|
994 |
+
xmin = 5.31
|
995 |
+
xmax = 5.35
|
996 |
+
text = "F"
|
997 |
+
intervals [32]:
|
998 |
+
xmin = 5.35
|
999 |
+
xmax = 5.41
|
1000 |
+
text = "ER0"
|
1001 |
+
intervals [33]:
|
1002 |
+
xmin = 5.41
|
1003 |
+
xmax = 5.49
|
1004 |
+
text = "M"
|
1005 |
+
intervals [34]:
|
1006 |
+
xmin = 5.49
|
1007 |
+
xmax = 5.62
|
1008 |
+
text = "IY1"
|
1009 |
+
intervals [35]:
|
1010 |
+
xmin = 5.62
|
1011 |
+
xmax = 5.69
|
1012 |
+
text = "IH1"
|
1013 |
+
intervals [36]:
|
1014 |
+
xmin = 5.69
|
1015 |
+
xmax = 5.76
|
1016 |
+
text = "Z"
|
1017 |
+
intervals [37]:
|
1018 |
+
xmin = 5.76
|
1019 |
+
xmax = 5.8
|
1020 |
+
text = "T"
|
1021 |
+
intervals [38]:
|
1022 |
+
xmin = 5.8
|
1023 |
+
xmax = 5.84
|
1024 |
+
text = "IH0"
|
1025 |
+
intervals [39]:
|
1026 |
+
xmin = 5.84
|
1027 |
+
xmax = 5.88
|
1028 |
+
text = "B"
|
1029 |
+
intervals [40]:
|
1030 |
+
xmin = 5.88
|
1031 |
+
xmax = 5.94
|
1032 |
+
text = "IH0"
|
1033 |
+
intervals [41]:
|
1034 |
+
xmin = 5.94
|
1035 |
+
xmax = 6.01
|
1036 |
+
text = "K"
|
1037 |
+
intervals [42]:
|
1038 |
+
xmin = 6.01
|
1039 |
+
xmax = 6.06
|
1040 |
+
text = "AH1"
|
1041 |
+
intervals [43]:
|
1042 |
+
xmin = 6.06
|
1043 |
+
xmax = 6.11
|
1044 |
+
text = "M"
|
1045 |
+
intervals [44]:
|
1046 |
+
xmin = 6.11
|
1047 |
+
xmax = 6.2
|
1048 |
+
text = "AH0"
|
1049 |
+
intervals [45]:
|
1050 |
+
xmin = 6.2
|
1051 |
+
xmax = 6.42
|
1052 |
+
text = "JH"
|
1053 |
+
intervals [46]:
|
1054 |
+
xmin = 6.42
|
1055 |
+
xmax = 6.52
|
1056 |
+
text = "ER1"
|
1057 |
+
intervals [47]:
|
1058 |
+
xmin = 6.52
|
1059 |
+
xmax = 6.57
|
1060 |
+
text = "N"
|
1061 |
+
intervals [48]:
|
1062 |
+
xmin = 6.57
|
1063 |
+
xmax = 6.63
|
1064 |
+
text = "AH0"
|
1065 |
+
intervals [49]:
|
1066 |
+
xmin = 6.63
|
1067 |
+
xmax = 6.71
|
1068 |
+
text = "L"
|
1069 |
+
intervals [50]:
|
1070 |
+
xmin = 6.71
|
1071 |
+
xmax = 6.77
|
1072 |
+
text = "AH0"
|
1073 |
+
intervals [51]:
|
1074 |
+
xmin = 6.77
|
1075 |
+
xmax = 6.87
|
1076 |
+
text = "S"
|
1077 |
+
intervals [52]:
|
1078 |
+
xmin = 6.87
|
1079 |
+
xmax = 6.93
|
1080 |
+
text = "T"
|
1081 |
+
intervals [53]:
|
1082 |
+
xmin = 6.93
|
1083 |
+
xmax = 7.04
|
1084 |
+
text = "K"
|
1085 |
+
intervals [54]:
|
1086 |
+
xmin = 7.04
|
1087 |
+
xmax = 7.18
|
1088 |
+
text = "UW0"
|
1089 |
+
intervals [55]:
|
1090 |
+
xmin = 7.18
|
1091 |
+
xmax = 7.3
|
1092 |
+
text = "Z"
|
1093 |
+
intervals [56]:
|
1094 |
+
xmin = 7.3
|
1095 |
+
xmax = 7.37
|
1096 |
+
text = "DH"
|
1097 |
+
intervals [57]:
|
1098 |
+
xmin = 7.37
|
1099 |
+
xmax = 7.44
|
1100 |
+
text = "IH1"
|
1101 |
+
intervals [58]:
|
1102 |
+
xmin = 7.44
|
1103 |
+
xmax = 7.53
|
1104 |
+
text = "S"
|
1105 |
+
intervals [59]:
|
1106 |
+
xmin = 7.53
|
1107 |
+
xmax = 7.58
|
1108 |
+
text = "IH0"
|
1109 |
+
intervals [60]:
|
1110 |
+
xmin = 7.58
|
1111 |
+
xmax = 7.63
|
1112 |
+
text = "Z"
|
1113 |
+
intervals [61]:
|
1114 |
+
xmin = 7.63
|
1115 |
+
xmax = 7.71
|
1116 |
+
text = "M"
|
1117 |
+
intervals [62]:
|
1118 |
+
xmin = 7.71
|
1119 |
+
xmax = 7.79
|
1120 |
+
text = "AY1"
|
1121 |
+
intervals [63]:
|
1122 |
+
xmin = 7.79
|
1123 |
+
xmax = 7.9
|
1124 |
+
text = "D"
|
1125 |
+
intervals [64]:
|
1126 |
+
xmin = 7.9
|
1127 |
+
xmax = 7.97
|
1128 |
+
text = "R"
|
1129 |
+
intervals [65]:
|
1130 |
+
xmin = 7.97
|
1131 |
+
xmax = 8.07
|
1132 |
+
text = "IY1"
|
1133 |
+
intervals [66]:
|
1134 |
+
xmin = 8.07
|
1135 |
+
xmax = 8.14
|
1136 |
+
text = "M"
|
1137 |
+
intervals [67]:
|
1138 |
+
xmin = 8.14
|
1139 |
+
xmax = 8.26
|
1140 |
+
text = "JH"
|
1141 |
+
intervals [68]:
|
1142 |
+
xmin = 8.26
|
1143 |
+
xmax = 8.44
|
1144 |
+
text = "AA1"
|
1145 |
+
intervals [69]:
|
1146 |
+
xmin = 8.44
|
1147 |
+
xmax = 8.53
|
1148 |
+
text = "B"
|
1149 |
+
intervals [70]:
|
1150 |
+
xmin = 8.53
|
1151 |
+
xmax = 8.65
|
1152 |
+
text = "AY1"
|
1153 |
+
intervals [71]:
|
1154 |
+
xmin = 8.65
|
1155 |
+
xmax = 8.71
|
1156 |
+
text = "V"
|
1157 |
+
intervals [72]:
|
1158 |
+
xmin = 8.71
|
1159 |
+
xmax = 8.82
|
1160 |
+
text = "AO1"
|
1161 |
+
intervals [73]:
|
1162 |
+
xmin = 8.82
|
1163 |
+
xmax = 8.88
|
1164 |
+
text = "L"
|
1165 |
+
intervals [74]:
|
1166 |
+
xmin = 8.88
|
1167 |
+
xmax = 8.98
|
1168 |
+
text = "W"
|
1169 |
+
intervals [75]:
|
1170 |
+
xmin = 8.98
|
1171 |
+
xmax = 9.03
|
1172 |
+
text = "IY0"
|
1173 |
+
intervals [76]:
|
1174 |
+
xmin = 9.03
|
1175 |
+
xmax = 9.13
|
1176 |
+
text = "Z"
|
1177 |
+
intervals [77]:
|
1178 |
+
xmin = 9.13
|
1179 |
+
xmax = 9.3
|
1180 |
+
text = "W"
|
1181 |
+
intervals [78]:
|
1182 |
+
xmin = 9.3
|
1183 |
+
xmax = 9.42
|
1184 |
+
text = "AO1"
|
1185 |
+
intervals [79]:
|
1186 |
+
xmin = 9.42
|
1187 |
+
xmax = 9.46
|
1188 |
+
text = "N"
|
1189 |
+
intervals [80]:
|
1190 |
+
xmin = 9.46
|
1191 |
+
xmax = 9.5
|
1192 |
+
text = "IH0"
|
1193 |
+
intervals [81]:
|
1194 |
+
xmin = 9.5
|
1195 |
+
xmax = 9.53
|
1196 |
+
text = "D"
|
1197 |
+
intervals [82]:
|
1198 |
+
xmin = 9.53
|
1199 |
+
xmax = 9.56
|
1200 |
+
text = "T"
|
1201 |
+
intervals [83]:
|
1202 |
+
xmin = 9.56
|
1203 |
+
xmax = 9.6
|
1204 |
+
text = "AH0"
|
1205 |
+
intervals [84]:
|
1206 |
+
xmin = 9.6
|
1207 |
+
xmax = 9.66
|
1208 |
+
text = "B"
|
1209 |
+
intervals [85]:
|
1210 |
+
xmin = 9.66
|
1211 |
+
xmax = 9.77
|
1212 |
+
text = "IY1"
|
1213 |
+
intervals [86]:
|
1214 |
+
xmin = 9.77
|
1215 |
+
xmax = 9.84
|
1216 |
+
text = "AH0"
|
1217 |
+
intervals [87]:
|
1218 |
+
xmin = 9.84
|
1219 |
+
xmax = 9.95
|
1220 |
+
text = "JH"
|
1221 |
+
intervals [88]:
|
1222 |
+
xmin = 9.95
|
1223 |
+
xmax = 10.0
|
1224 |
+
text = "ER1"
|
1225 |
+
intervals [89]:
|
1226 |
+
xmin = 10.0
|
1227 |
+
xmax = 10.03
|
1228 |
+
text = "N"
|
1229 |
+
intervals [90]:
|
1230 |
+
xmin = 10.03
|
1231 |
+
xmax = 10.1
|
1232 |
+
text = "AH0"
|
1233 |
+
intervals [91]:
|
1234 |
+
xmin = 10.1
|
1235 |
+
xmax = 10.18
|
1236 |
+
text = "L"
|
1237 |
+
intervals [92]:
|
1238 |
+
xmin = 10.18
|
1239 |
+
xmax = 10.23
|
1240 |
+
text = "AH0"
|
1241 |
+
intervals [93]:
|
1242 |
+
xmin = 10.23
|
1243 |
+
xmax = 10.26
|
1244 |
+
text = "S"
|
1245 |
+
intervals [94]:
|
1246 |
+
xmin = 10.26
|
1247 |
+
xmax = 10.29
|
1248 |
+
text = "T"
|
1249 |
+
intervals [95]:
|
1250 |
+
xmin = 10.29
|
1251 |
+
xmax = 10.33
|
1252 |
+
text = "S"
|
1253 |
+
intervals [96]:
|
1254 |
+
xmin = 10.33
|
1255 |
+
xmax = 10.37
|
1256 |
+
text = "IH1"
|
1257 |
+
intervals [97]:
|
1258 |
+
xmin = 10.37
|
1259 |
+
xmax = 10.42
|
1260 |
+
text = "N"
|
1261 |
+
intervals [98]:
|
1262 |
+
xmin = 10.42
|
1263 |
+
xmax = 10.48
|
1264 |
+
text = "S"
|
1265 |
+
intervals [99]:
|
1266 |
+
xmin = 10.48
|
1267 |
+
xmax = 10.54
|
1268 |
+
text = "AY1"
|
1269 |
+
intervals [100]:
|
1270 |
+
xmin = 10.54
|
1271 |
+
xmax = 10.6
|
1272 |
+
text = "W"
|
1273 |
+
intervals [101]:
|
1274 |
+
xmin = 10.6
|
1275 |
+
xmax = 10.64
|
1276 |
+
text = "AH0"
|
1277 |
+
intervals [102]:
|
1278 |
+
xmin = 10.64
|
1279 |
+
xmax = 10.71
|
1280 |
+
text = "Z"
|
1281 |
+
intervals [103]:
|
1282 |
+
xmin = 10.71
|
1283 |
+
xmax = 10.75
|
1284 |
+
text = "IH0"
|
1285 |
+
intervals [104]:
|
1286 |
+
xmin = 10.75
|
1287 |
+
xmax = 10.78
|
1288 |
+
text = "N"
|
1289 |
+
intervals [105]:
|
1290 |
+
xmin = 10.78
|
1291 |
+
xmax = 10.84
|
1292 |
+
text = "M"
|
1293 |
+
intervals [106]:
|
1294 |
+
xmin = 10.84
|
1295 |
+
xmax = 10.87
|
1296 |
+
text = "IH1"
|
1297 |
+
intervals [107]:
|
1298 |
+
xmin = 10.87
|
1299 |
+
xmax = 10.9
|
1300 |
+
text = "D"
|
1301 |
+
intervals [108]:
|
1302 |
+
xmin = 10.9
|
1303 |
+
xmax = 10.95
|
1304 |
+
text = "AH0"
|
1305 |
+
intervals [109]:
|
1306 |
+
xmin = 10.95
|
1307 |
+
xmax = 11.01
|
1308 |
+
text = "L"
|
1309 |
+
intervals [110]:
|
1310 |
+
xmin = 11.01
|
1311 |
+
xmax = 11.11
|
1312 |
+
text = "S"
|
1313 |
+
intervals [111]:
|
1314 |
+
xmin = 11.11
|
1315 |
+
xmax = 11.16
|
1316 |
+
text = "K"
|
1317 |
+
intervals [112]:
|
1318 |
+
xmin = 11.16
|
1319 |
+
xmax = 11.21
|
1320 |
+
text = "UW1"
|
1321 |
+
intervals [113]:
|
1322 |
+
xmin = 11.21
|
1323 |
+
xmax = 11.4
|
1324 |
+
text = "L"
|
1325 |
+
intervals [114]:
|
1326 |
+
xmin = 11.4
|
1327 |
+
xmax = 11.96
|
1328 |
+
text = ""
|
1329 |
+
intervals [115]:
|
1330 |
+
xmin = 11.96
|
1331 |
+
xmax = 12.2
|
1332 |
+
text = "JH"
|
1333 |
+
intervals [116]:
|
1334 |
+
xmin = 12.2
|
1335 |
+
xmax = 12.28
|
1336 |
+
text = "ER1"
|
1337 |
+
intervals [117]:
|
1338 |
+
xmin = 12.28
|
1339 |
+
xmax = 12.34
|
1340 |
+
text = "N"
|
1341 |
+
intervals [118]:
|
1342 |
+
xmin = 12.34
|
1343 |
+
xmax = 12.38
|
1344 |
+
text = "AH0"
|
1345 |
+
intervals [119]:
|
1346 |
+
xmin = 12.38
|
1347 |
+
xmax = 12.5
|
1348 |
+
text = "L"
|
1349 |
+
intervals [120]:
|
1350 |
+
xmin = 12.5
|
1351 |
+
xmax = 12.64
|
1352 |
+
text = "AH0"
|
1353 |
+
intervals [121]:
|
1354 |
+
xmin = 12.64
|
1355 |
+
xmax = 12.83
|
1356 |
+
text = "S"
|
1357 |
+
intervals [122]:
|
1358 |
+
xmin = 12.83
|
1359 |
+
xmax = 12.86
|
1360 |
+
text = "T"
|
1361 |
+
intervals [123]:
|
1362 |
+
xmin = 12.86
|
1363 |
+
xmax = 12.92
|
1364 |
+
text = "S"
|
1365 |
+
intervals [124]:
|
1366 |
+
xmin = 12.92
|
1367 |
+
xmax = 13.14
|
1368 |
+
text = "N"
|
1369 |
+
intervals [125]:
|
1370 |
+
xmin = 13.14
|
1371 |
+
xmax = 13.34
|
1372 |
+
text = "EH1"
|
1373 |
+
intervals [126]:
|
1374 |
+
xmin = 13.34
|
1375 |
+
xmax = 13.46
|
1376 |
+
text = "V"
|
1377 |
+
intervals [127]:
|
1378 |
+
xmin = 13.46
|
1379 |
+
xmax = 13.73
|
1380 |
+
text = "ER0"
|
1381 |
+
intervals [128]:
|
1382 |
+
xmin = 13.73
|
1383 |
+
xmax = 13.81
|
1384 |
+
text = ""
|
1385 |
+
intervals [129]:
|
1386 |
+
xmin = 13.81
|
1387 |
+
xmax = 14.0
|
1388 |
+
text = "T"
|
1389 |
+
intervals [130]:
|
1390 |
+
xmin = 14.0
|
1391 |
+
xmax = 14.17
|
1392 |
+
text = "EH1"
|
1393 |
+
intervals [131]:
|
1394 |
+
xmin = 14.17
|
1395 |
+
xmax = 14.38
|
1396 |
+
text = "L"
|
1397 |
+
intervals [132]:
|
1398 |
+
xmin = 14.38
|
1399 |
+
xmax = 14.43
|
1400 |
+
text = "L"
|
1401 |
+
intervals [133]:
|
1402 |
+
xmin = 14.43
|
1403 |
+
xmax = 14.95
|
1404 |
+
text = "AY1"
|
1405 |
+
intervals [134]:
|
1406 |
+
xmin = 14.95
|
1407 |
+
xmax = 15.08
|
1408 |
+
text = "Z"
|
1409 |
+
intervals [135]:
|
1410 |
+
xmin = 15.08
|
1411 |
+
xmax = 15.13
|
1412 |
+
text = "AE1"
|
1413 |
+
intervals [136]:
|
1414 |
+
xmin = 15.13
|
1415 |
+
xmax = 15.16
|
1416 |
+
text = "N"
|
1417 |
+
intervals [137]:
|
1418 |
+
xmin = 15.16
|
1419 |
+
xmax = 15.19
|
1420 |
+
text = "D"
|
1421 |
+
intervals [138]:
|
1422 |
+
xmin = 15.19
|
1423 |
+
xmax = 15.38
|
1424 |
+
text = "ER0"
|
1425 |
+
intervals [139]:
|
1426 |
+
xmin = 15.38
|
1427 |
+
xmax = 15.43
|
1428 |
+
text = "AO1"
|
1429 |
+
intervals [140]:
|
1430 |
+
xmin = 15.43
|
1431 |
+
xmax = 15.48
|
1432 |
+
text = "L"
|
1433 |
+
intervals [141]:
|
1434 |
+
xmin = 15.48
|
1435 |
+
xmax = 15.57
|
1436 |
+
text = "W"
|
1437 |
+
intervals [142]:
|
1438 |
+
xmin = 15.57
|
1439 |
+
xmax = 15.61
|
1440 |
+
text = "IY0"
|
1441 |
+
intervals [143]:
|
1442 |
+
xmin = 15.61
|
1443 |
+
xmax = 15.75
|
1444 |
+
text = "Z"
|
1445 |
+
intervals [144]:
|
1446 |
+
xmin = 15.75
|
1447 |
+
xmax = 15.8
|
1448 |
+
text = "S"
|
1449 |
+
intervals [145]:
|
1450 |
+
xmin = 15.8
|
1451 |
+
xmax = 15.89
|
1452 |
+
text = "IY1"
|
1453 |
+
intervals [146]:
|
1454 |
+
xmin = 15.89
|
1455 |
+
xmax = 15.96
|
1456 |
+
text = "K"
|
1457 |
+
intervals [147]:
|
1458 |
+
xmin = 15.96
|
1459 |
+
xmax = 16.03
|
1460 |
+
text = "IH0"
|
1461 |
+
intervals [148]:
|
1462 |
+
xmin = 16.03
|
1463 |
+
xmax = 16.07
|
1464 |
+
text = "NG"
|
1465 |
+
intervals [149]:
|
1466 |
+
xmin = 16.07
|
1467 |
+
xmax = 16.12
|
1468 |
+
text = "DH"
|
1469 |
+
intervals [150]:
|
1470 |
+
xmin = 16.12
|
1471 |
+
xmax = 16.17
|
1472 |
+
text = "AH0"
|
1473 |
+
intervals [151]:
|
1474 |
+
xmin = 16.17
|
1475 |
+
xmax = 16.3
|
1476 |
+
text = "T"
|
1477 |
+
intervals [152]:
|
1478 |
+
xmin = 16.3
|
1479 |
+
xmax = 16.36
|
1480 |
+
text = "R"
|
1481 |
+
intervals [153]:
|
1482 |
+
xmin = 16.36
|
1483 |
+
xmax = 16.48
|
1484 |
+
text = "UW1"
|
1485 |
+
intervals [154]:
|
1486 |
+
xmin = 16.48
|
1487 |
+
xmax = 16.69
|
1488 |
+
text = "TH"
|
1489 |
+
intervals [155]:
|
1490 |
+
xmin = 16.69
|
1491 |
+
xmax = 16.85
|
1492 |
+
text = ""
|
1493 |
+
intervals [156]:
|
1494 |
+
xmin = 16.85
|
1495 |
+
xmax = 17.09
|
1496 |
+
text = "AY1"
|
1497 |
+
intervals [157]:
|
1498 |
+
xmin = 17.09
|
1499 |
+
xmax = 17.18
|
1500 |
+
text = "W"
|
1501 |
+
intervals [158]:
|
1502 |
+
xmin = 17.18
|
1503 |
+
xmax = 17.21
|
1504 |
+
text = "AA1"
|
1505 |
+
intervals [159]:
|
1506 |
+
xmin = 17.21
|
1507 |
+
xmax = 17.24
|
1508 |
+
text = "N"
|
1509 |
+
intervals [160]:
|
1510 |
+
xmin = 17.24
|
1511 |
+
xmax = 17.27
|
1512 |
+
text = "T"
|
1513 |
+
intervals [161]:
|
1514 |
+
xmin = 17.27
|
1515 |
+
xmax = 17.3
|
1516 |
+
text = "T"
|
1517 |
+
intervals [162]:
|
1518 |
+
xmin = 17.3
|
1519 |
+
xmax = 17.33
|
1520 |
+
text = "AH0"
|
1521 |
+
intervals [163]:
|
1522 |
+
xmin = 17.33
|
1523 |
+
xmax = 17.37
|
1524 |
+
text = "B"
|
1525 |
+
intervals [164]:
|
1526 |
+
xmin = 17.37
|
1527 |
+
xmax = 17.45
|
1528 |
+
text = "IY0"
|
1529 |
+
intervals [165]:
|
1530 |
+
xmin = 17.45
|
1531 |
+
xmax = 17.57
|
1532 |
+
text = "JH"
|
1533 |
+
intervals [166]:
|
1534 |
+
xmin = 17.57
|
1535 |
+
xmax = 17.64
|
1536 |
+
text = "IH0"
|
1537 |
+
intervals [167]:
|
1538 |
+
xmin = 17.64
|
1539 |
+
xmax = 17.7
|
1540 |
+
text = "S"
|
1541 |
+
intervals [168]:
|
1542 |
+
xmin = 17.7
|
1543 |
+
xmax = 17.73
|
1544 |
+
text = "T"
|
1545 |
+
intervals [169]:
|
1546 |
+
xmin = 17.73
|
1547 |
+
xmax = 17.81
|
1548 |
+
text = "L"
|
1549 |
+
intervals [170]:
|
1550 |
+
xmin = 17.81
|
1551 |
+
xmax = 17.91
|
1552 |
+
text = "AY1"
|
1553 |
+
intervals [171]:
|
1554 |
+
xmin = 17.91
|
1555 |
+
xmax = 18.0
|
1556 |
+
text = "K"
|
1557 |
+
intervals [172]:
|
1558 |
+
xmin = 18.0
|
1559 |
+
xmax = 18.06
|
1560 |
+
text = "DH"
|
1561 |
+
intervals [173]:
|
1562 |
+
xmin = 18.06
|
1563 |
+
xmax = 18.23
|
1564 |
+
text = "AE1"
|
1565 |
+
intervals [174]:
|
1566 |
+
xmin = 18.23
|
1567 |
+
xmax = 18.36
|
1568 |
+
text = "T"
|
1569 |
+
intervals [175]:
|
1570 |
+
xmin = 18.36
|
1571 |
+
xmax = 18.73
|
1572 |
+
text = ""
|
1573 |
+
intervals [176]:
|
1574 |
+
xmin = 18.73
|
1575 |
+
xmax = 19.54
|
1576 |
+
text = "AY1"
|
1577 |
+
intervals [177]:
|
1578 |
+
xmin = 19.54
|
1579 |
+
xmax = 19.71
|
1580 |
+
text = ""
|
1581 |
+
intervals [178]:
|
1582 |
+
xmin = 19.71
|
1583 |
+
xmax = 19.92
|
1584 |
+
text = "Y"
|
1585 |
+
intervals [179]:
|
1586 |
+
xmin = 19.92
|
1587 |
+
xmax = 20.03
|
1588 |
+
text = "UW1"
|
1589 |
+
intervals [180]:
|
1590 |
+
xmin = 20.03
|
1591 |
+
xmax = 20.11
|
1592 |
+
text = "ZH"
|
1593 |
+
intervals [181]:
|
1594 |
+
xmin = 20.11
|
1595 |
+
xmax = 20.14
|
1596 |
+
text = "AH0"
|
1597 |
+
intervals [182]:
|
1598 |
+
xmin = 20.14
|
1599 |
+
xmax = 20.17
|
1600 |
+
text = "L"
|
1601 |
+
intervals [183]:
|
1602 |
+
xmin = 20.17
|
1603 |
+
xmax = 20.27
|
1604 |
+
text = "IY0"
|
1605 |
+
intervals [184]:
|
1606 |
+
xmin = 20.27
|
1607 |
+
xmax = 20.37
|
1608 |
+
text = "F"
|
1609 |
+
intervals [185]:
|
1610 |
+
xmin = 20.37
|
1611 |
+
xmax = 20.45
|
1612 |
+
text = "IY1"
|
1613 |
+
intervals [186]:
|
1614 |
+
xmin = 20.45
|
1615 |
+
xmax = 20.52
|
1616 |
+
text = "L"
|
1617 |
+
intervals [187]:
|
1618 |
+
xmin = 20.52
|
1619 |
+
xmax = 20.73
|
1620 |
+
text = "SH"
|
1621 |
+
intervals [188]:
|
1622 |
+
xmin = 20.73
|
1623 |
+
xmax = 20.96
|
1624 |
+
text = "AY1"
|
1625 |
+
intervals [189]:
|
1626 |
+
xmin = 20.96
|
1627 |
+
xmax = 21.06
|
1628 |
+
text = "W"
|
1629 |
+
intervals [190]:
|
1630 |
+
xmin = 21.06
|
1631 |
+
xmax = 21.09
|
1632 |
+
text = "EH1"
|
1633 |
+
intervals [191]:
|
1634 |
+
xmin = 21.09
|
1635 |
+
xmax = 21.14
|
1636 |
+
text = "N"
|
1637 |
+
intervals [192]:
|
1638 |
+
xmin = 21.14
|
1639 |
+
xmax = 21.26
|
1640 |
+
text = "AY1"
|
1641 |
+
intervals [193]:
|
1642 |
+
xmin = 21.26
|
1643 |
+
xmax = 21.31
|
1644 |
+
text = "AE1"
|
1645 |
+
intervals [194]:
|
1646 |
+
xmin = 21.31
|
1647 |
+
xmax = 21.38
|
1648 |
+
text = "M"
|
1649 |
+
intervals [195]:
|
1650 |
+
xmin = 21.38
|
1651 |
+
xmax = 21.5
|
1652 |
+
text = "T"
|
1653 |
+
intervals [196]:
|
1654 |
+
xmin = 21.5
|
1655 |
+
xmax = 21.57
|
1656 |
+
text = "AO1"
|
1657 |
+
intervals [197]:
|
1658 |
+
xmin = 21.57
|
1659 |
+
xmax = 21.64
|
1660 |
+
text = "K"
|
1661 |
+
intervals [198]:
|
1662 |
+
xmin = 21.64
|
1663 |
+
xmax = 21.69
|
1664 |
+
text = "IH0"
|
1665 |
+
intervals [199]:
|
1666 |
+
xmin = 21.69
|
1667 |
+
xmax = 21.75
|
1668 |
+
text = "NG"
|
1669 |
+
intervals [200]:
|
1670 |
+
xmin = 21.75
|
1671 |
+
xmax = 21.8
|
1672 |
+
text = "T"
|
1673 |
+
intervals [201]:
|
1674 |
+
xmin = 21.8
|
1675 |
+
xmax = 21.86
|
1676 |
+
text = "AH0"
|
1677 |
+
intervals [202]:
|
1678 |
+
xmin = 21.86
|
1679 |
+
xmax = 21.96
|
1680 |
+
text = "AH1"
|
1681 |
+
intervals [203]:
|
1682 |
+
xmin = 21.96
|
1683 |
+
xmax = 22.02
|
1684 |
+
text = "DH"
|
1685 |
+
intervals [204]:
|
1686 |
+
xmin = 22.02
|
1687 |
+
xmax = 22.13
|
1688 |
+
text = "ER0"
|
1689 |
+
intervals [205]:
|
1690 |
+
xmin = 22.13
|
1691 |
+
xmax = 22.22
|
1692 |
+
text = "Z"
|
1693 |
+
intervals [206]:
|
1694 |
+
xmin = 22.22
|
1695 |
+
xmax = 22.29
|
1696 |
+
text = "AE1"
|
1697 |
+
intervals [207]:
|
1698 |
+
xmin = 22.29
|
1699 |
+
xmax = 22.32
|
1700 |
+
text = "N"
|
1701 |
+
intervals [208]:
|
1702 |
+
xmin = 22.32
|
1703 |
+
xmax = 22.37
|
1704 |
+
text = "D"
|
1705 |
+
intervals [209]:
|
1706 |
+
xmin = 22.37
|
1707 |
+
xmax = 22.46
|
1708 |
+
text = "AY1"
|
1709 |
+
intervals [210]:
|
1710 |
+
xmin = 22.46
|
1711 |
+
xmax = 22.6
|
1712 |
+
text = "N"
|
1713 |
+
intervals [211]:
|
1714 |
+
xmin = 22.6
|
1715 |
+
xmax = 22.8
|
1716 |
+
text = "OW1"
|
1717 |
+
intervals [212]:
|
1718 |
+
xmin = 22.8
|
1719 |
+
xmax = 22.85
|
1720 |
+
text = "DH"
|
1721 |
+
intervals [213]:
|
1722 |
+
xmin = 22.85
|
1723 |
+
xmax = 22.98
|
1724 |
+
text = "AH0"
|
1725 |
+
intervals [214]:
|
1726 |
+
xmin = 22.98
|
1727 |
+
xmax = 23.1
|
1728 |
+
text = "T"
|
1729 |
+
intervals [215]:
|
1730 |
+
xmin = 23.1
|
1731 |
+
xmax = 23.27
|
1732 |
+
text = "JH"
|
1733 |
+
intervals [216]:
|
1734 |
+
xmin = 23.27
|
1735 |
+
xmax = 23.35
|
1736 |
+
text = "ER1"
|
1737 |
+
intervals [217]:
|
1738 |
+
xmin = 23.35
|
1739 |
+
xmax = 23.39
|
1740 |
+
text = "N"
|
1741 |
+
intervals [218]:
|
1742 |
+
xmin = 23.39
|
1743 |
+
xmax = 23.46
|
1744 |
+
text = "AH0"
|
1745 |
+
intervals [219]:
|
1746 |
+
xmin = 23.46
|
1747 |
+
xmax = 23.54
|
1748 |
+
text = "L"
|
1749 |
+
intervals [220]:
|
1750 |
+
xmin = 23.54
|
1751 |
+
xmax = 23.61
|
1752 |
+
text = "AH0"
|
1753 |
+
intervals [221]:
|
1754 |
+
xmin = 23.61
|
1755 |
+
xmax = 23.69
|
1756 |
+
text = "S"
|
1757 |
+
intervals [222]:
|
1758 |
+
xmin = 23.69
|
1759 |
+
xmax = 23.72
|
1760 |
+
text = "T"
|
1761 |
+
intervals [223]:
|
1762 |
+
xmin = 23.72
|
1763 |
+
xmax = 23.79
|
1764 |
+
text = "S"
|
1765 |
+
intervals [224]:
|
1766 |
+
xmin = 23.79
|
1767 |
+
xmax = 23.89
|
1768 |
+
text = "AA1"
|
1769 |
+
intervals [225]:
|
1770 |
+
xmin = 23.89
|
1771 |
+
xmax = 23.99
|
1772 |
+
text = "R"
|
1773 |
+
intervals [226]:
|
1774 |
+
xmin = 23.99
|
1775 |
+
xmax = 24.22
|
1776 |
+
text = "V"
|
1777 |
+
intervals [227]:
|
1778 |
+
xmin = 24.22
|
1779 |
+
xmax = 24.49
|
1780 |
+
text = "EH1"
|
1781 |
+
intervals [228]:
|
1782 |
+
xmin = 24.49
|
1783 |
+
xmax = 24.64
|
1784 |
+
text = "R"
|
1785 |
+
intervals [229]:
|
1786 |
+
xmin = 24.64
|
1787 |
+
xmax = 24.73
|
1788 |
+
text = "IY0"
|
1789 |
+
intervals [230]:
|
1790 |
+
xmin = 24.73
|
1791 |
+
xmax = 24.9
|
1792 |
+
text = "G"
|
1793 |
+
intervals [231]:
|
1794 |
+
xmin = 24.9
|
1795 |
+
xmax = 25.12
|
1796 |
+
text = "UH1"
|
1797 |
+
intervals [232]:
|
1798 |
+
xmin = 25.12
|
1799 |
+
xmax = 25.29
|
1800 |
+
text = "D"
|
1801 |
+
intervals [233]:
|
1802 |
+
xmin = 25.29
|
1803 |
+
xmax = 25.44
|
1804 |
+
text = ""
|
1805 |
+
intervals [234]:
|
1806 |
+
xmin = 25.44
|
1807 |
+
xmax = 25.61
|
1808 |
+
text = "AE1"
|
1809 |
+
intervals [235]:
|
1810 |
+
xmin = 25.61
|
1811 |
+
xmax = 25.7
|
1812 |
+
text = "T"
|
1813 |
+
intervals [236]:
|
1814 |
+
xmin = 25.7
|
1815 |
+
xmax = 25.73
|
1816 |
+
text = "K"
|
1817 |
+
intervals [237]:
|
1818 |
+
xmin = 25.73
|
1819 |
+
xmax = 25.77
|
1820 |
+
text = "AH0"
|
1821 |
+
intervals [238]:
|
1822 |
+
xmin = 25.77
|
1823 |
+
xmax = 25.83
|
1824 |
+
text = "M"
|
1825 |
+
intervals [239]:
|
1826 |
+
xmin = 25.83
|
1827 |
+
xmax = 25.89
|
1828 |
+
text = "Y"
|
1829 |
+
intervals [240]:
|
1830 |
+
xmin = 25.89
|
1831 |
+
xmax = 25.93
|
1832 |
+
text = "UW1"
|
1833 |
+
intervals [241]:
|
1834 |
+
xmin = 25.93
|
1835 |
+
xmax = 25.98
|
1836 |
+
text = "N"
|
1837 |
+
intervals [242]:
|
1838 |
+
xmin = 25.98
|
1839 |
+
xmax = 26.05
|
1840 |
+
text = "AH0"
|
1841 |
+
intervals [243]:
|
1842 |
+
xmin = 26.05
|
1843 |
+
xmax = 26.19
|
1844 |
+
text = "K"
|
1845 |
+
intervals [244]:
|
1846 |
+
xmin = 26.19
|
1847 |
+
xmax = 26.25
|
1848 |
+
text = "EY2"
|
1849 |
+
intervals [245]:
|
1850 |
+
xmin = 26.25
|
1851 |
+
xmax = 26.28
|
1852 |
+
text = "T"
|
1853 |
+
intervals [246]:
|
1854 |
+
xmin = 26.28
|
1855 |
+
xmax = 26.35
|
1856 |
+
text = "IH0"
|
1857 |
+
intervals [247]:
|
1858 |
+
xmin = 26.35
|
1859 |
+
xmax = 26.41
|
1860 |
+
text = "NG"
|
1861 |
+
intervals [248]:
|
1862 |
+
xmin = 26.41
|
1863 |
+
xmax = 26.46
|
1864 |
+
text = "B"
|
1865 |
+
intervals [249]:
|
1866 |
+
xmin = 26.46
|
1867 |
+
xmax = 26.54
|
1868 |
+
text = "IH0"
|
1869 |
+
intervals [250]:
|
1870 |
+
xmin = 26.54
|
1871 |
+
xmax = 26.64
|
1872 |
+
text = "K"
|
1873 |
+
intervals [251]:
|
1874 |
+
xmin = 26.64
|
1875 |
+
xmax = 26.84
|
1876 |
+
text = "AH0"
|
1877 |
+
intervals [252]:
|
1878 |
+
xmin = 26.84
|
1879 |
+
xmax = 26.94
|
1880 |
+
text = "Z"
|
1881 |
+
intervals [253]:
|
1882 |
+
xmin = 26.94
|
1883 |
+
xmax = 26.98
|
1884 |
+
text = ""
|
1885 |
+
intervals [254]:
|
1886 |
+
xmin = 26.98
|
1887 |
+
xmax = 27.07
|
1888 |
+
text = "G"
|
1889 |
+
intervals [255]:
|
1890 |
+
xmin = 27.07
|
1891 |
+
xmax = 27.15
|
1892 |
+
text = "UH1"
|
1893 |
+
intervals [256]:
|
1894 |
+
xmin = 27.15
|
1895 |
+
xmax = 27.2
|
1896 |
+
text = "D"
|
1897 |
+
intervals [257]:
|
1898 |
+
xmin = 27.2
|
1899 |
+
xmax = 27.27
|
1900 |
+
text = "K"
|
1901 |
+
intervals [258]:
|
1902 |
+
xmin = 27.27
|
1903 |
+
xmax = 27.32
|
1904 |
+
text = "AH0"
|
1905 |
+
intervals [259]:
|
1906 |
+
xmin = 27.32
|
1907 |
+
xmax = 27.38
|
1908 |
+
text = "M"
|
1909 |
+
intervals [260]:
|
1910 |
+
xmin = 27.38
|
1911 |
+
xmax = 27.43
|
1912 |
+
text = "Y"
|
1913 |
+
intervals [261]:
|
1914 |
+
xmin = 27.43
|
1915 |
+
xmax = 27.46
|
1916 |
+
text = "UW2"
|
1917 |
+
intervals [262]:
|
1918 |
+
xmin = 27.46
|
1919 |
+
xmax = 27.49
|
1920 |
+
text = "N"
|
1921 |
+
intervals [263]:
|
1922 |
+
xmin = 27.49
|
1923 |
+
xmax = 27.54
|
1924 |
+
text = "AH0"
|
1925 |
+
intervals [264]:
|
1926 |
+
xmin = 27.54
|
1927 |
+
xmax = 27.65
|
1928 |
+
text = "K"
|
1929 |
+
intervals [265]:
|
1930 |
+
xmin = 27.65
|
1931 |
+
xmax = 27.75
|
1932 |
+
text = "EY1"
|
1933 |
+
intervals [266]:
|
1934 |
+
xmin = 27.75
|
1935 |
+
xmax = 27.84
|
1936 |
+
text = "SH"
|
1937 |
+
intervals [267]:
|
1938 |
+
xmin = 27.84
|
1939 |
+
xmax = 27.89
|
1940 |
+
text = "AH0"
|
1941 |
+
intervals [268]:
|
1942 |
+
xmin = 27.89
|
1943 |
+
xmax = 27.95
|
1944 |
+
text = "N"
|
1945 |
+
intervals [269]:
|
1946 |
+
xmin = 27.95
|
1947 |
+
xmax = 28.03
|
1948 |
+
text = "S"
|
1949 |
+
intervals [270]:
|
1950 |
+
xmin = 28.03
|
1951 |
+
xmax = 28.08
|
1952 |
+
text = "K"
|
1953 |
+
intervals [271]:
|
1954 |
+
xmin = 28.08
|
1955 |
+
xmax = 28.15
|
1956 |
+
text = "IH1"
|
1957 |
+
intervals [272]:
|
1958 |
+
xmin = 28.15
|
1959 |
+
xmax = 28.27
|
1960 |
+
text = "L"
|
1961 |
+
intervals [273]:
|
1962 |
+
xmin = 28.27
|
1963 |
+
xmax = 28.36
|
1964 |
+
text = "Z"
|
1965 |
+
intervals [274]:
|
1966 |
+
xmin = 28.36
|
1967 |
+
xmax = 28.42
|
1968 |
+
text = "AA1"
|
1969 |
+
intervals [275]:
|
1970 |
+
xmin = 28.42
|
1971 |
+
xmax = 28.51
|
1972 |
+
text = "R"
|
1973 |
+
intervals [276]:
|
1974 |
+
xmin = 28.51
|
1975 |
+
xmax = 28.56
|
1976 |
+
text = "V"
|
1977 |
+
intervals [277]:
|
1978 |
+
xmin = 28.56
|
1979 |
+
xmax = 28.61
|
1980 |
+
text = "EH1"
|
1981 |
+
intervals [278]:
|
1982 |
+
xmin = 28.61
|
1983 |
+
xmax = 28.72
|
1984 |
+
text = "R"
|
1985 |
+
intervals [279]:
|
1986 |
+
xmin = 28.72
|
1987 |
+
xmax = 28.75
|
1988 |
+
text = "IY0"
|
1989 |
+
intervals [280]:
|
1990 |
+
xmin = 28.75
|
1991 |
+
xmax = 28.8
|
1992 |
+
text = "IH0"
|
1993 |
+
intervals [281]:
|
1994 |
+
xmin = 28.8
|
1995 |
+
xmax = 28.86
|
1996 |
+
text = "M"
|
1997 |
+
intervals [282]:
|
1998 |
+
xmin = 28.86
|
1999 |
+
xmax = 28.97
|
2000 |
+
text = "P"
|
2001 |
+
intervals [283]:
|
2002 |
+
xmin = 28.97
|
2003 |
+
xmax = 29.01
|
2004 |
+
text = "AO1"
|
2005 |
+
intervals [284]:
|
2006 |
+
xmin = 29.01
|
2007 |
+
xmax = 29.07
|
2008 |
+
text = "R"
|
2009 |
+
intervals [285]:
|
2010 |
+
xmin = 29.07
|
2011 |
+
xmax = 29.11
|
2012 |
+
text = "T"
|
2013 |
+
intervals [286]:
|
2014 |
+
xmin = 29.11
|
2015 |
+
xmax = 29.14
|
2016 |
+
text = "AH0"
|
2017 |
+
intervals [287]:
|
2018 |
+
xmin = 29.14
|
2019 |
+
xmax = 29.18
|
2020 |
+
text = "N"
|
2021 |
+
intervals [288]:
|
2022 |
+
xmin = 29.18
|
2023 |
+
xmax = 29.22
|
2024 |
+
text = "T"
|
2025 |
+
intervals [289]:
|
2026 |
+
xmin = 29.22
|
2027 |
+
xmax = 29.29
|
2028 |
+
text = "W"
|
2029 |
+
intervals [290]:
|
2030 |
+
xmin = 29.29
|
2031 |
+
xmax = 29.32
|
2032 |
+
text = "EH1"
|
2033 |
+
intervals [291]:
|
2034 |
+
xmin = 29.32
|
2035 |
+
xmax = 29.39
|
2036 |
+
text = "N"
|
2037 |
+
intervals [292]:
|
2038 |
+
xmin = 29.39
|
2039 |
+
xmax = 29.43
|
2040 |
+
text = "Y"
|
2041 |
+
intervals [293]:
|
2042 |
+
xmin = 29.43
|
2043 |
+
xmax = 29.46
|
2044 |
+
text = "UH1"
|
2045 |
+
intervals [294]:
|
2046 |
+
xmin = 29.46
|
2047 |
+
xmax = 29.51
|
2048 |
+
text = "R"
|
2049 |
+
intervals [295]:
|
2050 |
+
xmin = 29.51
|
2051 |
+
xmax = 29.6
|
2052 |
+
text = "D"
|
2053 |
+
intervals [296]:
|
2054 |
+
xmin = 29.6
|
2055 |
+
xmax = 29.7
|
2056 |
+
text = "UW1"
|
2057 |
+
intervals [297]:
|
2058 |
+
xmin = 29.7
|
2059 |
+
xmax = 29.76
|
2060 |
+
text = "IH0"
|
2061 |
+
intervals [298]:
|
2062 |
+
xmin = 29.76
|
2063 |
+
xmax = 29.85
|
2064 |
+
text = "NG"
|
2065 |
+
intervals [299]:
|
2066 |
+
xmin = 29.85
|
2067 |
+
xmax = 29.88
|
2068 |
+
text = "IH1"
|
2069 |
+
intervals [300]:
|
2070 |
+
xmin = 29.88
|
2071 |
+
xmax = 29.99
|
2072 |
+
text = "N"
|
2073 |
+
intervals [301]:
|
2074 |
+
xmin = 29.99
|
2075 |
+
xmax = 30.06
|
2076 |
+
text = "ER0"
|
2077 |
+
intervals [302]:
|
2078 |
+
xmin = 30.06
|
2079 |
+
xmax = 30.1
|
2080 |
+
text = "V"
|
2081 |
+
intervals [303]:
|
2082 |
+
xmin = 30.1
|
2083 |
+
xmax = 30.21
|
2084 |
+
text = "Y"
|
2085 |
+
intervals [304]:
|
2086 |
+
xmin = 30.21
|
2087 |
+
xmax = 30.28
|
2088 |
+
text = "UW2"
|
2089 |
+
intervals [305]:
|
2090 |
+
xmin = 30.28
|
2091 |
+
xmax = 30.43
|
2092 |
+
text = "Z"
|
2093 |
+
intervals [306]:
|
2094 |
+
xmin = 30.43
|
2095 |
+
xmax = 30.71
|
2096 |
+
text = ""
|
2097 |
+
intervals [307]:
|
2098 |
+
xmin = 30.71
|
2099 |
+
xmax = 30.99
|
2100 |
+
text = "AY1"
|
2101 |
+
intervals [308]:
|
2102 |
+
xmin = 30.99
|
2103 |
+
xmax = 31.11
|
2104 |
+
text = "W"
|
2105 |
+
intervals [309]:
|
2106 |
+
xmin = 31.11
|
2107 |
+
xmax = 31.15
|
2108 |
+
text = "AA1"
|
2109 |
+
intervals [310]:
|
2110 |
+
xmin = 31.15
|
2111 |
+
xmax = 31.18
|
2112 |
+
text = "N"
|
2113 |
+
intervals [311]:
|
2114 |
+
xmin = 31.18
|
2115 |
+
xmax = 31.21
|
2116 |
+
text = "T"
|
2117 |
+
intervals [312]:
|
2118 |
+
xmin = 31.21
|
2119 |
+
xmax = 31.24
|
2120 |
+
text = "T"
|
2121 |
+
intervals [313]:
|
2122 |
+
xmin = 31.24
|
2123 |
+
xmax = 31.3
|
2124 |
+
text = "AH0"
|
2125 |
+
intervals [314]:
|
2126 |
+
xmin = 31.3
|
2127 |
+
xmax = 31.35
|
2128 |
+
text = "P"
|
2129 |
+
intervals [315]:
|
2130 |
+
xmin = 31.35
|
2131 |
+
xmax = 31.42
|
2132 |
+
text = "AH0"
|
2133 |
+
intervals [316]:
|
2134 |
+
xmin = 31.42
|
2135 |
+
xmax = 31.51
|
2136 |
+
text = "Z"
|
2137 |
+
intervals [317]:
|
2138 |
+
xmin = 31.51
|
2139 |
+
xmax = 31.62
|
2140 |
+
text = "EH1"
|
2141 |
+
intervals [318]:
|
2142 |
+
xmin = 31.62
|
2143 |
+
xmax = 31.71
|
2144 |
+
text = "S"
|
2145 |
+
intervals [319]:
|
2146 |
+
xmin = 31.71
|
2147 |
+
xmax = 31.75
|
2148 |
+
text = "DH"
|
2149 |
+
intervals [320]:
|
2150 |
+
xmin = 31.75
|
2151 |
+
xmax = 31.82
|
2152 |
+
text = "AH0"
|
2153 |
+
intervals [321]:
|
2154 |
+
xmin = 31.82
|
2155 |
+
xmax = 31.97
|
2156 |
+
text = "S"
|
2157 |
+
intervals [322]:
|
2158 |
+
xmin = 31.97
|
2159 |
+
xmax = 32.02
|
2160 |
+
text = "K"
|
2161 |
+
intervals [323]:
|
2162 |
+
xmin = 32.02
|
2163 |
+
xmax = 32.09
|
2164 |
+
text = "IH1"
|
2165 |
+
intervals [324]:
|
2166 |
+
xmin = 32.09
|
2167 |
+
xmax = 32.16
|
2168 |
+
text = "L"
|
2169 |
+
intervals [325]:
|
2170 |
+
xmin = 32.16
|
2171 |
+
xmax = 32.23
|
2172 |
+
text = "M"
|
2173 |
+
intervals [326]:
|
2174 |
+
xmin = 32.23
|
2175 |
+
xmax = 32.31
|
2176 |
+
text = "AY2"
|
2177 |
+
intervals [327]:
|
2178 |
+
xmin = 32.31
|
2179 |
+
xmax = 32.46
|
2180 |
+
text = "S"
|
2181 |
+
intervals [328]:
|
2182 |
+
xmin = 32.46
|
2183 |
+
xmax = 32.53
|
2184 |
+
text = "EH1"
|
2185 |
+
intervals [329]:
|
2186 |
+
xmin = 32.53
|
2187 |
+
xmax = 32.76
|
2188 |
+
text = "L"
|
2189 |
+
intervals [330]:
|
2190 |
+
xmin = 32.76
|
2191 |
+
xmax = 32.93
|
2192 |
+
text = "F"
|
2193 |
+
intervals [331]:
|
2194 |
+
xmin = 32.93
|
2195 |
+
xmax = 33.0
|
2196 |
+
text = ""
|
2197 |
+
intervals [332]:
|
2198 |
+
xmin = 33.0
|
2199 |
+
xmax = 33.22
|
2200 |
+
text = "S"
|
2201 |
+
intervals [333]:
|
2202 |
+
xmin = 33.22
|
2203 |
+
xmax = 33.53
|
2204 |
+
text = "OW1"
|
2205 |
+
intervals [334]:
|
2206 |
+
xmin = 33.53
|
2207 |
+
xmax = 33.56
|
2208 |
+
text = ""
|
2209 |
+
intervals [335]:
|
2210 |
+
xmin = 33.56
|
2211 |
+
xmax = 33.67
|
2212 |
+
text = "DH"
|
2213 |
+
intervals [336]:
|
2214 |
+
xmin = 33.67
|
2215 |
+
xmax = 33.82
|
2216 |
+
text = "AE1"
|
2217 |
+
intervals [337]:
|
2218 |
+
xmin = 33.82
|
2219 |
+
xmax = 33.89
|
2220 |
+
text = "T"
|
2221 |
+
intervals [338]:
|
2222 |
+
xmin = 33.89
|
2223 |
+
xmax = 33.95
|
2224 |
+
text = "S"
|
2225 |
+
intervals [339]:
|
2226 |
+
xmin = 33.95
|
2227 |
+
xmax = 34.09
|
2228 |
+
text = "W"
|
2229 |
+
intervals [340]:
|
2230 |
+
xmin = 34.09
|
2231 |
+
xmax = 34.31
|
2232 |
+
text = "AY1"
|
2233 |
+
intervals [341]:
|
2234 |
+
xmin = 34.31
|
2235 |
+
xmax = 34.53
|
2236 |
+
text = "AY1"
|
2237 |
+
intervals [342]:
|
2238 |
+
xmin = 34.53
|
2239 |
+
xmax = 34.67
|
2240 |
+
text = "W"
|
2241 |
+
intervals [343]:
|
2242 |
+
xmin = 34.67
|
2243 |
+
xmax = 34.77
|
2244 |
+
text = "AO1"
|
2245 |
+
intervals [344]:
|
2246 |
+
xmin = 34.77
|
2247 |
+
xmax = 34.8
|
2248 |
+
text = "N"
|
2249 |
+
intervals [345]:
|
2250 |
+
xmin = 34.8
|
2251 |
+
xmax = 34.83
|
2252 |
+
text = "T"
|
2253 |
+
intervals [346]:
|
2254 |
+
xmin = 34.83
|
2255 |
+
xmax = 34.86
|
2256 |
+
text = "T"
|
2257 |
+
intervals [347]:
|
2258 |
+
xmin = 34.86
|
2259 |
+
xmax = 34.89
|
2260 |
+
text = "IH0"
|
2261 |
+
intervals [348]:
|
2262 |
+
xmin = 34.89
|
2263 |
+
xmax = 34.93
|
2264 |
+
text = "B"
|
2265 |
+
intervals [349]:
|
2266 |
+
xmin = 34.93
|
2267 |
+
xmax = 35.0
|
2268 |
+
text = "IH0"
|
2269 |
+
intervals [350]:
|
2270 |
+
xmin = 35.0
|
2271 |
+
xmax = 35.08
|
2272 |
+
text = "K"
|
2273 |
+
intervals [351]:
|
2274 |
+
xmin = 35.08
|
2275 |
+
xmax = 35.19
|
2276 |
+
text = "AH1"
|
2277 |
+
intervals [352]:
|
2278 |
+
xmin = 35.19
|
2279 |
+
xmax = 35.42
|
2280 |
+
text = "M"
|
2281 |
+
intervals [353]:
|
2282 |
+
xmin = 35.42
|
2283 |
+
xmax = 35.46
|
2284 |
+
text = ""
|
2285 |
+
intervals [354]:
|
2286 |
+
xmin = 35.46
|
2287 |
+
xmax = 35.59
|
2288 |
+
text = "AH0"
|
2289 |
+
intervals [355]:
|
2290 |
+
xmin = 35.59
|
2291 |
+
xmax = 35.68
|
2292 |
+
text = "JH"
|
2293 |
+
intervals [356]:
|
2294 |
+
xmin = 35.68
|
2295 |
+
xmax = 35.79
|
2296 |
+
text = "ER1"
|
2297 |
+
intervals [357]:
|
2298 |
+
xmin = 35.79
|
2299 |
+
xmax = 35.84
|
2300 |
+
text = "N"
|
2301 |
+
intervals [358]:
|
2302 |
+
xmin = 35.84
|
2303 |
+
xmax = 35.89
|
2304 |
+
text = "AH0"
|
2305 |
+
intervals [359]:
|
2306 |
+
xmin = 35.89
|
2307 |
+
xmax = 35.97
|
2308 |
+
text = "L"
|
2309 |
+
intervals [360]:
|
2310 |
+
xmin = 35.97
|
2311 |
+
xmax = 36.07
|
2312 |
+
text = "AH0"
|
2313 |
+
intervals [361]:
|
2314 |
+
xmin = 36.07
|
2315 |
+
xmax = 36.27
|
2316 |
+
text = "S"
|
2317 |
+
intervals [362]:
|
2318 |
+
xmin = 36.27
|
2319 |
+
xmax = 36.37
|
2320 |
+
text = "T"
|
2321 |
+
intervals [363]:
|
2322 |
+
xmin = 36.37
|
2323 |
+
xmax = 36.74
|
2324 |
+
text = ""
|
2325 |
+
intervals [364]:
|
2326 |
+
xmin = 36.74
|
2327 |
+
xmax = 36.92
|
2328 |
+
text = "AH1"
|
2329 |
+
intervals [365]:
|
2330 |
+
xmin = 36.92
|
2331 |
+
xmax = 36.96
|
2332 |
+
text = "DH"
|
2333 |
+
intervals [366]:
|
2334 |
+
xmin = 36.96
|
2335 |
+
xmax = 37.02
|
2336 |
+
text = "ER0"
|
2337 |
+
intervals [367]:
|
2338 |
+
xmin = 37.02
|
2339 |
+
xmax = 37.05
|
2340 |
+
text = "DH"
|
2341 |
+
intervals [368]:
|
2342 |
+
xmin = 37.05
|
2343 |
+
xmax = 37.13
|
2344 |
+
text = "AE1"
|
2345 |
+
intervals [369]:
|
2346 |
+
xmin = 37.13
|
2347 |
+
xmax = 37.18
|
2348 |
+
text = "N"
|
2349 |
+
intervals [370]:
|
2350 |
+
xmin = 37.18
|
2351 |
+
xmax = 37.23
|
2352 |
+
text = "DH"
|
2353 |
+
intervals [371]:
|
2354 |
+
xmin = 37.23
|
2355 |
+
xmax = 37.47
|
2356 |
+
text = "AE1"
|
2357 |
+
intervals [372]:
|
2358 |
+
xmin = 37.47
|
2359 |
+
xmax = 37.73
|
2360 |
+
text = "T"
|
2361 |
+
intervals [373]:
|
2362 |
+
xmin = 37.73
|
2363 |
+
xmax = 37.76
|
2364 |
+
text = ""
|
2365 |
+
intervals [374]:
|
2366 |
+
xmin = 37.76
|
2367 |
+
xmax = 37.8
|
2368 |
+
text = "F"
|
2369 |
+
intervals [375]:
|
2370 |
+
xmin = 37.8
|
2371 |
+
xmax = 37.85
|
2372 |
+
text = "AH0"
|
2373 |
+
intervals [376]:
|
2374 |
+
xmin = 37.85
|
2375 |
+
xmax = 37.96
|
2376 |
+
text = "T"
|
2377 |
+
intervals [377]:
|
2378 |
+
xmin = 37.96
|
2379 |
+
xmax = 38.08
|
2380 |
+
text = "AA1"
|
2381 |
+
intervals [378]:
|
2382 |
+
xmin = 38.08
|
2383 |
+
xmax = 38.13
|
2384 |
+
text = "G"
|
2385 |
+
intervals [379]:
|
2386 |
+
xmin = 38.13
|
2387 |
+
xmax = 38.2
|
2388 |
+
text = "R"
|
2389 |
+
intervals [380]:
|
2390 |
+
xmin = 38.2
|
2391 |
+
xmax = 38.26
|
2392 |
+
text = "AH0"
|
2393 |
+
intervals [381]:
|
2394 |
+
xmin = 38.26
|
2395 |
+
xmax = 38.35
|
2396 |
+
text = "F"
|
2397 |
+
intervals [382]:
|
2398 |
+
xmin = 38.35
|
2399 |
+
xmax = 38.72
|
2400 |
+
text = "IY0"
|
2401 |
+
intervals [383]:
|
2402 |
+
xmin = 38.72
|
2403 |
+
xmax = 38.96
|
2404 |
+
text = ""
|
2405 |
+
intervals [384]:
|
2406 |
+
xmin = 38.96
|
2407 |
+
xmax = 39.25
|
2408 |
+
text = "AO1"
|
2409 |
+
intervals [385]:
|
2410 |
+
xmin = 39.25
|
2411 |
+
xmax = 39.3
|
2412 |
+
text = "F"
|
2413 |
+
intervals [386]:
|
2414 |
+
xmin = 39.3
|
2415 |
+
xmax = 39.36
|
2416 |
+
text = "AH0"
|
2417 |
+
intervals [387]:
|
2418 |
+
xmin = 39.36
|
2419 |
+
xmax = 39.4
|
2420 |
+
text = "N"
|
2421 |
+
intervals [388]:
|
2422 |
+
xmin = 39.4
|
2423 |
+
xmax = 39.47
|
2424 |
+
text = "M"
|
2425 |
+
intervals [389]:
|
2426 |
+
xmin = 39.47
|
2427 |
+
xmax = 39.54
|
2428 |
+
text = "EY1"
|
2429 |
+
intervals [390]:
|
2430 |
+
xmin = 39.54
|
2431 |
+
xmax = 39.59
|
2432 |
+
text = "K"
|
2433 |
+
intervals [391]:
|
2434 |
+
xmin = 39.59
|
2435 |
+
xmax = 39.66
|
2436 |
+
text = "S"
|
2437 |
+
intervals [392]:
|
2438 |
+
xmin = 39.66
|
2439 |
+
xmax = 39.7
|
2440 |
+
text = "M"
|
2441 |
+
intervals [393]:
|
2442 |
+
xmin = 39.7
|
2443 |
+
xmax = 39.8
|
2444 |
+
text = "IY1"
|
2445 |
+
intervals [394]:
|
2446 |
+
xmin = 39.8
|
2447 |
+
xmax = 39.94
|
2448 |
+
text = "F"
|
2449 |
+
intervals [395]:
|
2450 |
+
xmin = 39.94
|
2451 |
+
xmax = 40.09
|
2452 |
+
text = "IY1"
|
2453 |
+
intervals [396]:
|
2454 |
+
xmin = 40.09
|
2455 |
+
xmax = 40.39
|
2456 |
+
text = "L"
|
2457 |
+
intervals [397]:
|
2458 |
+
xmin = 40.39
|
2459 |
+
xmax = 40.48
|
2460 |
+
text = "L"
|
2461 |
+
intervals [398]:
|
2462 |
+
xmin = 40.48
|
2463 |
+
xmax = 40.62
|
2464 |
+
text = "AY1"
|
2465 |
+
intervals [399]:
|
2466 |
+
xmin = 40.62
|
2467 |
+
xmax = 40.72
|
2468 |
+
text = "K"
|
2469 |
+
intervals [400]:
|
2470 |
+
xmin = 40.72
|
2471 |
+
xmax = 40.97
|
2472 |
+
text = "AY1"
|
2473 |
+
intervals [401]:
|
2474 |
+
xmin = 40.97
|
2475 |
+
xmax = 41.42
|
2476 |
+
text = "M"
|
2477 |
+
intervals [402]:
|
2478 |
+
xmin = 41.42
|
2479 |
+
xmax = 41.77
|
2480 |
+
text = ""
|
2481 |
+
intervals [403]:
|
2482 |
+
xmin = 41.77
|
2483 |
+
xmax = 41.85
|
2484 |
+
text = "D"
|
2485 |
+
intervals [404]:
|
2486 |
+
xmin = 41.85
|
2487 |
+
xmax = 41.95
|
2488 |
+
text = "UW1"
|
2489 |
+
intervals [405]:
|
2490 |
+
xmin = 41.95
|
2491 |
+
xmax = 42.02
|
2492 |
+
text = "IH0"
|
2493 |
+
intervals [406]:
|
2494 |
+
xmin = 42.02
|
2495 |
+
xmax = 42.06
|
2496 |
+
text = "NG"
|
2497 |
+
intervals [407]:
|
2498 |
+
xmin = 42.06
|
2499 |
+
xmax = 42.13
|
2500 |
+
text = "EY1"
|
2501 |
+
intervals [408]:
|
2502 |
+
xmin = 42.13
|
2503 |
+
xmax = 42.25
|
2504 |
+
text = "JH"
|
2505 |
+
intervals [409]:
|
2506 |
+
xmin = 42.25
|
2507 |
+
xmax = 42.36
|
2508 |
+
text = "AA1"
|
2509 |
+
intervals [410]:
|
2510 |
+
xmin = 42.36
|
2511 |
+
xmax = 42.41
|
2512 |
+
text = "B"
|
2513 |
+
intervals [411]:
|
2514 |
+
xmin = 42.41
|
2515 |
+
xmax = 42.47
|
2516 |
+
text = "F"
|
2517 |
+
intervals [412]:
|
2518 |
+
xmin = 42.47
|
2519 |
+
xmax = 42.51
|
2520 |
+
text = "UH1"
|
2521 |
+
intervals [413]:
|
2522 |
+
xmin = 42.51
|
2523 |
+
xmax = 42.58
|
2524 |
+
text = "L"
|
2525 |
+
intervals [414]:
|
2526 |
+
xmin = 42.58
|
2527 |
+
xmax = 42.61
|
2528 |
+
text = "AH0"
|
2529 |
+
intervals [415]:
|
2530 |
+
xmin = 42.61
|
2531 |
+
xmax = 42.64
|
2532 |
+
text = "V"
|
2533 |
+
intervals [416]:
|
2534 |
+
xmin = 42.64
|
2535 |
+
xmax = 42.68
|
2536 |
+
text = "D"
|
2537 |
+
intervals [417]:
|
2538 |
+
xmin = 42.68
|
2539 |
+
xmax = 42.74
|
2540 |
+
text = "IH0"
|
2541 |
+
intervals [418]:
|
2542 |
+
xmin = 42.74
|
2543 |
+
xmax = 42.83
|
2544 |
+
text = "Z"
|
2545 |
+
intervals [419]:
|
2546 |
+
xmin = 42.83
|
2547 |
+
xmax = 42.96
|
2548 |
+
text = "AY1"
|
2549 |
+
intervals [420]:
|
2550 |
+
xmin = 42.96
|
2551 |
+
xmax = 42.99
|
2552 |
+
text = "N"
|
2553 |
+
intervals [421]:
|
2554 |
+
xmin = 42.99
|
2555 |
+
xmax = 43.03
|
2556 |
+
text = "AE1"
|
2557 |
+
intervals [422]:
|
2558 |
+
xmin = 43.03
|
2559 |
+
xmax = 43.07
|
2560 |
+
text = "N"
|
2561 |
+
intervals [423]:
|
2562 |
+
xmin = 43.07
|
2563 |
+
xmax = 43.12
|
2564 |
+
text = "D"
|
2565 |
+
intervals [424]:
|
2566 |
+
xmin = 43.12
|
2567 |
+
xmax = 43.19
|
2568 |
+
text = "IH0"
|
2569 |
+
intervals [425]:
|
2570 |
+
xmin = 43.19
|
2571 |
+
xmax = 43.25
|
2572 |
+
text = "N"
|
2573 |
+
intervals [426]:
|
2574 |
+
xmin = 43.25
|
2575 |
+
xmax = 43.3
|
2576 |
+
text = "F"
|
2577 |
+
intervals [427]:
|
2578 |
+
xmin = 43.3
|
2579 |
+
xmax = 43.52
|
2580 |
+
text = "ER0"
|
2581 |
+
intervals [428]:
|
2582 |
+
xmin = 43.52
|
2583 |
+
xmax = 43.68
|
2584 |
+
text = "IH2"
|
2585 |
+
intervals [429]:
|
2586 |
+
xmin = 43.68
|
2587 |
+
xmax = 43.74
|
2588 |
+
text = "N"
|
2589 |
+
intervals [430]:
|
2590 |
+
xmin = 43.74
|
2591 |
+
xmax = 43.8
|
2592 |
+
text = "AH0"
|
2593 |
+
intervals [431]:
|
2594 |
+
xmin = 43.8
|
2595 |
+
xmax = 43.87
|
2596 |
+
text = "V"
|
2597 |
+
intervals [432]:
|
2598 |
+
xmin = 43.87
|
2599 |
+
xmax = 44.01
|
2600 |
+
text = "EY1"
|
2601 |
+
intervals [433]:
|
2602 |
+
xmin = 44.01
|
2603 |
+
xmax = 44.09
|
2604 |
+
text = "SH"
|
2605 |
+
intervals [434]:
|
2606 |
+
xmin = 44.09
|
2607 |
+
xmax = 44.16
|
2608 |
+
text = "AH0"
|
2609 |
+
intervals [435]:
|
2610 |
+
xmin = 44.16
|
2611 |
+
xmax = 44.31
|
2612 |
+
text = "N"
|
2613 |
+
intervals [436]:
|
2614 |
+
xmin = 44.31
|
2615 |
+
xmax = 45.18
|
2616 |
+
text = ""
|
2617 |
+
intervals [437]:
|
2618 |
+
xmin = 45.18
|
2619 |
+
xmax = 45.24
|
2620 |
+
text = "B"
|
2621 |
+
intervals [438]:
|
2622 |
+
xmin = 45.24
|
2623 |
+
xmax = 45.3
|
2624 |
+
text = "IH0"
|
2625 |
+
intervals [439]:
|
2626 |
+
xmin = 45.3
|
2627 |
+
xmax = 45.39
|
2628 |
+
text = "K"
|
2629 |
+
intervals [440]:
|
2630 |
+
xmin = 45.39
|
2631 |
+
xmax = 45.54
|
2632 |
+
text = "AH1"
|
2633 |
+
intervals [441]:
|
2634 |
+
xmin = 45.54
|
2635 |
+
xmax = 45.73
|
2636 |
+
text = "Z"
|
2637 |
+
intervals [442]:
|
2638 |
+
xmin = 45.73
|
2639 |
+
xmax = 45.81
|
2640 |
+
text = "F"
|
2641 |
+
intervals [443]:
|
2642 |
+
xmin = 45.81
|
2643 |
+
xmax = 45.84
|
2644 |
+
text = "R"
|
2645 |
+
intervals [444]:
|
2646 |
+
xmin = 45.84
|
2647 |
+
xmax = 45.89
|
2648 |
+
text = "ER0"
|
2649 |
+
intervals [445]:
|
2650 |
+
xmin = 45.89
|
2651 |
+
xmax = 45.93
|
2652 |
+
text = "DH"
|
2653 |
+
intervals [446]:
|
2654 |
+
xmin = 45.93
|
2655 |
+
xmax = 45.99
|
2656 |
+
text = "AH0"
|
2657 |
+
intervals [447]:
|
2658 |
+
xmin = 45.99
|
2659 |
+
xmax = 46.12
|
2660 |
+
text = "S"
|
2661 |
+
intervals [448]:
|
2662 |
+
xmin = 46.12
|
2663 |
+
xmax = 46.25
|
2664 |
+
text = "EY1"
|
2665 |
+
intervals [449]:
|
2666 |
+
xmin = 46.25
|
2667 |
+
xmax = 46.35
|
2668 |
+
text = "M"
|
2669 |
+
intervals [450]:
|
2670 |
+
xmin = 46.35
|
2671 |
+
xmax = 46.48
|
2672 |
+
text = "S"
|
2673 |
+
intervals [451]:
|
2674 |
+
xmin = 46.48
|
2675 |
+
xmax = 46.59
|
2676 |
+
text = "IY1"
|
2677 |
+
intervals [452]:
|
2678 |
+
xmin = 46.59
|
2679 |
+
xmax = 46.65
|
2680 |
+
text = "N"
|
2681 |
+
intervals [453]:
|
2682 |
+
xmin = 46.65
|
2683 |
+
xmax = 46.74
|
2684 |
+
text = "ER0"
|
2685 |
+
intervals [454]:
|
2686 |
+
xmin = 46.74
|
2687 |
+
xmax = 46.88
|
2688 |
+
text = "IY0"
|
2689 |
+
intervals [455]:
|
2690 |
+
xmin = 46.88
|
2691 |
+
xmax = 46.94
|
2692 |
+
text = "W"
|
2693 |
+
intervals [456]:
|
2694 |
+
xmin = 46.94
|
2695 |
+
xmax = 47.01
|
2696 |
+
text = "IY1"
|
2697 |
+
intervals [457]:
|
2698 |
+
xmin = 47.01
|
2699 |
+
xmax = 47.06
|
2700 |
+
text = "K"
|
2701 |
+
intervals [458]:
|
2702 |
+
xmin = 47.06
|
2703 |
+
xmax = 47.09
|
2704 |
+
text = "AH0"
|
2705 |
+
intervals [459]:
|
2706 |
+
xmin = 47.09
|
2707 |
+
xmax = 47.12
|
2708 |
+
text = "N"
|
2709 |
+
intervals [460]:
|
2710 |
+
xmin = 47.12
|
2711 |
+
xmax = 47.22
|
2712 |
+
text = "Y"
|
2713 |
+
intervals [461]:
|
2714 |
+
xmin = 47.22
|
2715 |
+
xmax = 47.27
|
2716 |
+
text = "UW1"
|
2717 |
+
intervals [462]:
|
2718 |
+
xmin = 47.27
|
2719 |
+
xmax = 47.34
|
2720 |
+
text = "Z"
|
2721 |
+
intervals [463]:
|
2722 |
+
xmin = 47.34
|
2723 |
+
xmax = 47.4
|
2724 |
+
text = "D"
|
2725 |
+
intervals [464]:
|
2726 |
+
xmin = 47.4
|
2727 |
+
xmax = 47.45
|
2728 |
+
text = "IH1"
|
2729 |
+
intervals [465]:
|
2730 |
+
xmin = 47.45
|
2731 |
+
xmax = 47.49
|
2732 |
+
text = "F"
|
2733 |
+
intervals [466]:
|
2734 |
+
xmin = 47.49
|
2735 |
+
xmax = 47.52
|
2736 |
+
text = "R"
|
2737 |
+
intervals [467]:
|
2738 |
+
xmin = 47.52
|
2739 |
+
xmax = 47.55
|
2740 |
+
text = "AH0"
|
2741 |
+
intervals [468]:
|
2742 |
+
xmin = 47.55
|
2743 |
+
xmax = 47.58
|
2744 |
+
text = "N"
|
2745 |
+
intervals [469]:
|
2746 |
+
xmin = 47.58
|
2747 |
+
xmax = 47.61
|
2748 |
+
text = "T"
|
2749 |
+
intervals [470]:
|
2750 |
+
xmin = 47.61
|
2751 |
+
xmax = 47.74
|
2752 |
+
text = "AE1"
|
2753 |
+
intervals [471]:
|
2754 |
+
xmin = 47.74
|
2755 |
+
xmax = 47.82
|
2756 |
+
text = "NG"
|
2757 |
+
intervals [472]:
|
2758 |
+
xmin = 47.82
|
2759 |
+
xmax = 47.85
|
2760 |
+
text = "G"
|
2761 |
+
intervals [473]:
|
2762 |
+
xmin = 47.85
|
2763 |
+
xmax = 47.89
|
2764 |
+
text = "AH0"
|
2765 |
+
intervals [474]:
|
2766 |
+
xmin = 47.89
|
2767 |
+
xmax = 48.04
|
2768 |
+
text = "L"
|
2769 |
+
intervals [475]:
|
2770 |
+
xmin = 48.04
|
2771 |
+
xmax = 48.12
|
2772 |
+
text = "Z"
|
2773 |
+
intervals [476]:
|
2774 |
+
xmin = 48.12
|
2775 |
+
xmax = 48.15
|
2776 |
+
text = "AH0"
|
2777 |
+
intervals [477]:
|
2778 |
+
xmin = 48.15
|
2779 |
+
xmax = 48.18
|
2780 |
+
text = "N"
|
2781 |
+
intervals [478]:
|
2782 |
+
xmin = 48.18
|
2783 |
+
xmax = 48.21
|
2784 |
+
text = "D"
|
2785 |
+
intervals [479]:
|
2786 |
+
xmin = 48.21
|
2787 |
+
xmax = 48.26
|
2788 |
+
text = "D"
|
2789 |
+
intervals [480]:
|
2790 |
+
xmin = 48.26
|
2791 |
+
xmax = 48.31
|
2792 |
+
text = "IH1"
|
2793 |
+
intervals [481]:
|
2794 |
+
xmin = 48.31
|
2795 |
+
xmax = 48.36
|
2796 |
+
text = "F"
|
2797 |
+
intervals [482]:
|
2798 |
+
xmin = 48.36
|
2799 |
+
xmax = 48.39
|
2800 |
+
text = "R"
|
2801 |
+
intervals [483]:
|
2802 |
+
xmin = 48.39
|
2803 |
+
xmax = 48.42
|
2804 |
+
text = "AH0"
|
2805 |
+
intervals [484]:
|
2806 |
+
xmin = 48.42
|
2807 |
+
xmax = 48.45
|
2808 |
+
text = "N"
|
2809 |
+
intervals [485]:
|
2810 |
+
xmin = 48.45
|
2811 |
+
xmax = 48.48
|
2812 |
+
text = "T"
|
2813 |
+
intervals [486]:
|
2814 |
+
xmin = 48.48
|
2815 |
+
xmax = 48.53
|
2816 |
+
text = "K"
|
2817 |
+
intervals [487]:
|
2818 |
+
xmin = 48.53
|
2819 |
+
xmax = 48.6
|
2820 |
+
text = "AA2"
|
2821 |
+
intervals [488]:
|
2822 |
+
xmin = 48.6
|
2823 |
+
xmax = 48.64
|
2824 |
+
text = "M"
|
2825 |
+
intervals [489]:
|
2826 |
+
xmin = 48.64
|
2827 |
+
xmax = 48.67
|
2828 |
+
text = "P"
|
2829 |
+
intervals [490]:
|
2830 |
+
xmin = 48.67
|
2831 |
+
xmax = 48.72
|
2832 |
+
text = "AH0"
|
2833 |
+
intervals [491]:
|
2834 |
+
xmin = 48.72
|
2835 |
+
xmax = 48.8
|
2836 |
+
text = "Z"
|
2837 |
+
intervals [492]:
|
2838 |
+
xmin = 48.8
|
2839 |
+
xmax = 48.88
|
2840 |
+
text = "IH1"
|
2841 |
+
intervals [493]:
|
2842 |
+
xmin = 48.88
|
2843 |
+
xmax = 48.95
|
2844 |
+
text = "SH"
|
2845 |
+
intervals [494]:
|
2846 |
+
xmin = 48.95
|
2847 |
+
xmax = 49.02
|
2848 |
+
text = "AH0"
|
2849 |
+
intervals [495]:
|
2850 |
+
xmin = 49.02
|
2851 |
+
xmax = 49.12
|
2852 |
+
text = "N"
|
2853 |
+
intervals [496]:
|
2854 |
+
xmin = 49.12
|
2855 |
+
xmax = 49.32
|
2856 |
+
text = "Z"
|
2857 |
+
intervals [497]:
|
2858 |
+
xmin = 49.32
|
2859 |
+
xmax = 49.68
|
2860 |
+
text = ""
|
2861 |
+
intervals [498]:
|
2862 |
+
xmin = 49.68
|
2863 |
+
xmax = 49.91
|
2864 |
+
text = "F"
|
2865 |
+
intervals [499]:
|
2866 |
+
xmin = 49.91
|
2867 |
+
xmax = 49.98
|
2868 |
+
text = "ER0"
|
2869 |
+
intervals [500]:
|
2870 |
+
xmin = 49.98
|
2871 |
+
xmax = 50.02
|
2872 |
+
text = "IH0"
|
2873 |
+
intervals [501]:
|
2874 |
+
xmin = 50.02
|
2875 |
+
xmax = 50.06
|
2876 |
+
text = "G"
|
2877 |
+
intervals [502]:
|
2878 |
+
xmin = 50.06
|
2879 |
+
xmax = 50.13
|
2880 |
+
text = "Z"
|
2881 |
+
intervals [503]:
|
2882 |
+
xmin = 50.13
|
2883 |
+
xmax = 50.22
|
2884 |
+
text = "AE1"
|
2885 |
+
intervals [504]:
|
2886 |
+
xmin = 50.22
|
2887 |
+
xmax = 50.27
|
2888 |
+
text = "M"
|
2889 |
+
intervals [505]:
|
2890 |
+
xmin = 50.27
|
2891 |
+
xmax = 50.31
|
2892 |
+
text = "P"
|
2893 |
+
intervals [506]:
|
2894 |
+
xmin = 50.31
|
2895 |
+
xmax = 50.34
|
2896 |
+
text = "AH0"
|
2897 |
+
intervals [507]:
|
2898 |
+
xmin = 50.34
|
2899 |
+
xmax = 50.4
|
2900 |
+
text = "L"
|
2901 |
+
intervals [508]:
|
2902 |
+
xmin = 50.4
|
2903 |
+
xmax = 50.48
|
2904 |
+
text = "P"
|
2905 |
+
intervals [509]:
|
2906 |
+
xmin = 50.48
|
2907 |
+
xmax = 50.58
|
2908 |
+
text = "IY1"
|
2909 |
+
intervals [510]:
|
2910 |
+
xmin = 50.58
|
2911 |
+
xmax = 50.63
|
2912 |
+
text = "P"
|
2913 |
+
intervals [511]:
|
2914 |
+
xmin = 50.63
|
2915 |
+
xmax = 50.69
|
2916 |
+
text = "AH0"
|
2917 |
+
intervals [512]:
|
2918 |
+
xmin = 50.69
|
2919 |
+
xmax = 50.91
|
2920 |
+
text = "L"
|
2921 |
+
intervals [513]:
|
2922 |
+
xmin = 50.91
|
2923 |
+
xmax = 51.21
|
2924 |
+
text = "B"
|
2925 |
+
intervals [514]:
|
2926 |
+
xmin = 51.21
|
2927 |
+
xmax = 51.29
|
2928 |
+
text = "IY1"
|
2929 |
+
intervals [515]:
|
2930 |
+
xmin = 51.29
|
2931 |
+
xmax = 51.34
|
2932 |
+
text = "IH0"
|
2933 |
+
intervals [516]:
|
2934 |
+
xmin = 51.34
|
2935 |
+
xmax = 51.42
|
2936 |
+
text = "NG"
|
2937 |
+
intervals [517]:
|
2938 |
+
xmin = 51.42
|
2939 |
+
xmax = 51.57
|
2940 |
+
text = "SH"
|
2941 |
+
intervals [518]:
|
2942 |
+
xmin = 51.57
|
2943 |
+
xmax = 51.62
|
2944 |
+
text = "IH1"
|
2945 |
+
intervals [519]:
|
2946 |
+
xmin = 51.62
|
2947 |
+
xmax = 51.68
|
2948 |
+
text = "F"
|
2949 |
+
intervals [520]:
|
2950 |
+
xmin = 51.68
|
2951 |
+
xmax = 51.74
|
2952 |
+
text = "T"
|
2953 |
+
intervals [521]:
|
2954 |
+
xmin = 51.74
|
2955 |
+
xmax = 51.79
|
2956 |
+
text = "IH0"
|
2957 |
+
intervals [522]:
|
2958 |
+
xmin = 51.79
|
2959 |
+
xmax = 51.91
|
2960 |
+
text = "D"
|
2961 |
+
intervals [523]:
|
2962 |
+
xmin = 51.91
|
2963 |
+
xmax = 51.94
|
2964 |
+
text = "F"
|
2965 |
+
intervals [524]:
|
2966 |
+
xmin = 51.94
|
2967 |
+
xmax = 52.02
|
2968 |
+
text = "ER0"
|
2969 |
+
intervals [525]:
|
2970 |
+
xmin = 52.02
|
2971 |
+
xmax = 52.06
|
2972 |
+
text = "M"
|
2973 |
+
intervals [526]:
|
2974 |
+
xmin = 52.06
|
2975 |
+
xmax = 52.1
|
2976 |
+
text = "DH"
|
2977 |
+
intervals [527]:
|
2978 |
+
xmin = 52.1
|
2979 |
+
xmax = 52.15
|
2980 |
+
text = "AH0"
|
2981 |
+
intervals [528]:
|
2982 |
+
xmin = 52.15
|
2983 |
+
xmax = 52.27
|
2984 |
+
text = "S"
|
2985 |
+
intervals [529]:
|
2986 |
+
xmin = 52.27
|
2987 |
+
xmax = 52.32
|
2988 |
+
text = "EH1"
|
2989 |
+
intervals [530]:
|
2990 |
+
xmin = 52.32
|
2991 |
+
xmax = 52.38
|
2992 |
+
text = "N"
|
2993 |
+
intervals [531]:
|
2994 |
+
xmin = 52.38
|
2995 |
+
xmax = 52.47
|
2996 |
+
text = "ER0"
|
2997 |
+
intervals [532]:
|
2998 |
+
xmin = 52.47
|
2999 |
+
xmax = 52.51
|
3000 |
+
text = "AH0"
|
3001 |
+
intervals [533]:
|
3002 |
+
xmin = 52.51
|
3003 |
+
xmax = 52.54
|
3004 |
+
text = "V"
|
3005 |
+
intervals [534]:
|
3006 |
+
xmin = 52.54
|
3007 |
+
xmax = 52.57
|
3008 |
+
text = "DH"
|
3009 |
+
intervals [535]:
|
3010 |
+
xmin = 52.57
|
3011 |
+
xmax = 52.63
|
3012 |
+
text = "AH0"
|
3013 |
+
intervals [536]:
|
3014 |
+
xmin = 52.63
|
3015 |
+
xmax = 52.72
|
3016 |
+
text = "F"
|
3017 |
+
intervals [537]:
|
3018 |
+
xmin = 52.72
|
3019 |
+
xmax = 52.8
|
3020 |
+
text = "R"
|
3021 |
+
intervals [538]:
|
3022 |
+
xmin = 52.8
|
3023 |
+
xmax = 52.89
|
3024 |
+
text = "EY1"
|
3025 |
+
intervals [539]:
|
3026 |
+
xmin = 52.89
|
3027 |
+
xmax = 52.95
|
3028 |
+
text = "M"
|
3029 |
+
intervals [540]:
|
3030 |
+
xmin = 52.95
|
3031 |
+
xmax = 53.01
|
3032 |
+
text = "T"
|
3033 |
+
intervals [541]:
|
3034 |
+
xmin = 53.01
|
3035 |
+
xmax = 53.1
|
3036 |
+
text = "AH0"
|
3037 |
+
intervals [542]:
|
3038 |
+
xmin = 53.1
|
3039 |
+
xmax = 53.19
|
3040 |
+
text = "L"
|
3041 |
+
intervals [543]:
|
3042 |
+
xmin = 53.19
|
3043 |
+
xmax = 53.26
|
3044 |
+
text = "EH1"
|
3045 |
+
intervals [544]:
|
3046 |
+
xmin = 53.26
|
3047 |
+
xmax = 53.29
|
3048 |
+
text = "F"
|
3049 |
+
intervals [545]:
|
3050 |
+
xmin = 53.29
|
3051 |
+
xmax = 53.32
|
3052 |
+
text = "T"
|
3053 |
+
intervals [546]:
|
3054 |
+
xmin = 53.32
|
3055 |
+
xmax = 53.4
|
3056 |
+
text = "S"
|
3057 |
+
intervals [547]:
|
3058 |
+
xmin = 53.4
|
3059 |
+
xmax = 53.5
|
3060 |
+
text = "AY1"
|
3061 |
+
intervals [548]:
|
3062 |
+
xmin = 53.5
|
3063 |
+
xmax = 53.54
|
3064 |
+
text = "D"
|
3065 |
+
intervals [549]:
|
3066 |
+
xmin = 53.54
|
3067 |
+
xmax = 53.57
|
3068 |
+
text = "AH0"
|
3069 |
+
intervals [550]:
|
3070 |
+
xmin = 53.57
|
3071 |
+
xmax = 53.6
|
3072 |
+
text = "V"
|
3073 |
+
intervals [551]:
|
3074 |
+
xmin = 53.6
|
3075 |
+
xmax = 53.63
|
3076 |
+
text = "DH"
|
3077 |
+
intervals [552]:
|
3078 |
+
xmin = 53.63
|
3079 |
+
xmax = 53.69
|
3080 |
+
text = "AH0"
|
3081 |
+
intervals [553]:
|
3082 |
+
xmin = 53.69
|
3083 |
+
xmax = 53.78
|
3084 |
+
text = "F"
|
3085 |
+
intervals [554]:
|
3086 |
+
xmin = 53.78
|
3087 |
+
xmax = 53.92
|
3088 |
+
text = "R"
|
3089 |
+
intervals [555]:
|
3090 |
+
xmin = 53.92
|
3091 |
+
xmax = 54.03
|
3092 |
+
text = "EY1"
|
3093 |
+
intervals [556]:
|
3094 |
+
xmin = 54.03
|
3095 |
+
xmax = 54.17
|
3096 |
+
text = "M"
|
3097 |
+
intervals [557]:
|
3098 |
+
xmin = 54.17
|
3099 |
+
xmax = 54.62
|
3100 |
+
text = ""
|
3101 |
+
intervals [558]:
|
3102 |
+
xmin = 54.62
|
3103 |
+
xmax = 54.72
|
3104 |
+
text = "IH0"
|
3105 |
+
intervals [559]:
|
3106 |
+
xmin = 54.72
|
3107 |
+
xmax = 54.75
|
3108 |
+
text = "T"
|
3109 |
+
intervals [560]:
|
3110 |
+
xmin = 54.75
|
3111 |
+
xmax = 54.82
|
3112 |
+
text = "K"
|
3113 |
+
intervals [561]:
|
3114 |
+
xmin = 54.82
|
3115 |
+
xmax = 54.88
|
3116 |
+
text = "AH0"
|
3117 |
+
intervals [562]:
|
3118 |
+
xmin = 54.88
|
3119 |
+
xmax = 54.91
|
3120 |
+
text = "N"
|
3121 |
+
intervals [563]:
|
3122 |
+
xmin = 54.91
|
3123 |
+
xmax = 54.97
|
3124 |
+
text = "M"
|
3125 |
+
intervals [564]:
|
3126 |
+
xmin = 54.97
|
3127 |
+
xmax = 55.1
|
3128 |
+
text = "EY1"
|
3129 |
+
intervals [565]:
|
3130 |
+
xmin = 55.1
|
3131 |
+
xmax = 55.13
|
3132 |
+
text = "K"
|
3133 |
+
intervals [566]:
|
3134 |
+
xmin = 55.13
|
3135 |
+
xmax = 55.22
|
3136 |
+
text = "EY1"
|
3137 |
+
intervals [567]:
|
3138 |
+
xmin = 55.22
|
3139 |
+
xmax = 55.29
|
3140 |
+
text = "D"
|
3141 |
+
intervals [568]:
|
3142 |
+
xmin = 55.29
|
3143 |
+
xmax = 55.35
|
3144 |
+
text = "IH1"
|
3145 |
+
intervals [569]:
|
3146 |
+
xmin = 55.35
|
3147 |
+
xmax = 55.43
|
3148 |
+
text = "F"
|
3149 |
+
intervals [570]:
|
3150 |
+
xmin = 55.43
|
3151 |
+
xmax = 55.46
|
3152 |
+
text = "R"
|
3153 |
+
intervals [571]:
|
3154 |
+
xmin = 55.46
|
3155 |
+
xmax = 55.49
|
3156 |
+
text = "AH0"
|
3157 |
+
intervals [572]:
|
3158 |
+
xmin = 55.49
|
3159 |
+
xmax = 55.52
|
3160 |
+
text = "N"
|
3161 |
+
intervals [573]:
|
3162 |
+
xmin = 55.52
|
3163 |
+
xmax = 55.56
|
3164 |
+
text = "T"
|
3165 |
+
intervals [574]:
|
3166 |
+
xmin = 55.56
|
3167 |
+
xmax = 55.64
|
3168 |
+
text = "F"
|
3169 |
+
intervals [575]:
|
3170 |
+
xmin = 55.64
|
3171 |
+
xmax = 55.77
|
3172 |
+
text = "IY1"
|
3173 |
+
intervals [576]:
|
3174 |
+
xmin = 55.77
|
3175 |
+
xmax = 55.82
|
3176 |
+
text = "L"
|
3177 |
+
intervals [577]:
|
3178 |
+
xmin = 55.82
|
3179 |
+
xmax = 55.88
|
3180 |
+
text = "IH0"
|
3181 |
+
intervals [578]:
|
3182 |
+
xmin = 55.88
|
3183 |
+
xmax = 56.05
|
3184 |
+
text = "NG"
|
3185 |
+
intervals [579]:
|
3186 |
+
xmin = 56.05
|
3187 |
+
xmax = 56.41
|
3188 |
+
text = ""
|
3189 |
+
intervals [580]:
|
3190 |
+
xmin = 56.41
|
3191 |
+
xmax = 56.48
|
3192 |
+
text = "W"
|
3193 |
+
intervals [581]:
|
3194 |
+
xmin = 56.48
|
3195 |
+
xmax = 56.66
|
3196 |
+
text = "EH1"
|
3197 |
+
intervals [582]:
|
3198 |
+
xmin = 56.66
|
3199 |
+
xmax = 56.69
|
3200 |
+
text = "N"
|
3201 |
+
intervals [583]:
|
3202 |
+
xmin = 56.69
|
3203 |
+
xmax = 57.1
|
3204 |
+
text = "W"
|
3205 |
+
intervals [584]:
|
3206 |
+
xmin = 57.1
|
3207 |
+
xmax = 57.25
|
3208 |
+
text = "IY1"
|
3209 |
+
intervals [585]:
|
3210 |
+
xmin = 57.25
|
3211 |
+
xmax = 57.5
|
3212 |
+
text = ""
|
3213 |
+
intervals [586]:
|
3214 |
+
xmin = 57.5
|
3215 |
+
xmax = 57.68
|
3216 |
+
text = "W"
|
3217 |
+
intervals [587]:
|
3218 |
+
xmin = 57.68
|
3219 |
+
xmax = 57.72
|
3220 |
+
text = "EH1"
|
3221 |
+
intervals [588]:
|
3222 |
+
xmin = 57.72
|
3223 |
+
xmax = 57.82
|
3224 |
+
text = "N"
|
3225 |
+
intervals [589]:
|
3226 |
+
xmin = 57.82
|
3227 |
+
xmax = 57.96
|
3228 |
+
text = "S"
|
3229 |
+
intervals [590]:
|
3230 |
+
xmin = 57.96
|
3231 |
+
xmax = 58.02
|
3232 |
+
text = "IY1"
|
3233 |
+
intervals [591]:
|
3234 |
+
xmin = 58.02
|
3235 |
+
xmax = 58.07
|
3236 |
+
text = "N"
|
3237 |
+
intervals [592]:
|
3238 |
+
xmin = 58.07
|
3239 |
+
xmax = 58.11
|
3240 |
+
text = "IH1"
|
3241 |
+
intervals [593]:
|
3242 |
+
xmin = 58.11
|
3243 |
+
xmax = 58.17
|
3244 |
+
text = "N"
|
3245 |
+
intervals [594]:
|
3246 |
+
xmin = 58.17
|
3247 |
+
xmax = 58.25
|
3248 |
+
text = "K"
|
3249 |
+
intervals [595]:
|
3250 |
+
xmin = 58.25
|
3251 |
+
xmax = 58.41
|
3252 |
+
text = "AA1"
|
3253 |
+
intervals [596]:
|
3254 |
+
xmin = 58.41
|
3255 |
+
xmax = 58.47
|
3256 |
+
text = "N"
|
3257 |
+
intervals [597]:
|
3258 |
+
xmin = 58.47
|
3259 |
+
xmax = 58.53
|
3260 |
+
text = "T"
|
3261 |
+
intervals [598]:
|
3262 |
+
xmin = 58.53
|
3263 |
+
xmax = 58.65
|
3264 |
+
text = "EH0"
|
3265 |
+
intervals [599]:
|
3266 |
+
xmin = 58.65
|
3267 |
+
xmax = 58.69
|
3268 |
+
text = "K"
|
3269 |
+
intervals [600]:
|
3270 |
+
xmin = 58.69
|
3271 |
+
xmax = 58.74
|
3272 |
+
text = "S"
|
3273 |
+
intervals [601]:
|
3274 |
+
xmin = 58.74
|
3275 |
+
xmax = 58.77
|
3276 |
+
text = "T"
|
3277 |
+
intervals [602]:
|
3278 |
+
xmin = 58.77
|
3279 |
+
xmax = 58.8
|
3280 |
+
text = "W"
|
3281 |
+
intervals [603]:
|
3282 |
+
xmin = 58.8
|
3283 |
+
xmax = 58.83
|
3284 |
+
text = "IH0"
|
3285 |
+
intervals [604]:
|
3286 |
+
xmin = 58.83
|
3287 |
+
xmax = 58.86
|
3288 |
+
text = "DH"
|
3289 |
+
intervals [605]:
|
3290 |
+
xmin = 58.86
|
3291 |
+
xmax = 58.9
|
3292 |
+
text = "DH"
|
3293 |
+
intervals [606]:
|
3294 |
+
xmin = 58.9
|
3295 |
+
xmax = 58.93
|
3296 |
+
text = "AH1"
|
3297 |
+
intervals [607]:
|
3298 |
+
xmin = 58.93
|
3299 |
+
xmax = 59.03
|
3300 |
+
text = "B"
|
3301 |
+
intervals [608]:
|
3302 |
+
xmin = 59.03
|
3303 |
+
xmax = 59.2
|
3304 |
+
text = "AE1"
|
3305 |
+
intervals [609]:
|
3306 |
+
xmin = 59.2
|
3307 |
+
xmax = 59.25
|
3308 |
+
text = "K"
|
3309 |
+
intervals [610]:
|
3310 |
+
xmin = 59.25
|
3311 |
+
xmax = 59.29
|
3312 |
+
text = "G"
|
3313 |
+
intervals [611]:
|
3314 |
+
xmin = 59.29
|
3315 |
+
xmax = 59.33
|
3316 |
+
text = "R"
|
3317 |
+
intervals [612]:
|
3318 |
+
xmin = 59.33
|
3319 |
+
xmax = 59.45
|
3320 |
+
text = "AW2"
|
3321 |
+
intervals [613]:
|
3322 |
+
xmin = 59.45
|
3323 |
+
xmax = 59.52
|
3324 |
+
text = "N"
|
3325 |
+
intervals [614]:
|
3326 |
+
xmin = 59.52
|
3327 |
+
xmax = 59.61
|
3328 |
+
text = "D"
|
3329 |
+
intervals [615]:
|
3330 |
+
xmin = 59.61
|
3331 |
+
xmax = 59.96
|
3332 |
+
text = ""
|
3333 |
+
intervals [616]:
|
3334 |
+
xmin = 59.96
|
3335 |
+
xmax = 60.13
|
3336 |
+
text = "W"
|
3337 |
+
intervals [617]:
|
3338 |
+
xmin = 60.13
|
3339 |
+
xmax = 60.17
|
3340 |
+
text = "EH1"
|
3341 |
+
intervals [618]:
|
3342 |
+
xmin = 60.17
|
3343 |
+
xmax = 60.31
|
3344 |
+
text = "N"
|
3345 |
+
intervals [619]:
|
3346 |
+
xmin = 60.31
|
3347 |
+
xmax = 60.41
|
3348 |
+
text = "EH1"
|
3349 |
+
intervals [620]:
|
3350 |
+
xmin = 60.41
|
3351 |
+
xmax = 60.45
|
3352 |
+
text = "V"
|
3353 |
+
intervals [621]:
|
3354 |
+
xmin = 60.45
|
3355 |
+
xmax = 60.48
|
3356 |
+
text = "R"
|
3357 |
+
intervals [622]:
|
3358 |
+
xmin = 60.48
|
3359 |
+
xmax = 60.51
|
3360 |
+
text = "IY0"
|
3361 |
+
intervals [623]:
|
3362 |
+
xmin = 60.51
|
3363 |
+
xmax = 60.58
|
3364 |
+
text = "W"
|
3365 |
+
intervals [624]:
|
3366 |
+
xmin = 60.58
|
3367 |
+
xmax = 60.65
|
3368 |
+
text = "AH2"
|
3369 |
+
intervals [625]:
|
3370 |
+
xmin = 60.65
|
3371 |
+
xmax = 60.69
|
3372 |
+
text = "N"
|
3373 |
+
intervals [626]:
|
3374 |
+
xmin = 60.69
|
3375 |
+
xmax = 60.79
|
3376 |
+
text = "Z"
|
3377 |
+
intervals [627]:
|
3378 |
+
xmin = 60.79
|
3379 |
+
xmax = 60.86
|
3380 |
+
text = "T"
|
3381 |
+
intervals [628]:
|
3382 |
+
xmin = 60.86
|
3383 |
+
xmax = 60.92
|
3384 |
+
text = "EY1"
|
3385 |
+
intervals [629]:
|
3386 |
+
xmin = 60.92
|
3387 |
+
xmax = 60.95
|
3388 |
+
text = "K"
|
3389 |
+
intervals [630]:
|
3390 |
+
xmin = 60.95
|
3391 |
+
xmax = 61.0
|
3392 |
+
text = "IH0"
|
3393 |
+
intervals [631]:
|
3394 |
+
xmin = 61.0
|
3395 |
+
xmax = 61.08
|
3396 |
+
text = "NG"
|
3397 |
+
intervals [632]:
|
3398 |
+
xmin = 61.08
|
3399 |
+
xmax = 61.14
|
3400 |
+
text = "AH0"
|
3401 |
+
intervals [633]:
|
3402 |
+
xmin = 61.14
|
3403 |
+
xmax = 61.2
|
3404 |
+
text = "P"
|
3405 |
+
intervals [634]:
|
3406 |
+
xmin = 61.2
|
3407 |
+
xmax = 61.28
|
3408 |
+
text = "IH1"
|
3409 |
+
intervals [635]:
|
3410 |
+
xmin = 61.28
|
3411 |
+
xmax = 61.32
|
3412 |
+
text = "K"
|
3413 |
+
intervals [636]:
|
3414 |
+
xmin = 61.32
|
3415 |
+
xmax = 61.43
|
3416 |
+
text = "CH"
|
3417 |
+
intervals [637]:
|
3418 |
+
xmin = 61.43
|
3419 |
+
xmax = 61.46
|
3420 |
+
text = "ER0"
|
3421 |
+
intervals [638]:
|
3422 |
+
xmin = 61.46
|
3423 |
+
xmax = 61.49
|
3424 |
+
text = "AH0"
|
3425 |
+
intervals [639]:
|
3426 |
+
xmin = 61.49
|
3427 |
+
xmax = 61.53
|
3428 |
+
text = "V"
|
3429 |
+
intervals [640]:
|
3430 |
+
xmin = 61.53
|
3431 |
+
xmax = 61.56
|
3432 |
+
text = "DH"
|
3433 |
+
intervals [641]:
|
3434 |
+
xmin = 61.56
|
3435 |
+
xmax = 61.6
|
3436 |
+
text = "AH0"
|
3437 |
+
intervals [642]:
|
3438 |
+
xmin = 61.6
|
3439 |
+
xmax = 61.64
|
3440 |
+
text = "IH0"
|
3441 |
+
intervals [643]:
|
3442 |
+
xmin = 61.64
|
3443 |
+
xmax = 61.69
|
3444 |
+
text = "G"
|
3445 |
+
intervals [644]:
|
3446 |
+
xmin = 61.69
|
3447 |
+
xmax = 61.76
|
3448 |
+
text = "Z"
|
3449 |
+
intervals [645]:
|
3450 |
+
xmin = 61.76
|
3451 |
+
xmax = 61.9
|
3452 |
+
text = "AE1"
|
3453 |
+
intervals [646]:
|
3454 |
+
xmin = 61.9
|
3455 |
+
xmax = 61.94
|
3456 |
+
text = "K"
|
3457 |
+
intervals [647]:
|
3458 |
+
xmin = 61.94
|
3459 |
+
xmax = 61.98
|
3460 |
+
text = "T"
|
3461 |
+
intervals [648]:
|
3462 |
+
xmin = 61.98
|
3463 |
+
xmax = 62.05
|
3464 |
+
text = "S"
|
3465 |
+
intervals [649]:
|
3466 |
+
xmin = 62.05
|
3467 |
+
xmax = 62.13
|
3468 |
+
text = "EY1"
|
3469 |
+
intervals [650]:
|
3470 |
+
xmin = 62.13
|
3471 |
+
xmax = 62.19
|
3472 |
+
text = "M"
|
3473 |
+
intervals [651]:
|
3474 |
+
xmin = 62.19
|
3475 |
+
xmax = 62.3
|
3476 |
+
text = "S"
|
3477 |
+
intervals [652]:
|
3478 |
+
xmin = 62.3
|
3479 |
+
xmax = 62.34
|
3480 |
+
text = "IY1"
|
3481 |
+
intervals [653]:
|
3482 |
+
xmin = 62.34
|
3483 |
+
xmax = 62.39
|
3484 |
+
text = "N"
|
3485 |
+
intervals [654]:
|
3486 |
+
xmin = 62.39
|
3487 |
+
xmax = 62.47
|
3488 |
+
text = "ER0"
|
3489 |
+
intervals [655]:
|
3490 |
+
xmin = 62.47
|
3491 |
+
xmax = 62.64
|
3492 |
+
text = "IY0"
|
3493 |
+
intervals [656]:
|
3494 |
+
xmin = 62.64
|
3495 |
+
xmax = 62.67
|
3496 |
+
text = ""
|
3497 |
+
intervals [657]:
|
3498 |
+
xmin = 62.67
|
3499 |
+
xmax = 62.8
|
3500 |
+
text = "AY1"
|
3501 |
+
intervals [658]:
|
3502 |
+
xmin = 62.8
|
3503 |
+
xmax = 62.89
|
3504 |
+
text = "M"
|
3505 |
+
intervals [659]:
|
3506 |
+
xmin = 62.89
|
3507 |
+
xmax = 63.03
|
3508 |
+
text = "V"
|
3509 |
+
intervals [660]:
|
3510 |
+
xmin = 63.03
|
3511 |
+
xmax = 63.12
|
3512 |
+
text = "EH1"
|
3513 |
+
intervals [661]:
|
3514 |
+
xmin = 63.12
|
3515 |
+
xmax = 63.22
|
3516 |
+
text = "R"
|
3517 |
+
intervals [662]:
|
3518 |
+
xmin = 63.22
|
3519 |
+
xmax = 63.28
|
3520 |
+
text = "IY0"
|
3521 |
+
intervals [663]:
|
3522 |
+
xmin = 63.28
|
3523 |
+
xmax = 63.39
|
3524 |
+
text = "HH"
|
3525 |
+
intervals [664]:
|
3526 |
+
xmin = 63.39
|
3527 |
+
xmax = 63.56
|
3528 |
+
text = "AE1"
|
3529 |
+
intervals [665]:
|
3530 |
+
xmin = 63.56
|
3531 |
+
xmax = 63.62
|
3532 |
+
text = "P"
|
3533 |
+
intervals [666]:
|
3534 |
+
xmin = 63.62
|
3535 |
+
xmax = 63.75
|
3536 |
+
text = "IY0"
|
3537 |
+
intervals [667]:
|
3538 |
+
xmin = 63.75
|
3539 |
+
xmax = 63.81
|
3540 |
+
text = "W"
|
3541 |
+
intervals [668]:
|
3542 |
+
xmin = 63.81
|
3543 |
+
xmax = 63.85
|
3544 |
+
text = "IH1"
|
3545 |
+
intervals [669]:
|
3546 |
+
xmin = 63.85
|
3547 |
+
xmax = 63.9
|
3548 |
+
text = "N"
|
3549 |
+
intervals [670]:
|
3550 |
+
xmin = 63.9
|
3551 |
+
xmax = 64.03
|
3552 |
+
text = "P"
|
3553 |
+
intervals [671]:
|
3554 |
+
xmin = 64.03
|
3555 |
+
xmax = 64.14
|
3556 |
+
text = "IY1"
|
3557 |
+
intervals [672]:
|
3558 |
+
xmin = 64.14
|
3559 |
+
xmax = 64.19
|
3560 |
+
text = "P"
|
3561 |
+
intervals [673]:
|
3562 |
+
xmin = 64.19
|
3563 |
+
xmax = 64.23
|
3564 |
+
text = "AH0"
|
3565 |
+
intervals [674]:
|
3566 |
+
xmin = 64.23
|
3567 |
+
xmax = 64.35
|
3568 |
+
text = "L"
|
3569 |
+
intervals [675]:
|
3570 |
+
xmin = 64.35
|
3571 |
+
xmax = 64.48
|
3572 |
+
text = "S"
|
3573 |
+
intervals [676]:
|
3574 |
+
xmin = 64.48
|
3575 |
+
xmax = 64.6
|
3576 |
+
text = "EY1"
|
3577 |
+
intervals [677]:
|
3578 |
+
xmin = 64.6
|
3579 |
+
xmax = 64.69
|
3580 |
+
text = "M"
|
3581 |
+
intervals [678]:
|
3582 |
+
xmin = 64.69
|
3583 |
+
xmax = 64.84
|
3584 |
+
text = "AY1"
|
3585 |
+
intervals [679]:
|
3586 |
+
xmin = 64.84
|
3587 |
+
xmax = 64.99
|
3588 |
+
text = "F"
|
3589 |
+
intervals [680]:
|
3590 |
+
xmin = 64.99
|
3591 |
+
xmax = 65.07
|
3592 |
+
text = "OW1"
|
3593 |
+
intervals [681]:
|
3594 |
+
xmin = 65.07
|
3595 |
+
xmax = 65.1
|
3596 |
+
text = "T"
|
3597 |
+
intervals [682]:
|
3598 |
+
xmin = 65.1
|
3599 |
+
xmax = 65.18
|
3600 |
+
text = "OW2"
|
3601 |
+
intervals [683]:
|
3602 |
+
xmin = 65.18
|
3603 |
+
xmax = 65.29
|
3604 |
+
text = "Z"
|
3605 |
+
intervals [684]:
|
3606 |
+
xmin = 65.29
|
3607 |
+
xmax = 65.37
|
3608 |
+
text = "L"
|
3609 |
+
intervals [685]:
|
3610 |
+
xmin = 65.37
|
3611 |
+
xmax = 65.42
|
3612 |
+
text = "UH1"
|
3613 |
+
intervals [686]:
|
3614 |
+
xmin = 65.42
|
3615 |
+
xmax = 65.47
|
3616 |
+
text = "K"
|
3617 |
+
intervals [687]:
|
3618 |
+
xmin = 65.47
|
3619 |
+
xmax = 65.67
|
3620 |
+
text = "B"
|
3621 |
+
intervals [688]:
|
3622 |
+
xmin = 65.67
|
3623 |
+
xmax = 65.79
|
3624 |
+
text = "EH1"
|
3625 |
+
intervals [689]:
|
3626 |
+
xmin = 65.79
|
3627 |
+
xmax = 65.88
|
3628 |
+
text = "T"
|
3629 |
+
intervals [690]:
|
3630 |
+
xmin = 65.88
|
3631 |
+
xmax = 66.11
|
3632 |
+
text = "ER0"
|
3633 |
+
intervals [691]:
|
3634 |
+
xmin = 66.11
|
3635 |
+
xmax = 66.43
|
3636 |
+
text = ""
|
3637 |
+
intervals [692]:
|
3638 |
+
xmin = 66.43
|
3639 |
+
xmax = 66.5
|
3640 |
+
text = "DH"
|
3641 |
+
intervals [693]:
|
3642 |
+
xmin = 66.5
|
3643 |
+
xmax = 66.53
|
3644 |
+
text = "AH0"
|
3645 |
+
intervals [694]:
|
3646 |
+
xmin = 66.53
|
3647 |
+
xmax = 66.56
|
3648 |
+
text = "N"
|
3649 |
+
intervals [695]:
|
3650 |
+
xmin = 66.56
|
3651 |
+
xmax = 66.6
|
3652 |
+
text = "DH"
|
3653 |
+
intervals [696]:
|
3654 |
+
xmin = 66.6
|
3655 |
+
xmax = 66.7
|
3656 |
+
text = "IY0"
|
3657 |
+
intervals [697]:
|
3658 |
+
xmin = 66.7
|
3659 |
+
xmax = 66.76
|
3660 |
+
text = "AH1"
|
3661 |
+
intervals [698]:
|
3662 |
+
xmin = 66.76
|
3663 |
+
xmax = 66.82
|
3664 |
+
text = "DH"
|
3665 |
+
intervals [699]:
|
3666 |
+
xmin = 66.82
|
3667 |
+
xmax = 66.95
|
3668 |
+
text = "ER0"
|
3669 |
+
intervals [700]:
|
3670 |
+
xmin = 66.95
|
3671 |
+
xmax = 67.19
|
3672 |
+
text = "Z"
|
3673 |
+
intervals [701]:
|
3674 |
+
xmin = 67.19
|
3675 |
+
xmax = 68
|
3676 |
+
text = ""
|
EMAGE/test_sequences/textgrid/2_scott_0_4_4.TextGrid
ADDED
@@ -0,0 +1,3844 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
File type = "ooTextFile"
|
2 |
+
Object class = "TextGrid"
|
3 |
+
|
4 |
+
xmin = 0.0
|
5 |
+
xmax = 67
|
6 |
+
tiers? <exists>
|
7 |
+
size = 2
|
8 |
+
item []:
|
9 |
+
item [1]:
|
10 |
+
class = "IntervalTier"
|
11 |
+
name = "words"
|
12 |
+
xmin = 0.0
|
13 |
+
xmax = 67
|
14 |
+
intervals: size = 235
|
15 |
+
intervals [1]:
|
16 |
+
xmin = 0.0
|
17 |
+
xmax = 0.53
|
18 |
+
text = ""
|
19 |
+
intervals [2]:
|
20 |
+
xmin = 0.53
|
21 |
+
xmax = 0.93
|
22 |
+
text = "my"
|
23 |
+
intervals [3]:
|
24 |
+
xmin = 0.93
|
25 |
+
xmax = 1.34
|
26 |
+
text = "favorite"
|
27 |
+
intervals [4]:
|
28 |
+
xmin = 1.34
|
29 |
+
xmax = 1.57
|
30 |
+
text = "kind"
|
31 |
+
intervals [5]:
|
32 |
+
xmin = 1.57
|
33 |
+
xmax = 1.65
|
34 |
+
text = "of"
|
35 |
+
intervals [6]:
|
36 |
+
xmin = 1.65
|
37 |
+
xmax = 2.2
|
38 |
+
text = "movies"
|
39 |
+
intervals [7]:
|
40 |
+
xmin = 2.2
|
41 |
+
xmax = 2.45
|
42 |
+
text = "are"
|
43 |
+
intervals [8]:
|
44 |
+
xmin = 2.45
|
45 |
+
xmax = 3.2
|
46 |
+
text = "romantic"
|
47 |
+
intervals [9]:
|
48 |
+
xmin = 3.2
|
49 |
+
xmax = 3.72
|
50 |
+
text = "movies"
|
51 |
+
intervals [10]:
|
52 |
+
xmin = 3.72
|
53 |
+
xmax = 3.75
|
54 |
+
text = ""
|
55 |
+
intervals [11]:
|
56 |
+
xmin = 3.75
|
57 |
+
xmax = 4.1
|
58 |
+
text = "such"
|
59 |
+
intervals [12]:
|
60 |
+
xmin = 4.1
|
61 |
+
xmax = 4.33
|
62 |
+
text = "as"
|
63 |
+
intervals [13]:
|
64 |
+
xmin = 4.33
|
65 |
+
xmax = 5.23
|
66 |
+
text = "titanic"
|
67 |
+
intervals [14]:
|
68 |
+
xmin = 5.23
|
69 |
+
xmax = 5.78
|
70 |
+
text = ""
|
71 |
+
intervals [15]:
|
72 |
+
xmin = 5.78
|
73 |
+
xmax = 6.19
|
74 |
+
text = "it's"
|
75 |
+
intervals [16]:
|
76 |
+
xmin = 6.19
|
77 |
+
xmax = 6.46
|
78 |
+
text = "a"
|
79 |
+
intervals [17]:
|
80 |
+
xmin = 6.46
|
81 |
+
xmax = 6.49
|
82 |
+
text = ""
|
83 |
+
intervals [18]:
|
84 |
+
xmin = 6.49
|
85 |
+
xmax = 7.13
|
86 |
+
text = "fantastic"
|
87 |
+
intervals [19]:
|
88 |
+
xmin = 7.13
|
89 |
+
xmax = 7.56
|
90 |
+
text = "film"
|
91 |
+
intervals [20]:
|
92 |
+
xmin = 7.56
|
93 |
+
xmax = 7.77
|
94 |
+
text = "it"
|
95 |
+
intervals [21]:
|
96 |
+
xmin = 7.77
|
97 |
+
xmax = 8.28
|
98 |
+
text = "captured"
|
99 |
+
intervals [22]:
|
100 |
+
xmin = 8.28
|
101 |
+
xmax = 8.73
|
102 |
+
text = "many"
|
103 |
+
intervals [23]:
|
104 |
+
xmin = 8.73
|
105 |
+
xmax = 9.1
|
106 |
+
text = "young"
|
107 |
+
intervals [24]:
|
108 |
+
xmin = 9.1
|
109 |
+
xmax = 9.44
|
110 |
+
text = "people's"
|
111 |
+
intervals [25]:
|
112 |
+
xmin = 9.44
|
113 |
+
xmax = 9.79
|
114 |
+
text = "hearts"
|
115 |
+
intervals [26]:
|
116 |
+
xmin = 9.79
|
117 |
+
xmax = 10.02
|
118 |
+
text = "with"
|
119 |
+
intervals [27]:
|
120 |
+
xmin = 10.02
|
121 |
+
xmax = 10.17
|
122 |
+
text = "it's"
|
123 |
+
intervals [28]:
|
124 |
+
xmin = 10.17
|
125 |
+
xmax = 10.65
|
126 |
+
text = "amazing"
|
127 |
+
intervals [29]:
|
128 |
+
xmin = 10.65
|
129 |
+
xmax = 11.12
|
130 |
+
text = "music"
|
131 |
+
intervals [30]:
|
132 |
+
xmin = 11.12
|
133 |
+
xmax = 11.36
|
134 |
+
text = "and"
|
135 |
+
intervals [31]:
|
136 |
+
xmin = 11.36
|
137 |
+
xmax = 11.92
|
138 |
+
text = "sentimental"
|
139 |
+
intervals [32]:
|
140 |
+
xmin = 11.92
|
141 |
+
xmax = 12.47
|
142 |
+
text = "plots"
|
143 |
+
intervals [33]:
|
144 |
+
xmin = 12.47
|
145 |
+
xmax = 12.84
|
146 |
+
text = ""
|
147 |
+
intervals [34]:
|
148 |
+
xmin = 12.84
|
149 |
+
xmax = 12.98
|
150 |
+
text = "when"
|
151 |
+
intervals [35]:
|
152 |
+
xmin = 12.98
|
153 |
+
xmax = 13.12
|
154 |
+
text = "i"
|
155 |
+
intervals [36]:
|
156 |
+
xmin = 13.12
|
157 |
+
xmax = 13.28
|
158 |
+
text = "think"
|
159 |
+
intervals [37]:
|
160 |
+
xmin = 13.28
|
161 |
+
xmax = 13.35
|
162 |
+
text = "of"
|
163 |
+
intervals [38]:
|
164 |
+
xmin = 13.35
|
165 |
+
xmax = 13.42
|
166 |
+
text = "the"
|
167 |
+
intervals [39]:
|
168 |
+
xmin = 13.42
|
169 |
+
xmax = 13.62
|
170 |
+
text = "movie"
|
171 |
+
intervals [40]:
|
172 |
+
xmin = 13.62
|
173 |
+
xmax = 14.2
|
174 |
+
text = "titanic"
|
175 |
+
intervals [41]:
|
176 |
+
xmin = 14.2
|
177 |
+
xmax = 14.23
|
178 |
+
text = ""
|
179 |
+
intervals [42]:
|
180 |
+
xmin = 14.23
|
181 |
+
xmax = 14.42
|
182 |
+
text = "the"
|
183 |
+
intervals [43]:
|
184 |
+
xmin = 14.42
|
185 |
+
xmax = 14.92
|
186 |
+
text = "word"
|
187 |
+
intervals [44]:
|
188 |
+
xmin = 14.92
|
189 |
+
xmax = 15.06
|
190 |
+
text = "that"
|
191 |
+
intervals [45]:
|
192 |
+
xmin = 15.06
|
193 |
+
xmax = 15.3
|
194 |
+
text = "comes"
|
195 |
+
intervals [46]:
|
196 |
+
xmin = 15.3
|
197 |
+
xmax = 15.39
|
198 |
+
text = "to"
|
199 |
+
intervals [47]:
|
200 |
+
xmin = 15.39
|
201 |
+
xmax = 15.5
|
202 |
+
text = "my"
|
203 |
+
intervals [48]:
|
204 |
+
xmin = 15.5
|
205 |
+
xmax = 15.91
|
206 |
+
text = "mind"
|
207 |
+
intervals [49]:
|
208 |
+
xmin = 15.91
|
209 |
+
xmax = 16.06
|
210 |
+
text = "mind"
|
211 |
+
intervals [50]:
|
212 |
+
xmin = 16.06
|
213 |
+
xmax = 16.41
|
214 |
+
text = ""
|
215 |
+
intervals [51]:
|
216 |
+
xmin = 16.41
|
217 |
+
xmax = 16.6
|
218 |
+
text = "to"
|
219 |
+
intervals [52]:
|
220 |
+
xmin = 16.6
|
221 |
+
xmax = 17.07
|
222 |
+
text = "mises"
|
223 |
+
intervals [53]:
|
224 |
+
xmin = 17.07
|
225 |
+
xmax = 17.15
|
226 |
+
text = "the"
|
227 |
+
intervals [54]:
|
228 |
+
xmin = 17.15
|
229 |
+
xmax = 17.39
|
230 |
+
text = "whole"
|
231 |
+
intervals [55]:
|
232 |
+
xmin = 17.39
|
233 |
+
xmax = 17.94
|
234 |
+
text = "film"
|
235 |
+
intervals [56]:
|
236 |
+
xmin = 17.94
|
237 |
+
xmax = 17.97
|
238 |
+
text = ""
|
239 |
+
intervals [57]:
|
240 |
+
xmin = 17.97
|
241 |
+
xmax = 18.18
|
242 |
+
text = "would"
|
243 |
+
intervals [58]:
|
244 |
+
xmin = 18.18
|
245 |
+
xmax = 18.62
|
246 |
+
text = "be"
|
247 |
+
intervals [59]:
|
248 |
+
xmin = 18.62
|
249 |
+
xmax = 19.09
|
250 |
+
text = ""
|
251 |
+
intervals [60]:
|
252 |
+
xmin = 19.09
|
253 |
+
xmax = 19.94
|
254 |
+
text = "love"
|
255 |
+
intervals [61]:
|
256 |
+
xmin = 19.94
|
257 |
+
xmax = 20.07
|
258 |
+
text = ""
|
259 |
+
intervals [62]:
|
260 |
+
xmin = 20.07
|
261 |
+
xmax = 20.27
|
262 |
+
text = "it's"
|
263 |
+
intervals [63]:
|
264 |
+
xmin = 20.27
|
265 |
+
xmax = 20.36
|
266 |
+
text = "a"
|
267 |
+
intervals [64]:
|
268 |
+
xmin = 20.36
|
269 |
+
xmax = 20.83
|
270 |
+
text = "kind"
|
271 |
+
intervals [65]:
|
272 |
+
xmin = 20.83
|
273 |
+
xmax = 20.98
|
274 |
+
text = "of"
|
275 |
+
intervals [66]:
|
276 |
+
xmin = 20.98
|
277 |
+
xmax = 21.25
|
278 |
+
text = "thing"
|
279 |
+
intervals [67]:
|
280 |
+
xmin = 21.25
|
281 |
+
xmax = 21.43
|
282 |
+
text = "that"
|
283 |
+
intervals [68]:
|
284 |
+
xmin = 21.43
|
285 |
+
xmax = 21.8
|
286 |
+
text = "makes"
|
287 |
+
intervals [69]:
|
288 |
+
xmin = 21.8
|
289 |
+
xmax = 22.28
|
290 |
+
text = "you"
|
291 |
+
intervals [70]:
|
292 |
+
xmin = 22.28
|
293 |
+
xmax = 22.31
|
294 |
+
text = ""
|
295 |
+
intervals [71]:
|
296 |
+
xmin = 22.31
|
297 |
+
xmax = 22.8
|
298 |
+
text = "makes"
|
299 |
+
intervals [72]:
|
300 |
+
xmin = 22.8
|
301 |
+
xmax = 22.91
|
302 |
+
text = "the"
|
303 |
+
intervals [73]:
|
304 |
+
xmin = 22.91
|
305 |
+
xmax = 23.21
|
306 |
+
text = "world"
|
307 |
+
intervals [74]:
|
308 |
+
xmin = 23.21
|
309 |
+
xmax = 23.38
|
310 |
+
text = "go"
|
311 |
+
intervals [75]:
|
312 |
+
xmin = 23.38
|
313 |
+
xmax = 23.87
|
314 |
+
text = "round"
|
315 |
+
intervals [76]:
|
316 |
+
xmin = 23.87
|
317 |
+
xmax = 24.08
|
318 |
+
text = ""
|
319 |
+
intervals [77]:
|
320 |
+
xmin = 24.08
|
321 |
+
xmax = 24.6
|
322 |
+
text = "watching"
|
323 |
+
intervals [78]:
|
324 |
+
xmin = 24.6
|
325 |
+
xmax = 24.8
|
326 |
+
text = "these"
|
327 |
+
intervals [79]:
|
328 |
+
xmin = 24.8
|
329 |
+
xmax = 25.18
|
330 |
+
text = "kinds"
|
331 |
+
intervals [80]:
|
332 |
+
xmin = 25.18
|
333 |
+
xmax = 25.29
|
334 |
+
text = "of"
|
335 |
+
intervals [81]:
|
336 |
+
xmin = 25.29
|
337 |
+
xmax = 25.83
|
338 |
+
text = "romantic"
|
339 |
+
intervals [82]:
|
340 |
+
xmin = 25.83
|
341 |
+
xmax = 26.23
|
342 |
+
text = "movies"
|
343 |
+
intervals [83]:
|
344 |
+
xmin = 26.23
|
345 |
+
xmax = 26.43
|
346 |
+
text = "is"
|
347 |
+
intervals [84]:
|
348 |
+
xmin = 26.43
|
349 |
+
xmax = 26.86
|
350 |
+
text = "just"
|
351 |
+
intervals [85]:
|
352 |
+
xmin = 26.86
|
353 |
+
xmax = 27.07
|
354 |
+
text = "like"
|
355 |
+
intervals [86]:
|
356 |
+
xmin = 27.07
|
357 |
+
xmax = 27.49
|
358 |
+
text = "reading"
|
359 |
+
intervals [87]:
|
360 |
+
xmin = 27.49
|
361 |
+
xmax = 27.56
|
362 |
+
text = "a"
|
363 |
+
intervals [88]:
|
364 |
+
xmin = 27.56
|
365 |
+
xmax = 27.98
|
366 |
+
text = "book"
|
367 |
+
intervals [89]:
|
368 |
+
xmin = 27.98
|
369 |
+
xmax = 28.11
|
370 |
+
text = ""
|
371 |
+
intervals [90]:
|
372 |
+
xmin = 28.11
|
373 |
+
xmax = 28.29
|
374 |
+
text = "that"
|
375 |
+
intervals [91]:
|
376 |
+
xmin = 28.29
|
377 |
+
xmax = 28.65
|
378 |
+
text = "teaches"
|
379 |
+
intervals [92]:
|
380 |
+
xmin = 28.65
|
381 |
+
xmax = 28.78
|
382 |
+
text = "me"
|
383 |
+
intervals [93]:
|
384 |
+
xmin = 28.78
|
385 |
+
xmax = 28.99
|
386 |
+
text = "how"
|
387 |
+
intervals [94]:
|
388 |
+
xmin = 28.99
|
389 |
+
xmax = 29.19
|
390 |
+
text = "to"
|
391 |
+
intervals [95]:
|
392 |
+
xmin = 29.19
|
393 |
+
xmax = 29.61
|
394 |
+
text = "love"
|
395 |
+
intervals [96]:
|
396 |
+
xmin = 29.61
|
397 |
+
xmax = 29.93
|
398 |
+
text = "and"
|
399 |
+
intervals [97]:
|
400 |
+
xmin = 29.93
|
401 |
+
xmax = 30.09
|
402 |
+
text = "be"
|
403 |
+
intervals [98]:
|
404 |
+
xmin = 30.09
|
405 |
+
xmax = 30.53
|
406 |
+
text = "loved"
|
407 |
+
intervals [99]:
|
408 |
+
xmin = 30.53
|
409 |
+
xmax = 30.96
|
410 |
+
text = ""
|
411 |
+
intervals [100]:
|
412 |
+
xmin = 30.96
|
413 |
+
xmax = 31.68
|
414 |
+
text = "moreover"
|
415 |
+
intervals [101]:
|
416 |
+
xmin = 31.68
|
417 |
+
xmax = 31.81
|
418 |
+
text = "we"
|
419 |
+
intervals [102]:
|
420 |
+
xmin = 31.81
|
421 |
+
xmax = 32.01
|
422 |
+
text = ""
|
423 |
+
intervals [103]:
|
424 |
+
xmin = 32.01
|
425 |
+
xmax = 32.51
|
426 |
+
text = "can"
|
427 |
+
intervals [104]:
|
428 |
+
xmin = 32.51
|
429 |
+
xmax = 32.56
|
430 |
+
text = ""
|
431 |
+
intervals [105]:
|
432 |
+
xmin = 32.56
|
433 |
+
xmax = 32.72
|
434 |
+
text = "learn"
|
435 |
+
intervals [106]:
|
436 |
+
xmin = 32.72
|
437 |
+
xmax = 33.09
|
438 |
+
text = "we"
|
439 |
+
intervals [107]:
|
440 |
+
xmin = 33.09
|
441 |
+
xmax = 33.25
|
442 |
+
text = "can"
|
443 |
+
intervals [108]:
|
444 |
+
xmin = 33.25
|
445 |
+
xmax = 34.05
|
446 |
+
text = "learn"
|
447 |
+
intervals [109]:
|
448 |
+
xmin = 34.05
|
449 |
+
xmax = 34.2
|
450 |
+
text = ""
|
451 |
+
intervals [110]:
|
452 |
+
xmin = 34.2
|
453 |
+
xmax = 35.12
|
454 |
+
text = "more"
|
455 |
+
intervals [111]:
|
456 |
+
xmin = 35.12
|
457 |
+
xmax = 35.44
|
458 |
+
text = "from"
|
459 |
+
intervals [112]:
|
460 |
+
xmin = 35.44
|
461 |
+
xmax = 35.66
|
462 |
+
text = "it"
|
463 |
+
intervals [113]:
|
464 |
+
xmin = 35.66
|
465 |
+
xmax = 35.98
|
466 |
+
text = "such"
|
467 |
+
intervals [114]:
|
468 |
+
xmin = 35.98
|
469 |
+
xmax = 36.35
|
470 |
+
text = "things"
|
471 |
+
intervals [115]:
|
472 |
+
xmin = 36.35
|
473 |
+
xmax = 36.69
|
474 |
+
text = "as"
|
475 |
+
intervals [116]:
|
476 |
+
xmin = 36.69
|
477 |
+
xmax = 36.89
|
478 |
+
text = ""
|
479 |
+
intervals [117]:
|
480 |
+
xmin = 36.89
|
481 |
+
xmax = 37.59
|
482 |
+
text = "loyalty"
|
483 |
+
intervals [118]:
|
484 |
+
xmin = 37.59
|
485 |
+
xmax = 37.76
|
486 |
+
text = "and"
|
487 |
+
intervals [119]:
|
488 |
+
xmin = 37.76
|
489 |
+
xmax = 37.88
|
490 |
+
text = "what"
|
491 |
+
intervals [120]:
|
492 |
+
xmin = 37.88
|
493 |
+
xmax = 37.99
|
494 |
+
text = "we"
|
495 |
+
intervals [121]:
|
496 |
+
xmin = 37.99
|
497 |
+
xmax = 38.47
|
498 |
+
text = "treasure"
|
499 |
+
intervals [122]:
|
500 |
+
xmin = 38.47
|
501 |
+
xmax = 38.58
|
502 |
+
text = "in"
|
503 |
+
intervals [123]:
|
504 |
+
xmin = 38.58
|
505 |
+
xmax = 38.71
|
506 |
+
text = "our"
|
507 |
+
intervals [124]:
|
508 |
+
xmin = 38.71
|
509 |
+
xmax = 39.11
|
510 |
+
text = "lives"
|
511 |
+
intervals [125]:
|
512 |
+
xmin = 39.11
|
513 |
+
xmax = 39.4
|
514 |
+
text = ""
|
515 |
+
intervals [126]:
|
516 |
+
xmin = 39.4
|
517 |
+
xmax = 39.8
|
518 |
+
text = "another"
|
519 |
+
intervals [127]:
|
520 |
+
xmin = 39.8
|
521 |
+
xmax = 40.13
|
522 |
+
text = "movie"
|
523 |
+
intervals [128]:
|
524 |
+
xmin = 40.13
|
525 |
+
xmax = 40.51
|
526 |
+
text = "about"
|
527 |
+
intervals [129]:
|
528 |
+
xmin = 40.51
|
529 |
+
xmax = 40.83
|
530 |
+
text = "love"
|
531 |
+
intervals [130]:
|
532 |
+
xmin = 40.83
|
533 |
+
xmax = 41.08
|
534 |
+
text = "is"
|
535 |
+
intervals [131]:
|
536 |
+
xmin = 41.08
|
537 |
+
xmax = 41.24
|
538 |
+
text = "the"
|
539 |
+
intervals [132]:
|
540 |
+
xmin = 41.24
|
541 |
+
xmax = 41.3
|
542 |
+
text = ""
|
543 |
+
intervals [133]:
|
544 |
+
xmin = 41.3
|
545 |
+
xmax = 41.9
|
546 |
+
text = "secret"
|
547 |
+
intervals [134]:
|
548 |
+
xmin = 41.9
|
549 |
+
xmax = 42.13
|
550 |
+
text = ""
|
551 |
+
intervals [135]:
|
552 |
+
xmin = 42.13
|
553 |
+
xmax = 42.47
|
554 |
+
text = "the"
|
555 |
+
intervals [136]:
|
556 |
+
xmin = 42.47
|
557 |
+
xmax = 43.01
|
558 |
+
text = "movie"
|
559 |
+
intervals [137]:
|
560 |
+
xmin = 43.01
|
561 |
+
xmax = 43.58
|
562 |
+
text = "secret"
|
563 |
+
intervals [138]:
|
564 |
+
xmin = 43.58
|
565 |
+
xmax = 43.71
|
566 |
+
text = "is"
|
567 |
+
intervals [139]:
|
568 |
+
xmin = 43.71
|
569 |
+
xmax = 44.1
|
570 |
+
text = "about"
|
571 |
+
intervals [140]:
|
572 |
+
xmin = 44.1
|
573 |
+
xmax = 44.15
|
574 |
+
text = "a"
|
575 |
+
intervals [141]:
|
576 |
+
xmin = 44.15
|
577 |
+
xmax = 44.88
|
578 |
+
text = "story"
|
579 |
+
intervals [142]:
|
580 |
+
xmin = 44.88
|
581 |
+
xmax = 44.95
|
582 |
+
text = ""
|
583 |
+
intervals [143]:
|
584 |
+
xmin = 44.95
|
585 |
+
xmax = 45.14
|
586 |
+
text = "of"
|
587 |
+
intervals [144]:
|
588 |
+
xmin = 45.14
|
589 |
+
xmax = 45.21
|
590 |
+
text = "a"
|
591 |
+
intervals [145]:
|
592 |
+
xmin = 45.21
|
593 |
+
xmax = 45.56
|
594 |
+
text = "musical"
|
595 |
+
intervals [146]:
|
596 |
+
xmin = 45.56
|
597 |
+
xmax = 45.96
|
598 |
+
text = "prodigy"
|
599 |
+
intervals [147]:
|
600 |
+
xmin = 45.96
|
601 |
+
xmax = 46.04
|
602 |
+
text = "do"
|
603 |
+
intervals [148]:
|
604 |
+
xmin = 46.04
|
605 |
+
xmax = 46.17
|
606 |
+
text = "that"
|
607 |
+
intervals [149]:
|
608 |
+
xmin = 46.17
|
609 |
+
xmax = 46.42
|
610 |
+
text = "falls"
|
611 |
+
intervals [150]:
|
612 |
+
xmin = 46.42
|
613 |
+
xmax = 46.49
|
614 |
+
text = "in"
|
615 |
+
intervals [151]:
|
616 |
+
xmin = 46.49
|
617 |
+
xmax = 46.62
|
618 |
+
text = "love"
|
619 |
+
intervals [152]:
|
620 |
+
xmin = 46.62
|
621 |
+
xmax = 46.72
|
622 |
+
text = "with"
|
623 |
+
intervals [153]:
|
624 |
+
xmin = 46.72
|
625 |
+
xmax = 46.85
|
626 |
+
text = "a"
|
627 |
+
intervals [154]:
|
628 |
+
xmin = 46.85
|
629 |
+
xmax = 46.91
|
630 |
+
text = ""
|
631 |
+
intervals [155]:
|
632 |
+
xmin = 46.91
|
633 |
+
xmax = 47.21
|
634 |
+
text = "girl"
|
635 |
+
intervals [156]:
|
636 |
+
xmin = 47.21
|
637 |
+
xmax = 47.46
|
638 |
+
text = "who's"
|
639 |
+
intervals [157]:
|
640 |
+
xmin = 47.46
|
641 |
+
xmax = 48.01
|
642 |
+
text = "dying"
|
643 |
+
intervals [158]:
|
644 |
+
xmin = 48.01
|
645 |
+
xmax = 49.08
|
646 |
+
text = ""
|
647 |
+
intervals [159]:
|
648 |
+
xmin = 49.08
|
649 |
+
xmax = 49.33
|
650 |
+
text = "there"
|
651 |
+
intervals [160]:
|
652 |
+
xmin = 49.33
|
653 |
+
xmax = 49.39
|
654 |
+
text = "are"
|
655 |
+
intervals [161]:
|
656 |
+
xmin = 49.39
|
657 |
+
xmax = 49.46
|
658 |
+
text = "a"
|
659 |
+
intervals [162]:
|
660 |
+
xmin = 49.46
|
661 |
+
xmax = 49.82
|
662 |
+
text = "lot"
|
663 |
+
intervals [163]:
|
664 |
+
xmin = 49.82
|
665 |
+
xmax = 50.2
|
666 |
+
text = "of"
|
667 |
+
intervals [164]:
|
668 |
+
xmin = 50.2
|
669 |
+
xmax = 50.29
|
670 |
+
text = ""
|
671 |
+
intervals [165]:
|
672 |
+
xmin = 50.29
|
673 |
+
xmax = 50.88
|
674 |
+
text = "enviable"
|
675 |
+
intervals [166]:
|
676 |
+
xmin = 50.88
|
677 |
+
xmax = 51.3
|
678 |
+
text = "moments"
|
679 |
+
intervals [167]:
|
680 |
+
xmin = 51.3
|
681 |
+
xmax = 51.37
|
682 |
+
text = "in"
|
683 |
+
intervals [168]:
|
684 |
+
xmin = 51.37
|
685 |
+
xmax = 51.53
|
686 |
+
text = "this"
|
687 |
+
intervals [169]:
|
688 |
+
xmin = 51.53
|
689 |
+
xmax = 51.77
|
690 |
+
text = "film"
|
691 |
+
intervals [170]:
|
692 |
+
xmin = 51.77
|
693 |
+
xmax = 52.01
|
694 |
+
text = "such"
|
695 |
+
intervals [171]:
|
696 |
+
xmin = 52.01
|
697 |
+
xmax = 52.2
|
698 |
+
text = "as"
|
699 |
+
intervals [172]:
|
700 |
+
xmin = 52.2
|
701 |
+
xmax = 52.3
|
702 |
+
text = "the"
|
703 |
+
intervals [173]:
|
704 |
+
xmin = 52.3
|
705 |
+
xmax = 52.57
|
706 |
+
text = "simple"
|
707 |
+
intervals [174]:
|
708 |
+
xmin = 52.57
|
709 |
+
xmax = 52.74
|
710 |
+
text = "love"
|
711 |
+
intervals [175]:
|
712 |
+
xmin = 52.74
|
713 |
+
xmax = 53.06
|
714 |
+
text = "between"
|
715 |
+
intervals [176]:
|
716 |
+
xmin = 53.06
|
717 |
+
xmax = 53.26
|
718 |
+
text = "high"
|
719 |
+
intervals [177]:
|
720 |
+
xmin = 53.26
|
721 |
+
xmax = 53.52
|
722 |
+
text = "school"
|
723 |
+
intervals [178]:
|
724 |
+
xmin = 53.52
|
725 |
+
xmax = 54.09
|
726 |
+
text = "students"
|
727 |
+
intervals [179]:
|
728 |
+
xmin = 54.09
|
729 |
+
xmax = 54.32
|
730 |
+
text = ""
|
731 |
+
intervals [180]:
|
732 |
+
xmin = 54.32
|
733 |
+
xmax = 54.56
|
734 |
+
text = "every"
|
735 |
+
intervals [181]:
|
736 |
+
xmin = 54.56
|
737 |
+
xmax = 54.93
|
738 |
+
text = "time"
|
739 |
+
intervals [182]:
|
740 |
+
xmin = 54.93
|
741 |
+
xmax = 54.96
|
742 |
+
text = ""
|
743 |
+
intervals [183]:
|
744 |
+
xmin = 54.96
|
745 |
+
xmax = 55.08
|
746 |
+
text = "i"
|
747 |
+
intervals [184]:
|
748 |
+
xmin = 55.08
|
749 |
+
xmax = 55.45
|
750 |
+
text = "watch"
|
751 |
+
intervals [185]:
|
752 |
+
xmin = 55.45
|
753 |
+
xmax = 55.68
|
754 |
+
text = "this"
|
755 |
+
intervals [186]:
|
756 |
+
xmin = 55.68
|
757 |
+
xmax = 55.89
|
758 |
+
text = "movie"
|
759 |
+
intervals [187]:
|
760 |
+
xmin = 55.89
|
761 |
+
xmax = 55.98
|
762 |
+
text = "it"
|
763 |
+
intervals [188]:
|
764 |
+
xmin = 55.98
|
765 |
+
xmax = 56.44
|
766 |
+
text = "reminds"
|
767 |
+
intervals [189]:
|
768 |
+
xmin = 56.44
|
769 |
+
xmax = 56.55
|
770 |
+
text = "me"
|
771 |
+
intervals [190]:
|
772 |
+
xmin = 56.55
|
773 |
+
xmax = 56.63
|
774 |
+
text = "of"
|
775 |
+
intervals [191]:
|
776 |
+
xmin = 56.63
|
777 |
+
xmax = 56.7
|
778 |
+
text = "a"
|
779 |
+
intervals [192]:
|
780 |
+
xmin = 56.7
|
781 |
+
xmax = 56.99
|
782 |
+
text = "time"
|
783 |
+
intervals [193]:
|
784 |
+
xmin = 56.99
|
785 |
+
xmax = 57.08
|
786 |
+
text = "that"
|
787 |
+
intervals [194]:
|
788 |
+
xmin = 57.08
|
789 |
+
xmax = 57.13
|
790 |
+
text = "i"
|
791 |
+
intervals [195]:
|
792 |
+
xmin = 57.13
|
793 |
+
xmax = 57.23
|
794 |
+
text = "was"
|
795 |
+
intervals [196]:
|
796 |
+
xmin = 57.23
|
797 |
+
xmax = 57.29
|
798 |
+
text = "in"
|
799 |
+
intervals [197]:
|
800 |
+
xmin = 57.29
|
801 |
+
xmax = 57.53
|
802 |
+
text = "high"
|
803 |
+
intervals [198]:
|
804 |
+
xmin = 57.53
|
805 |
+
xmax = 57.88
|
806 |
+
text = "school"
|
807 |
+
intervals [199]:
|
808 |
+
xmin = 57.88
|
809 |
+
xmax = 58.03
|
810 |
+
text = "and"
|
811 |
+
intervals [200]:
|
812 |
+
xmin = 58.03
|
813 |
+
xmax = 58.25
|
814 |
+
text = ""
|
815 |
+
intervals [201]:
|
816 |
+
xmin = 58.25
|
817 |
+
xmax = 58.4
|
818 |
+
text = "you"
|
819 |
+
intervals [202]:
|
820 |
+
xmin = 58.4
|
821 |
+
xmax = 58.55
|
822 |
+
text = "might"
|
823 |
+
intervals [203]:
|
824 |
+
xmin = 58.55
|
825 |
+
xmax = 59.1
|
826 |
+
text = "remember"
|
827 |
+
intervals [204]:
|
828 |
+
xmin = 59.1
|
829 |
+
xmax = 59.29
|
830 |
+
text = ""
|
831 |
+
intervals [205]:
|
832 |
+
xmin = 59.29
|
833 |
+
xmax = 59.44
|
834 |
+
text = "the"
|
835 |
+
intervals [206]:
|
836 |
+
xmin = 59.44
|
837 |
+
xmax = 59.83
|
838 |
+
text = "crush"
|
839 |
+
intervals [207]:
|
840 |
+
xmin = 59.83
|
841 |
+
xmax = 59.94
|
842 |
+
text = "you"
|
843 |
+
intervals [208]:
|
844 |
+
xmin = 59.94
|
845 |
+
xmax = 60.16
|
846 |
+
text = "had"
|
847 |
+
intervals [209]:
|
848 |
+
xmin = 60.16
|
849 |
+
xmax = 60.27
|
850 |
+
text = "in"
|
851 |
+
intervals [210]:
|
852 |
+
xmin = 60.27
|
853 |
+
xmax = 60.74
|
854 |
+
text = "school"
|
855 |
+
intervals [211]:
|
856 |
+
xmin = 60.74
|
857 |
+
xmax = 60.9
|
858 |
+
text = ""
|
859 |
+
intervals [212]:
|
860 |
+
xmin = 60.9
|
861 |
+
xmax = 61.12
|
862 |
+
text = "and"
|
863 |
+
intervals [213]:
|
864 |
+
xmin = 61.12
|
865 |
+
xmax = 61.24
|
866 |
+
text = "how"
|
867 |
+
intervals [214]:
|
868 |
+
xmin = 61.24
|
869 |
+
xmax = 61.36
|
870 |
+
text = "you"
|
871 |
+
intervals [215]:
|
872 |
+
xmin = 61.36
|
873 |
+
xmax = 61.48
|
874 |
+
text = "would"
|
875 |
+
intervals [216]:
|
876 |
+
xmin = 61.48
|
877 |
+
xmax = 61.7
|
878 |
+
text = "look"
|
879 |
+
intervals [217]:
|
880 |
+
xmin = 61.7
|
881 |
+
xmax = 61.77
|
882 |
+
text = "at"
|
883 |
+
intervals [218]:
|
884 |
+
xmin = 61.77
|
885 |
+
xmax = 62.16
|
886 |
+
text = "him"
|
887 |
+
intervals [219]:
|
888 |
+
xmin = 62.16
|
889 |
+
xmax = 62.37
|
890 |
+
text = ""
|
891 |
+
intervals [220]:
|
892 |
+
xmin = 62.37
|
893 |
+
xmax = 62.54
|
894 |
+
text = "while"
|
895 |
+
intervals [221]:
|
896 |
+
xmin = 62.54
|
897 |
+
xmax = 62.74
|
898 |
+
text = "he's"
|
899 |
+
intervals [222]:
|
900 |
+
xmin = 62.74
|
901 |
+
xmax = 63.02
|
902 |
+
text = "at"
|
903 |
+
intervals [223]:
|
904 |
+
xmin = 63.02
|
905 |
+
xmax = 63.61
|
906 |
+
text = "in"
|
907 |
+
intervals [224]:
|
908 |
+
xmin = 63.61
|
909 |
+
xmax = 64.04
|
910 |
+
text = "class"
|
911 |
+
intervals [225]:
|
912 |
+
xmin = 64.04
|
913 |
+
xmax = 64.38
|
914 |
+
text = "without"
|
915 |
+
intervals [226]:
|
916 |
+
xmin = 64.38
|
917 |
+
xmax = 64.83
|
918 |
+
text = "thinking"
|
919 |
+
intervals [227]:
|
920 |
+
xmin = 64.83
|
921 |
+
xmax = 64.95
|
922 |
+
text = "or"
|
923 |
+
intervals [228]:
|
924 |
+
xmin = 64.95
|
925 |
+
xmax = 64.98
|
926 |
+
text = ""
|
927 |
+
intervals [229]:
|
928 |
+
xmin = 64.98
|
929 |
+
xmax = 65.27
|
930 |
+
text = "wanting"
|
931 |
+
intervals [230]:
|
932 |
+
xmin = 65.27
|
933 |
+
xmax = 65.36
|
934 |
+
text = "to"
|
935 |
+
intervals [231]:
|
936 |
+
xmin = 65.36
|
937 |
+
xmax = 65.54
|
938 |
+
text = "go"
|
939 |
+
intervals [232]:
|
940 |
+
xmin = 65.54
|
941 |
+
xmax = 65.95
|
942 |
+
text = "places"
|
943 |
+
intervals [233]:
|
944 |
+
xmin = 65.95
|
945 |
+
xmax = 66.12
|
946 |
+
text = "with"
|
947 |
+
intervals [234]:
|
948 |
+
xmin = 66.12
|
949 |
+
xmax = 66.38
|
950 |
+
text = "him"
|
951 |
+
intervals [235]:
|
952 |
+
xmin = 66.38
|
953 |
+
xmax = 67
|
954 |
+
text = ""
|
955 |
+
item [2]:
|
956 |
+
class = "IntervalTier"
|
957 |
+
name = "phones"
|
958 |
+
xmin = 0.0
|
959 |
+
xmax = 67
|
960 |
+
intervals: size = 721
|
961 |
+
intervals [1]:
|
962 |
+
xmin = 0.0
|
963 |
+
xmax = 0.53
|
964 |
+
text = ""
|
965 |
+
intervals [2]:
|
966 |
+
xmin = 0.53
|
967 |
+
xmax = 0.75
|
968 |
+
text = "M"
|
969 |
+
intervals [3]:
|
970 |
+
xmin = 0.75
|
971 |
+
xmax = 0.93
|
972 |
+
text = "AY1"
|
973 |
+
intervals [4]:
|
974 |
+
xmin = 0.93
|
975 |
+
xmax = 1.06
|
976 |
+
text = "F"
|
977 |
+
intervals [5]:
|
978 |
+
xmin = 1.06
|
979 |
+
xmax = 1.16
|
980 |
+
text = "EY1"
|
981 |
+
intervals [6]:
|
982 |
+
xmin = 1.16
|
983 |
+
xmax = 1.23
|
984 |
+
text = "V"
|
985 |
+
intervals [7]:
|
986 |
+
xmin = 1.23
|
987 |
+
xmax = 1.26
|
988 |
+
text = "ER0"
|
989 |
+
intervals [8]:
|
990 |
+
xmin = 1.26
|
991 |
+
xmax = 1.31
|
992 |
+
text = "IH0"
|
993 |
+
intervals [9]:
|
994 |
+
xmin = 1.31
|
995 |
+
xmax = 1.34
|
996 |
+
text = "T"
|
997 |
+
intervals [10]:
|
998 |
+
xmin = 1.34
|
999 |
+
xmax = 1.42
|
1000 |
+
text = "K"
|
1001 |
+
intervals [11]:
|
1002 |
+
xmin = 1.42
|
1003 |
+
xmax = 1.51
|
1004 |
+
text = "AY1"
|
1005 |
+
intervals [12]:
|
1006 |
+
xmin = 1.51
|
1007 |
+
xmax = 1.54
|
1008 |
+
text = "N"
|
1009 |
+
intervals [13]:
|
1010 |
+
xmin = 1.54
|
1011 |
+
xmax = 1.57
|
1012 |
+
text = "D"
|
1013 |
+
intervals [14]:
|
1014 |
+
xmin = 1.57
|
1015 |
+
xmax = 1.61
|
1016 |
+
text = "AH0"
|
1017 |
+
intervals [15]:
|
1018 |
+
xmin = 1.61
|
1019 |
+
xmax = 1.65
|
1020 |
+
text = "V"
|
1021 |
+
intervals [16]:
|
1022 |
+
xmin = 1.65
|
1023 |
+
xmax = 1.74
|
1024 |
+
text = "M"
|
1025 |
+
intervals [17]:
|
1026 |
+
xmin = 1.74
|
1027 |
+
xmax = 1.8
|
1028 |
+
text = "UW1"
|
1029 |
+
intervals [18]:
|
1030 |
+
xmin = 1.8
|
1031 |
+
xmax = 1.9
|
1032 |
+
text = "V"
|
1033 |
+
intervals [19]:
|
1034 |
+
xmin = 1.9
|
1035 |
+
xmax = 2.01
|
1036 |
+
text = "IY0"
|
1037 |
+
intervals [20]:
|
1038 |
+
xmin = 2.01
|
1039 |
+
xmax = 2.2
|
1040 |
+
text = "Z"
|
1041 |
+
intervals [21]:
|
1042 |
+
xmin = 2.2
|
1043 |
+
xmax = 2.35
|
1044 |
+
text = "AA1"
|
1045 |
+
intervals [22]:
|
1046 |
+
xmin = 2.35
|
1047 |
+
xmax = 2.45
|
1048 |
+
text = "R"
|
1049 |
+
intervals [23]:
|
1050 |
+
xmin = 2.45
|
1051 |
+
xmax = 2.55
|
1052 |
+
text = "R"
|
1053 |
+
intervals [24]:
|
1054 |
+
xmin = 2.55
|
1055 |
+
xmax = 2.6
|
1056 |
+
text = "OW0"
|
1057 |
+
intervals [25]:
|
1058 |
+
xmin = 2.6
|
1059 |
+
xmax = 2.81
|
1060 |
+
text = "M"
|
1061 |
+
intervals [26]:
|
1062 |
+
xmin = 2.81
|
1063 |
+
xmax = 2.93
|
1064 |
+
text = "AE1"
|
1065 |
+
intervals [27]:
|
1066 |
+
xmin = 2.93
|
1067 |
+
xmax = 2.99
|
1068 |
+
text = "N"
|
1069 |
+
intervals [28]:
|
1070 |
+
xmin = 2.99
|
1071 |
+
xmax = 3.06
|
1072 |
+
text = "T"
|
1073 |
+
intervals [29]:
|
1074 |
+
xmin = 3.06
|
1075 |
+
xmax = 3.13
|
1076 |
+
text = "IH0"
|
1077 |
+
intervals [30]:
|
1078 |
+
xmin = 3.13
|
1079 |
+
xmax = 3.2
|
1080 |
+
text = "K"
|
1081 |
+
intervals [31]:
|
1082 |
+
xmin = 3.2
|
1083 |
+
xmax = 3.28
|
1084 |
+
text = "M"
|
1085 |
+
intervals [32]:
|
1086 |
+
xmin = 3.28
|
1087 |
+
xmax = 3.38
|
1088 |
+
text = "UW1"
|
1089 |
+
intervals [33]:
|
1090 |
+
xmin = 3.38
|
1091 |
+
xmax = 3.42
|
1092 |
+
text = "V"
|
1093 |
+
intervals [34]:
|
1094 |
+
xmin = 3.42
|
1095 |
+
xmax = 3.55
|
1096 |
+
text = "IY0"
|
1097 |
+
intervals [35]:
|
1098 |
+
xmin = 3.55
|
1099 |
+
xmax = 3.72
|
1100 |
+
text = "Z"
|
1101 |
+
intervals [36]:
|
1102 |
+
xmin = 3.72
|
1103 |
+
xmax = 3.75
|
1104 |
+
text = ""
|
1105 |
+
intervals [37]:
|
1106 |
+
xmin = 3.75
|
1107 |
+
xmax = 3.92
|
1108 |
+
text = "S"
|
1109 |
+
intervals [38]:
|
1110 |
+
xmin = 3.92
|
1111 |
+
xmax = 3.99
|
1112 |
+
text = "AH1"
|
1113 |
+
intervals [39]:
|
1114 |
+
xmin = 3.99
|
1115 |
+
xmax = 4.1
|
1116 |
+
text = "CH"
|
1117 |
+
intervals [40]:
|
1118 |
+
xmin = 4.1
|
1119 |
+
xmax = 4.22
|
1120 |
+
text = "EH1"
|
1121 |
+
intervals [41]:
|
1122 |
+
xmin = 4.22
|
1123 |
+
xmax = 4.33
|
1124 |
+
text = "Z"
|
1125 |
+
intervals [42]:
|
1126 |
+
xmin = 4.33
|
1127 |
+
xmax = 4.47
|
1128 |
+
text = "T"
|
1129 |
+
intervals [43]:
|
1130 |
+
xmin = 4.47
|
1131 |
+
xmax = 4.58
|
1132 |
+
text = "AY0"
|
1133 |
+
intervals [44]:
|
1134 |
+
xmin = 4.58
|
1135 |
+
xmax = 4.77
|
1136 |
+
text = "T"
|
1137 |
+
intervals [45]:
|
1138 |
+
xmin = 4.77
|
1139 |
+
xmax = 4.88
|
1140 |
+
text = "AE1"
|
1141 |
+
intervals [46]:
|
1142 |
+
xmin = 4.88
|
1143 |
+
xmax = 4.94
|
1144 |
+
text = "N"
|
1145 |
+
intervals [47]:
|
1146 |
+
xmin = 4.94
|
1147 |
+
xmax = 5.04
|
1148 |
+
text = "IH0"
|
1149 |
+
intervals [48]:
|
1150 |
+
xmin = 5.04
|
1151 |
+
xmax = 5.23
|
1152 |
+
text = "K"
|
1153 |
+
intervals [49]:
|
1154 |
+
xmin = 5.23
|
1155 |
+
xmax = 5.78
|
1156 |
+
text = ""
|
1157 |
+
intervals [50]:
|
1158 |
+
xmin = 5.78
|
1159 |
+
xmax = 5.95
|
1160 |
+
text = "IH1"
|
1161 |
+
intervals [51]:
|
1162 |
+
xmin = 5.95
|
1163 |
+
xmax = 6.05
|
1164 |
+
text = "T"
|
1165 |
+
intervals [52]:
|
1166 |
+
xmin = 6.05
|
1167 |
+
xmax = 6.19
|
1168 |
+
text = "S"
|
1169 |
+
intervals [53]:
|
1170 |
+
xmin = 6.19
|
1171 |
+
xmax = 6.46
|
1172 |
+
text = "AH0"
|
1173 |
+
intervals [54]:
|
1174 |
+
xmin = 6.46
|
1175 |
+
xmax = 6.49
|
1176 |
+
text = ""
|
1177 |
+
intervals [55]:
|
1178 |
+
xmin = 6.49
|
1179 |
+
xmax = 6.55
|
1180 |
+
text = "F"
|
1181 |
+
intervals [56]:
|
1182 |
+
xmin = 6.55
|
1183 |
+
xmax = 6.6
|
1184 |
+
text = "AE0"
|
1185 |
+
intervals [57]:
|
1186 |
+
xmin = 6.6
|
1187 |
+
xmax = 6.66
|
1188 |
+
text = "N"
|
1189 |
+
intervals [58]:
|
1190 |
+
xmin = 6.66
|
1191 |
+
xmax = 6.79
|
1192 |
+
text = "T"
|
1193 |
+
intervals [59]:
|
1194 |
+
xmin = 6.79
|
1195 |
+
xmax = 6.92
|
1196 |
+
text = "AE1"
|
1197 |
+
intervals [60]:
|
1198 |
+
xmin = 6.92
|
1199 |
+
xmax = 6.99
|
1200 |
+
text = "S"
|
1201 |
+
intervals [61]:
|
1202 |
+
xmin = 6.99
|
1203 |
+
xmax = 7.03
|
1204 |
+
text = "T"
|
1205 |
+
intervals [62]:
|
1206 |
+
xmin = 7.03
|
1207 |
+
xmax = 7.08
|
1208 |
+
text = "IH0"
|
1209 |
+
intervals [63]:
|
1210 |
+
xmin = 7.08
|
1211 |
+
xmax = 7.13
|
1212 |
+
text = "K"
|
1213 |
+
intervals [64]:
|
1214 |
+
xmin = 7.13
|
1215 |
+
xmax = 7.21
|
1216 |
+
text = "F"
|
1217 |
+
intervals [65]:
|
1218 |
+
xmin = 7.21
|
1219 |
+
xmax = 7.31
|
1220 |
+
text = "IH1"
|
1221 |
+
intervals [66]:
|
1222 |
+
xmin = 7.31
|
1223 |
+
xmax = 7.51
|
1224 |
+
text = "L"
|
1225 |
+
intervals [67]:
|
1226 |
+
xmin = 7.51
|
1227 |
+
xmax = 7.56
|
1228 |
+
text = "M"
|
1229 |
+
intervals [68]:
|
1230 |
+
xmin = 7.56
|
1231 |
+
xmax = 7.71
|
1232 |
+
text = "IH1"
|
1233 |
+
intervals [69]:
|
1234 |
+
xmin = 7.71
|
1235 |
+
xmax = 7.77
|
1236 |
+
text = "T"
|
1237 |
+
intervals [70]:
|
1238 |
+
xmin = 7.77
|
1239 |
+
xmax = 7.86
|
1240 |
+
text = "K"
|
1241 |
+
intervals [71]:
|
1242 |
+
xmin = 7.86
|
1243 |
+
xmax = 7.96
|
1244 |
+
text = "AE1"
|
1245 |
+
intervals [72]:
|
1246 |
+
xmin = 7.96
|
1247 |
+
xmax = 8.02
|
1248 |
+
text = "P"
|
1249 |
+
intervals [73]:
|
1250 |
+
xmin = 8.02
|
1251 |
+
xmax = 8.1
|
1252 |
+
text = "CH"
|
1253 |
+
intervals [74]:
|
1254 |
+
xmin = 8.1
|
1255 |
+
xmax = 8.16
|
1256 |
+
text = "ER0"
|
1257 |
+
intervals [75]:
|
1258 |
+
xmin = 8.16
|
1259 |
+
xmax = 8.28
|
1260 |
+
text = "D"
|
1261 |
+
intervals [76]:
|
1262 |
+
xmin = 8.28
|
1263 |
+
xmax = 8.4
|
1264 |
+
text = "M"
|
1265 |
+
intervals [77]:
|
1266 |
+
xmin = 8.4
|
1267 |
+
xmax = 8.46
|
1268 |
+
text = "EH1"
|
1269 |
+
intervals [78]:
|
1270 |
+
xmin = 8.46
|
1271 |
+
xmax = 8.53
|
1272 |
+
text = "N"
|
1273 |
+
intervals [79]:
|
1274 |
+
xmin = 8.53
|
1275 |
+
xmax = 8.73
|
1276 |
+
text = "IY0"
|
1277 |
+
intervals [80]:
|
1278 |
+
xmin = 8.73
|
1279 |
+
xmax = 8.81
|
1280 |
+
text = "Y"
|
1281 |
+
intervals [81]:
|
1282 |
+
xmin = 8.81
|
1283 |
+
xmax = 8.99
|
1284 |
+
text = "AH1"
|
1285 |
+
intervals [82]:
|
1286 |
+
xmin = 8.99
|
1287 |
+
xmax = 9.1
|
1288 |
+
text = "NG"
|
1289 |
+
intervals [83]:
|
1290 |
+
xmin = 9.1
|
1291 |
+
xmax = 9.18
|
1292 |
+
text = "P"
|
1293 |
+
intervals [84]:
|
1294 |
+
xmin = 9.18
|
1295 |
+
xmax = 9.26
|
1296 |
+
text = "IY1"
|
1297 |
+
intervals [85]:
|
1298 |
+
xmin = 9.26
|
1299 |
+
xmax = 9.31
|
1300 |
+
text = "P"
|
1301 |
+
intervals [86]:
|
1302 |
+
xmin = 9.31
|
1303 |
+
xmax = 9.34
|
1304 |
+
text = "AH0"
|
1305 |
+
intervals [87]:
|
1306 |
+
xmin = 9.34
|
1307 |
+
xmax = 9.39
|
1308 |
+
text = "L"
|
1309 |
+
intervals [88]:
|
1310 |
+
xmin = 9.39
|
1311 |
+
xmax = 9.44
|
1312 |
+
text = "Z"
|
1313 |
+
intervals [89]:
|
1314 |
+
xmin = 9.44
|
1315 |
+
xmax = 9.5
|
1316 |
+
text = "HH"
|
1317 |
+
intervals [90]:
|
1318 |
+
xmin = 9.5
|
1319 |
+
xmax = 9.57
|
1320 |
+
text = "AA1"
|
1321 |
+
intervals [91]:
|
1322 |
+
xmin = 9.57
|
1323 |
+
xmax = 9.68
|
1324 |
+
text = "R"
|
1325 |
+
intervals [92]:
|
1326 |
+
xmin = 9.68
|
1327 |
+
xmax = 9.73
|
1328 |
+
text = "T"
|
1329 |
+
intervals [93]:
|
1330 |
+
xmin = 9.73
|
1331 |
+
xmax = 9.79
|
1332 |
+
text = "S"
|
1333 |
+
intervals [94]:
|
1334 |
+
xmin = 9.79
|
1335 |
+
xmax = 9.88
|
1336 |
+
text = "W"
|
1337 |
+
intervals [95]:
|
1338 |
+
xmin = 9.88
|
1339 |
+
xmax = 9.94
|
1340 |
+
text = "IH1"
|
1341 |
+
intervals [96]:
|
1342 |
+
xmin = 9.94
|
1343 |
+
xmax = 10.02
|
1344 |
+
text = "DH"
|
1345 |
+
intervals [97]:
|
1346 |
+
xmin = 10.02
|
1347 |
+
xmax = 10.1
|
1348 |
+
text = "IH0"
|
1349 |
+
intervals [98]:
|
1350 |
+
xmin = 10.1
|
1351 |
+
xmax = 10.13
|
1352 |
+
text = "T"
|
1353 |
+
intervals [99]:
|
1354 |
+
xmin = 10.13
|
1355 |
+
xmax = 10.17
|
1356 |
+
text = "S"
|
1357 |
+
intervals [100]:
|
1358 |
+
xmin = 10.17
|
1359 |
+
xmax = 10.28
|
1360 |
+
text = "AH0"
|
1361 |
+
intervals [101]:
|
1362 |
+
xmin = 10.28
|
1363 |
+
xmax = 10.36
|
1364 |
+
text = "M"
|
1365 |
+
intervals [102]:
|
1366 |
+
xmin = 10.36
|
1367 |
+
xmax = 10.47
|
1368 |
+
text = "EY1"
|
1369 |
+
intervals [103]:
|
1370 |
+
xmin = 10.47
|
1371 |
+
xmax = 10.53
|
1372 |
+
text = "Z"
|
1373 |
+
intervals [104]:
|
1374 |
+
xmin = 10.53
|
1375 |
+
xmax = 10.59
|
1376 |
+
text = "IH0"
|
1377 |
+
intervals [105]:
|
1378 |
+
xmin = 10.59
|
1379 |
+
xmax = 10.65
|
1380 |
+
text = "NG"
|
1381 |
+
intervals [106]:
|
1382 |
+
xmin = 10.65
|
1383 |
+
xmax = 10.7
|
1384 |
+
text = "M"
|
1385 |
+
intervals [107]:
|
1386 |
+
xmin = 10.7
|
1387 |
+
xmax = 10.78
|
1388 |
+
text = "Y"
|
1389 |
+
intervals [108]:
|
1390 |
+
xmin = 10.78
|
1391 |
+
xmax = 10.81
|
1392 |
+
text = "UW1"
|
1393 |
+
intervals [109]:
|
1394 |
+
xmin = 10.81
|
1395 |
+
xmax = 10.9
|
1396 |
+
text = "Z"
|
1397 |
+
intervals [110]:
|
1398 |
+
xmin = 10.9
|
1399 |
+
xmax = 10.98
|
1400 |
+
text = "IH0"
|
1401 |
+
intervals [111]:
|
1402 |
+
xmin = 10.98
|
1403 |
+
xmax = 11.12
|
1404 |
+
text = "K"
|
1405 |
+
intervals [112]:
|
1406 |
+
xmin = 11.12
|
1407 |
+
xmax = 11.21
|
1408 |
+
text = "AE1"
|
1409 |
+
intervals [113]:
|
1410 |
+
xmin = 11.21
|
1411 |
+
xmax = 11.27
|
1412 |
+
text = "N"
|
1413 |
+
intervals [114]:
|
1414 |
+
xmin = 11.27
|
1415 |
+
xmax = 11.36
|
1416 |
+
text = "D"
|
1417 |
+
intervals [115]:
|
1418 |
+
xmin = 11.36
|
1419 |
+
xmax = 11.47
|
1420 |
+
text = "S"
|
1421 |
+
intervals [116]:
|
1422 |
+
xmin = 11.47
|
1423 |
+
xmax = 11.52
|
1424 |
+
text = "EH2"
|
1425 |
+
intervals [117]:
|
1426 |
+
xmin = 11.52
|
1427 |
+
xmax = 11.59
|
1428 |
+
text = "N"
|
1429 |
+
intervals [118]:
|
1430 |
+
xmin = 11.59
|
1431 |
+
xmax = 11.64
|
1432 |
+
text = "T"
|
1433 |
+
intervals [119]:
|
1434 |
+
xmin = 11.64
|
1435 |
+
xmax = 11.69
|
1436 |
+
text = "AH0"
|
1437 |
+
intervals [120]:
|
1438 |
+
xmin = 11.69
|
1439 |
+
xmax = 11.74
|
1440 |
+
text = "M"
|
1441 |
+
intervals [121]:
|
1442 |
+
xmin = 11.74
|
1443 |
+
xmax = 11.78
|
1444 |
+
text = "EH1"
|
1445 |
+
intervals [122]:
|
1446 |
+
xmin = 11.78
|
1447 |
+
xmax = 11.81
|
1448 |
+
text = "N"
|
1449 |
+
intervals [123]:
|
1450 |
+
xmin = 11.81
|
1451 |
+
xmax = 11.85
|
1452 |
+
text = "T"
|
1453 |
+
intervals [124]:
|
1454 |
+
xmin = 11.85
|
1455 |
+
xmax = 11.88
|
1456 |
+
text = "AH0"
|
1457 |
+
intervals [125]:
|
1458 |
+
xmin = 11.88
|
1459 |
+
xmax = 11.92
|
1460 |
+
text = "L"
|
1461 |
+
intervals [126]:
|
1462 |
+
xmin = 11.92
|
1463 |
+
xmax = 11.99
|
1464 |
+
text = "P"
|
1465 |
+
intervals [127]:
|
1466 |
+
xmin = 11.99
|
1467 |
+
xmax = 12.04
|
1468 |
+
text = "L"
|
1469 |
+
intervals [128]:
|
1470 |
+
xmin = 12.04
|
1471 |
+
xmax = 12.23
|
1472 |
+
text = "AA1"
|
1473 |
+
intervals [129]:
|
1474 |
+
xmin = 12.23
|
1475 |
+
xmax = 12.31
|
1476 |
+
text = "T"
|
1477 |
+
intervals [130]:
|
1478 |
+
xmin = 12.31
|
1479 |
+
xmax = 12.47
|
1480 |
+
text = "S"
|
1481 |
+
intervals [131]:
|
1482 |
+
xmin = 12.47
|
1483 |
+
xmax = 12.84
|
1484 |
+
text = ""
|
1485 |
+
intervals [132]:
|
1486 |
+
xmin = 12.84
|
1487 |
+
xmax = 12.92
|
1488 |
+
text = "W"
|
1489 |
+
intervals [133]:
|
1490 |
+
xmin = 12.92
|
1491 |
+
xmax = 12.95
|
1492 |
+
text = "EH1"
|
1493 |
+
intervals [134]:
|
1494 |
+
xmin = 12.95
|
1495 |
+
xmax = 12.98
|
1496 |
+
text = "N"
|
1497 |
+
intervals [135]:
|
1498 |
+
xmin = 12.98
|
1499 |
+
xmax = 13.12
|
1500 |
+
text = "AY1"
|
1501 |
+
intervals [136]:
|
1502 |
+
xmin = 13.12
|
1503 |
+
xmax = 13.16
|
1504 |
+
text = "TH"
|
1505 |
+
intervals [137]:
|
1506 |
+
xmin = 13.16
|
1507 |
+
xmax = 13.22
|
1508 |
+
text = "IH1"
|
1509 |
+
intervals [138]:
|
1510 |
+
xmin = 13.22
|
1511 |
+
xmax = 13.25
|
1512 |
+
text = "NG"
|
1513 |
+
intervals [139]:
|
1514 |
+
xmin = 13.25
|
1515 |
+
xmax = 13.28
|
1516 |
+
text = "K"
|
1517 |
+
intervals [140]:
|
1518 |
+
xmin = 13.28
|
1519 |
+
xmax = 13.32
|
1520 |
+
text = "AH0"
|
1521 |
+
intervals [141]:
|
1522 |
+
xmin = 13.32
|
1523 |
+
xmax = 13.35
|
1524 |
+
text = "V"
|
1525 |
+
intervals [142]:
|
1526 |
+
xmin = 13.35
|
1527 |
+
xmax = 13.38
|
1528 |
+
text = "DH"
|
1529 |
+
intervals [143]:
|
1530 |
+
xmin = 13.38
|
1531 |
+
xmax = 13.42
|
1532 |
+
text = "AH0"
|
1533 |
+
intervals [144]:
|
1534 |
+
xmin = 13.42
|
1535 |
+
xmax = 13.46
|
1536 |
+
text = "M"
|
1537 |
+
intervals [145]:
|
1538 |
+
xmin = 13.46
|
1539 |
+
xmax = 13.52
|
1540 |
+
text = "UW1"
|
1541 |
+
intervals [146]:
|
1542 |
+
xmin = 13.52
|
1543 |
+
xmax = 13.58
|
1544 |
+
text = "V"
|
1545 |
+
intervals [147]:
|
1546 |
+
xmin = 13.58
|
1547 |
+
xmax = 13.62
|
1548 |
+
text = "IY0"
|
1549 |
+
intervals [148]:
|
1550 |
+
xmin = 13.62
|
1551 |
+
xmax = 13.69
|
1552 |
+
text = "T"
|
1553 |
+
intervals [149]:
|
1554 |
+
xmin = 13.69
|
1555 |
+
xmax = 13.79
|
1556 |
+
text = "AY0"
|
1557 |
+
intervals [150]:
|
1558 |
+
xmin = 13.79
|
1559 |
+
xmax = 13.89
|
1560 |
+
text = "T"
|
1561 |
+
intervals [151]:
|
1562 |
+
xmin = 13.89
|
1563 |
+
xmax = 13.96
|
1564 |
+
text = "AE1"
|
1565 |
+
intervals [152]:
|
1566 |
+
xmin = 13.96
|
1567 |
+
xmax = 14.02
|
1568 |
+
text = "N"
|
1569 |
+
intervals [153]:
|
1570 |
+
xmin = 14.02
|
1571 |
+
xmax = 14.17
|
1572 |
+
text = "IH0"
|
1573 |
+
intervals [154]:
|
1574 |
+
xmin = 14.17
|
1575 |
+
xmax = 14.2
|
1576 |
+
text = "K"
|
1577 |
+
intervals [155]:
|
1578 |
+
xmin = 14.2
|
1579 |
+
xmax = 14.23
|
1580 |
+
text = ""
|
1581 |
+
intervals [156]:
|
1582 |
+
xmin = 14.23
|
1583 |
+
xmax = 14.34
|
1584 |
+
text = "DH"
|
1585 |
+
intervals [157]:
|
1586 |
+
xmin = 14.34
|
1587 |
+
xmax = 14.42
|
1588 |
+
text = "AH1"
|
1589 |
+
intervals [158]:
|
1590 |
+
xmin = 14.42
|
1591 |
+
xmax = 14.61
|
1592 |
+
text = "W"
|
1593 |
+
intervals [159]:
|
1594 |
+
xmin = 14.61
|
1595 |
+
xmax = 14.85
|
1596 |
+
text = "ER1"
|
1597 |
+
intervals [160]:
|
1598 |
+
xmin = 14.85
|
1599 |
+
xmax = 14.92
|
1600 |
+
text = "D"
|
1601 |
+
intervals [161]:
|
1602 |
+
xmin = 14.92
|
1603 |
+
xmax = 14.95
|
1604 |
+
text = "DH"
|
1605 |
+
intervals [162]:
|
1606 |
+
xmin = 14.95
|
1607 |
+
xmax = 15.02
|
1608 |
+
text = "AH0"
|
1609 |
+
intervals [163]:
|
1610 |
+
xmin = 15.02
|
1611 |
+
xmax = 15.06
|
1612 |
+
text = "T"
|
1613 |
+
intervals [164]:
|
1614 |
+
xmin = 15.06
|
1615 |
+
xmax = 15.13
|
1616 |
+
text = "K"
|
1617 |
+
intervals [165]:
|
1618 |
+
xmin = 15.13
|
1619 |
+
xmax = 15.19
|
1620 |
+
text = "AH1"
|
1621 |
+
intervals [166]:
|
1622 |
+
xmin = 15.19
|
1623 |
+
xmax = 15.24
|
1624 |
+
text = "M"
|
1625 |
+
intervals [167]:
|
1626 |
+
xmin = 15.24
|
1627 |
+
xmax = 15.3
|
1628 |
+
text = "Z"
|
1629 |
+
intervals [168]:
|
1630 |
+
xmin = 15.3
|
1631 |
+
xmax = 15.35
|
1632 |
+
text = "T"
|
1633 |
+
intervals [169]:
|
1634 |
+
xmin = 15.35
|
1635 |
+
xmax = 15.39
|
1636 |
+
text = "AH0"
|
1637 |
+
intervals [170]:
|
1638 |
+
xmin = 15.39
|
1639 |
+
xmax = 15.44
|
1640 |
+
text = "M"
|
1641 |
+
intervals [171]:
|
1642 |
+
xmin = 15.44
|
1643 |
+
xmax = 15.5
|
1644 |
+
text = "AY1"
|
1645 |
+
intervals [172]:
|
1646 |
+
xmin = 15.5
|
1647 |
+
xmax = 15.61
|
1648 |
+
text = "M"
|
1649 |
+
intervals [173]:
|
1650 |
+
xmin = 15.61
|
1651 |
+
xmax = 15.85
|
1652 |
+
text = "AY1"
|
1653 |
+
intervals [174]:
|
1654 |
+
xmin = 15.85
|
1655 |
+
xmax = 15.88
|
1656 |
+
text = "N"
|
1657 |
+
intervals [175]:
|
1658 |
+
xmin = 15.88
|
1659 |
+
xmax = 15.91
|
1660 |
+
text = "D"
|
1661 |
+
intervals [176]:
|
1662 |
+
xmin = 15.91
|
1663 |
+
xmax = 15.94
|
1664 |
+
text = "M"
|
1665 |
+
intervals [177]:
|
1666 |
+
xmin = 15.94
|
1667 |
+
xmax = 15.97
|
1668 |
+
text = "AY1"
|
1669 |
+
intervals [178]:
|
1670 |
+
xmin = 15.97
|
1671 |
+
xmax = 16.0
|
1672 |
+
text = "N"
|
1673 |
+
intervals [179]:
|
1674 |
+
xmin = 16.0
|
1675 |
+
xmax = 16.06
|
1676 |
+
text = "D"
|
1677 |
+
intervals [180]:
|
1678 |
+
xmin = 16.06
|
1679 |
+
xmax = 16.41
|
1680 |
+
text = ""
|
1681 |
+
intervals [181]:
|
1682 |
+
xmin = 16.41
|
1683 |
+
xmax = 16.54
|
1684 |
+
text = "T"
|
1685 |
+
intervals [182]:
|
1686 |
+
xmin = 16.54
|
1687 |
+
xmax = 16.6
|
1688 |
+
text = "IH0"
|
1689 |
+
intervals [183]:
|
1690 |
+
xmin = 16.6
|
1691 |
+
xmax = 16.69
|
1692 |
+
text = "M"
|
1693 |
+
intervals [184]:
|
1694 |
+
xmin = 16.69
|
1695 |
+
xmax = 16.85
|
1696 |
+
text = "AY1"
|
1697 |
+
intervals [185]:
|
1698 |
+
xmin = 16.85
|
1699 |
+
xmax = 16.95
|
1700 |
+
text = "Z"
|
1701 |
+
intervals [186]:
|
1702 |
+
xmin = 16.95
|
1703 |
+
xmax = 16.99
|
1704 |
+
text = "IH0"
|
1705 |
+
intervals [187]:
|
1706 |
+
xmin = 16.99
|
1707 |
+
xmax = 17.07
|
1708 |
+
text = "Z"
|
1709 |
+
intervals [188]:
|
1710 |
+
xmin = 17.07
|
1711 |
+
xmax = 17.11
|
1712 |
+
text = "DH"
|
1713 |
+
intervals [189]:
|
1714 |
+
xmin = 17.11
|
1715 |
+
xmax = 17.15
|
1716 |
+
text = "AH1"
|
1717 |
+
intervals [190]:
|
1718 |
+
xmin = 17.15
|
1719 |
+
xmax = 17.24
|
1720 |
+
text = "HH"
|
1721 |
+
intervals [191]:
|
1722 |
+
xmin = 17.24
|
1723 |
+
xmax = 17.32
|
1724 |
+
text = "OW1"
|
1725 |
+
intervals [192]:
|
1726 |
+
xmin = 17.32
|
1727 |
+
xmax = 17.39
|
1728 |
+
text = "L"
|
1729 |
+
intervals [193]:
|
1730 |
+
xmin = 17.39
|
1731 |
+
xmax = 17.48
|
1732 |
+
text = "F"
|
1733 |
+
intervals [194]:
|
1734 |
+
xmin = 17.48
|
1735 |
+
xmax = 17.57
|
1736 |
+
text = "IH1"
|
1737 |
+
intervals [195]:
|
1738 |
+
xmin = 17.57
|
1739 |
+
xmax = 17.68
|
1740 |
+
text = "L"
|
1741 |
+
intervals [196]:
|
1742 |
+
xmin = 17.68
|
1743 |
+
xmax = 17.94
|
1744 |
+
text = "M"
|
1745 |
+
intervals [197]:
|
1746 |
+
xmin = 17.94
|
1747 |
+
xmax = 17.97
|
1748 |
+
text = ""
|
1749 |
+
intervals [198]:
|
1750 |
+
xmin = 17.97
|
1751 |
+
xmax = 18.06
|
1752 |
+
text = "W"
|
1753 |
+
intervals [199]:
|
1754 |
+
xmin = 18.06
|
1755 |
+
xmax = 18.12
|
1756 |
+
text = "UH1"
|
1757 |
+
intervals [200]:
|
1758 |
+
xmin = 18.12
|
1759 |
+
xmax = 18.18
|
1760 |
+
text = "D"
|
1761 |
+
intervals [201]:
|
1762 |
+
xmin = 18.18
|
1763 |
+
xmax = 18.24
|
1764 |
+
text = "B"
|
1765 |
+
intervals [202]:
|
1766 |
+
xmin = 18.24
|
1767 |
+
xmax = 18.62
|
1768 |
+
text = "IY1"
|
1769 |
+
intervals [203]:
|
1770 |
+
xmin = 18.62
|
1771 |
+
xmax = 19.09
|
1772 |
+
text = ""
|
1773 |
+
intervals [204]:
|
1774 |
+
xmin = 19.09
|
1775 |
+
xmax = 19.34
|
1776 |
+
text = "L"
|
1777 |
+
intervals [205]:
|
1778 |
+
xmin = 19.34
|
1779 |
+
xmax = 19.51
|
1780 |
+
text = "AH1"
|
1781 |
+
intervals [206]:
|
1782 |
+
xmin = 19.51
|
1783 |
+
xmax = 19.94
|
1784 |
+
text = "V"
|
1785 |
+
intervals [207]:
|
1786 |
+
xmin = 19.94
|
1787 |
+
xmax = 20.07
|
1788 |
+
text = ""
|
1789 |
+
intervals [208]:
|
1790 |
+
xmin = 20.07
|
1791 |
+
xmax = 20.18
|
1792 |
+
text = "IH1"
|
1793 |
+
intervals [209]:
|
1794 |
+
xmin = 20.18
|
1795 |
+
xmax = 20.24
|
1796 |
+
text = "T"
|
1797 |
+
intervals [210]:
|
1798 |
+
xmin = 20.24
|
1799 |
+
xmax = 20.27
|
1800 |
+
text = "S"
|
1801 |
+
intervals [211]:
|
1802 |
+
xmin = 20.27
|
1803 |
+
xmax = 20.36
|
1804 |
+
text = "AH0"
|
1805 |
+
intervals [212]:
|
1806 |
+
xmin = 20.36
|
1807 |
+
xmax = 20.59
|
1808 |
+
text = "K"
|
1809 |
+
intervals [213]:
|
1810 |
+
xmin = 20.59
|
1811 |
+
xmax = 20.74
|
1812 |
+
text = "AY1"
|
1813 |
+
intervals [214]:
|
1814 |
+
xmin = 20.74
|
1815 |
+
xmax = 20.79
|
1816 |
+
text = "N"
|
1817 |
+
intervals [215]:
|
1818 |
+
xmin = 20.79
|
1819 |
+
xmax = 20.83
|
1820 |
+
text = "D"
|
1821 |
+
intervals [216]:
|
1822 |
+
xmin = 20.83
|
1823 |
+
xmax = 20.87
|
1824 |
+
text = "AH0"
|
1825 |
+
intervals [217]:
|
1826 |
+
xmin = 20.87
|
1827 |
+
xmax = 20.98
|
1828 |
+
text = "V"
|
1829 |
+
intervals [218]:
|
1830 |
+
xmin = 20.98
|
1831 |
+
xmax = 21.04
|
1832 |
+
text = "TH"
|
1833 |
+
intervals [219]:
|
1834 |
+
xmin = 21.04
|
1835 |
+
xmax = 21.13
|
1836 |
+
text = "IH1"
|
1837 |
+
intervals [220]:
|
1838 |
+
xmin = 21.13
|
1839 |
+
xmax = 21.25
|
1840 |
+
text = "NG"
|
1841 |
+
intervals [221]:
|
1842 |
+
xmin = 21.25
|
1843 |
+
xmax = 21.31
|
1844 |
+
text = "DH"
|
1845 |
+
intervals [222]:
|
1846 |
+
xmin = 21.31
|
1847 |
+
xmax = 21.37
|
1848 |
+
text = "AE1"
|
1849 |
+
intervals [223]:
|
1850 |
+
xmin = 21.37
|
1851 |
+
xmax = 21.43
|
1852 |
+
text = "T"
|
1853 |
+
intervals [224]:
|
1854 |
+
xmin = 21.43
|
1855 |
+
xmax = 21.54
|
1856 |
+
text = "M"
|
1857 |
+
intervals [225]:
|
1858 |
+
xmin = 21.54
|
1859 |
+
xmax = 21.64
|
1860 |
+
text = "EY1"
|
1861 |
+
intervals [226]:
|
1862 |
+
xmin = 21.64
|
1863 |
+
xmax = 21.68
|
1864 |
+
text = "K"
|
1865 |
+
intervals [227]:
|
1866 |
+
xmin = 21.68
|
1867 |
+
xmax = 21.8
|
1868 |
+
text = "S"
|
1869 |
+
intervals [228]:
|
1870 |
+
xmin = 21.8
|
1871 |
+
xmax = 21.87
|
1872 |
+
text = "Y"
|
1873 |
+
intervals [229]:
|
1874 |
+
xmin = 21.87
|
1875 |
+
xmax = 22.28
|
1876 |
+
text = "UW1"
|
1877 |
+
intervals [230]:
|
1878 |
+
xmin = 22.28
|
1879 |
+
xmax = 22.31
|
1880 |
+
text = ""
|
1881 |
+
intervals [231]:
|
1882 |
+
xmin = 22.31
|
1883 |
+
xmax = 22.63
|
1884 |
+
text = "M"
|
1885 |
+
intervals [232]:
|
1886 |
+
xmin = 22.63
|
1887 |
+
xmax = 22.7
|
1888 |
+
text = "EY1"
|
1889 |
+
intervals [233]:
|
1890 |
+
xmin = 22.7
|
1891 |
+
xmax = 22.75
|
1892 |
+
text = "K"
|
1893 |
+
intervals [234]:
|
1894 |
+
xmin = 22.75
|
1895 |
+
xmax = 22.8
|
1896 |
+
text = "S"
|
1897 |
+
intervals [235]:
|
1898 |
+
xmin = 22.8
|
1899 |
+
xmax = 22.84
|
1900 |
+
text = "DH"
|
1901 |
+
intervals [236]:
|
1902 |
+
xmin = 22.84
|
1903 |
+
xmax = 22.91
|
1904 |
+
text = "AH0"
|
1905 |
+
intervals [237]:
|
1906 |
+
xmin = 22.91
|
1907 |
+
xmax = 23.0
|
1908 |
+
text = "W"
|
1909 |
+
intervals [238]:
|
1910 |
+
xmin = 23.0
|
1911 |
+
xmax = 23.08
|
1912 |
+
text = "ER1"
|
1913 |
+
intervals [239]:
|
1914 |
+
xmin = 23.08
|
1915 |
+
xmax = 23.18
|
1916 |
+
text = "L"
|
1917 |
+
intervals [240]:
|
1918 |
+
xmin = 23.18
|
1919 |
+
xmax = 23.21
|
1920 |
+
text = "D"
|
1921 |
+
intervals [241]:
|
1922 |
+
xmin = 23.21
|
1923 |
+
xmax = 23.27
|
1924 |
+
text = "G"
|
1925 |
+
intervals [242]:
|
1926 |
+
xmin = 23.27
|
1927 |
+
xmax = 23.38
|
1928 |
+
text = "OW1"
|
1929 |
+
intervals [243]:
|
1930 |
+
xmin = 23.38
|
1931 |
+
xmax = 23.48
|
1932 |
+
text = "R"
|
1933 |
+
intervals [244]:
|
1934 |
+
xmin = 23.48
|
1935 |
+
xmax = 23.68
|
1936 |
+
text = "AW1"
|
1937 |
+
intervals [245]:
|
1938 |
+
xmin = 23.68
|
1939 |
+
xmax = 23.75
|
1940 |
+
text = "N"
|
1941 |
+
intervals [246]:
|
1942 |
+
xmin = 23.75
|
1943 |
+
xmax = 23.87
|
1944 |
+
text = "D"
|
1945 |
+
intervals [247]:
|
1946 |
+
xmin = 23.87
|
1947 |
+
xmax = 24.08
|
1948 |
+
text = ""
|
1949 |
+
intervals [248]:
|
1950 |
+
xmin = 24.08
|
1951 |
+
xmax = 24.27
|
1952 |
+
text = "W"
|
1953 |
+
intervals [249]:
|
1954 |
+
xmin = 24.27
|
1955 |
+
xmax = 24.36
|
1956 |
+
text = "AA1"
|
1957 |
+
intervals [250]:
|
1958 |
+
xmin = 24.36
|
1959 |
+
xmax = 24.46
|
1960 |
+
text = "CH"
|
1961 |
+
intervals [251]:
|
1962 |
+
xmin = 24.46
|
1963 |
+
xmax = 24.54
|
1964 |
+
text = "IH0"
|
1965 |
+
intervals [252]:
|
1966 |
+
xmin = 24.54
|
1967 |
+
xmax = 24.6
|
1968 |
+
text = "NG"
|
1969 |
+
intervals [253]:
|
1970 |
+
xmin = 24.6
|
1971 |
+
xmax = 24.65
|
1972 |
+
text = "DH"
|
1973 |
+
intervals [254]:
|
1974 |
+
xmin = 24.65
|
1975 |
+
xmax = 24.72
|
1976 |
+
text = "IY1"
|
1977 |
+
intervals [255]:
|
1978 |
+
xmin = 24.72
|
1979 |
+
xmax = 24.8
|
1980 |
+
text = "Z"
|
1981 |
+
intervals [256]:
|
1982 |
+
xmin = 24.8
|
1983 |
+
xmax = 24.9
|
1984 |
+
text = "K"
|
1985 |
+
intervals [257]:
|
1986 |
+
xmin = 24.9
|
1987 |
+
xmax = 25.05
|
1988 |
+
text = "AY1"
|
1989 |
+
intervals [258]:
|
1990 |
+
xmin = 25.05
|
1991 |
+
xmax = 25.12
|
1992 |
+
text = "N"
|
1993 |
+
intervals [259]:
|
1994 |
+
xmin = 25.12
|
1995 |
+
xmax = 25.18
|
1996 |
+
text = "Z"
|
1997 |
+
intervals [260]:
|
1998 |
+
xmin = 25.18
|
1999 |
+
xmax = 25.21
|
2000 |
+
text = "AH0"
|
2001 |
+
intervals [261]:
|
2002 |
+
xmin = 25.21
|
2003 |
+
xmax = 25.29
|
2004 |
+
text = "V"
|
2005 |
+
intervals [262]:
|
2006 |
+
xmin = 25.29
|
2007 |
+
xmax = 25.36
|
2008 |
+
text = "R"
|
2009 |
+
intervals [263]:
|
2010 |
+
xmin = 25.36
|
2011 |
+
xmax = 25.39
|
2012 |
+
text = "OW0"
|
2013 |
+
intervals [264]:
|
2014 |
+
xmin = 25.39
|
2015 |
+
xmax = 25.5
|
2016 |
+
text = "M"
|
2017 |
+
intervals [265]:
|
2018 |
+
xmin = 25.5
|
2019 |
+
xmax = 25.56
|
2020 |
+
text = "AE1"
|
2021 |
+
intervals [266]:
|
2022 |
+
xmin = 25.56
|
2023 |
+
xmax = 25.6
|
2024 |
+
text = "N"
|
2025 |
+
intervals [267]:
|
2026 |
+
xmin = 25.6
|
2027 |
+
xmax = 25.65
|
2028 |
+
text = "T"
|
2029 |
+
intervals [268]:
|
2030 |
+
xmin = 25.65
|
2031 |
+
xmax = 25.75
|
2032 |
+
text = "IH0"
|
2033 |
+
intervals [269]:
|
2034 |
+
xmin = 25.75
|
2035 |
+
xmax = 25.83
|
2036 |
+
text = "K"
|
2037 |
+
intervals [270]:
|
2038 |
+
xmin = 25.83
|
2039 |
+
xmax = 25.9
|
2040 |
+
text = "M"
|
2041 |
+
intervals [271]:
|
2042 |
+
xmin = 25.9
|
2043 |
+
xmax = 25.99
|
2044 |
+
text = "UW1"
|
2045 |
+
intervals [272]:
|
2046 |
+
xmin = 25.99
|
2047 |
+
xmax = 26.06
|
2048 |
+
text = "V"
|
2049 |
+
intervals [273]:
|
2050 |
+
xmin = 26.06
|
2051 |
+
xmax = 26.14
|
2052 |
+
text = "IY0"
|
2053 |
+
intervals [274]:
|
2054 |
+
xmin = 26.14
|
2055 |
+
xmax = 26.23
|
2056 |
+
text = "Z"
|
2057 |
+
intervals [275]:
|
2058 |
+
xmin = 26.23
|
2059 |
+
xmax = 26.34
|
2060 |
+
text = "IH1"
|
2061 |
+
intervals [276]:
|
2062 |
+
xmin = 26.34
|
2063 |
+
xmax = 26.43
|
2064 |
+
text = "Z"
|
2065 |
+
intervals [277]:
|
2066 |
+
xmin = 26.43
|
2067 |
+
xmax = 26.64
|
2068 |
+
text = "JH"
|
2069 |
+
intervals [278]:
|
2070 |
+
xmin = 26.64
|
2071 |
+
xmax = 26.73
|
2072 |
+
text = "IH0"
|
2073 |
+
intervals [279]:
|
2074 |
+
xmin = 26.73
|
2075 |
+
xmax = 26.82
|
2076 |
+
text = "S"
|
2077 |
+
intervals [280]:
|
2078 |
+
xmin = 26.82
|
2079 |
+
xmax = 26.86
|
2080 |
+
text = "T"
|
2081 |
+
intervals [281]:
|
2082 |
+
xmin = 26.86
|
2083 |
+
xmax = 26.92
|
2084 |
+
text = "L"
|
2085 |
+
intervals [282]:
|
2086 |
+
xmin = 26.92
|
2087 |
+
xmax = 27.04
|
2088 |
+
text = "AY1"
|
2089 |
+
intervals [283]:
|
2090 |
+
xmin = 27.04
|
2091 |
+
xmax = 27.07
|
2092 |
+
text = "K"
|
2093 |
+
intervals [284]:
|
2094 |
+
xmin = 27.07
|
2095 |
+
xmax = 27.26
|
2096 |
+
text = "R"
|
2097 |
+
intervals [285]:
|
2098 |
+
xmin = 27.26
|
2099 |
+
xmax = 27.33
|
2100 |
+
text = "IY1"
|
2101 |
+
intervals [286]:
|
2102 |
+
xmin = 27.33
|
2103 |
+
xmax = 27.36
|
2104 |
+
text = "D"
|
2105 |
+
intervals [287]:
|
2106 |
+
xmin = 27.36
|
2107 |
+
xmax = 27.43
|
2108 |
+
text = "IH0"
|
2109 |
+
intervals [288]:
|
2110 |
+
xmin = 27.43
|
2111 |
+
xmax = 27.49
|
2112 |
+
text = "NG"
|
2113 |
+
intervals [289]:
|
2114 |
+
xmin = 27.49
|
2115 |
+
xmax = 27.56
|
2116 |
+
text = "AH0"
|
2117 |
+
intervals [290]:
|
2118 |
+
xmin = 27.56
|
2119 |
+
xmax = 27.63
|
2120 |
+
text = "B"
|
2121 |
+
intervals [291]:
|
2122 |
+
xmin = 27.63
|
2123 |
+
xmax = 27.77
|
2124 |
+
text = "UH1"
|
2125 |
+
intervals [292]:
|
2126 |
+
xmin = 27.77
|
2127 |
+
xmax = 27.98
|
2128 |
+
text = "K"
|
2129 |
+
intervals [293]:
|
2130 |
+
xmin = 27.98
|
2131 |
+
xmax = 28.11
|
2132 |
+
text = ""
|
2133 |
+
intervals [294]:
|
2134 |
+
xmin = 28.11
|
2135 |
+
xmax = 28.21
|
2136 |
+
text = "DH"
|
2137 |
+
intervals [295]:
|
2138 |
+
xmin = 28.21
|
2139 |
+
xmax = 28.25
|
2140 |
+
text = "AH0"
|
2141 |
+
intervals [296]:
|
2142 |
+
xmin = 28.25
|
2143 |
+
xmax = 28.29
|
2144 |
+
text = "T"
|
2145 |
+
intervals [297]:
|
2146 |
+
xmin = 28.29
|
2147 |
+
xmax = 28.38
|
2148 |
+
text = "T"
|
2149 |
+
intervals [298]:
|
2150 |
+
xmin = 28.38
|
2151 |
+
xmax = 28.44
|
2152 |
+
text = "IY1"
|
2153 |
+
intervals [299]:
|
2154 |
+
xmin = 28.44
|
2155 |
+
xmax = 28.52
|
2156 |
+
text = "CH"
|
2157 |
+
intervals [300]:
|
2158 |
+
xmin = 28.52
|
2159 |
+
xmax = 28.57
|
2160 |
+
text = "IH0"
|
2161 |
+
intervals [301]:
|
2162 |
+
xmin = 28.57
|
2163 |
+
xmax = 28.65
|
2164 |
+
text = "Z"
|
2165 |
+
intervals [302]:
|
2166 |
+
xmin = 28.65
|
2167 |
+
xmax = 28.69
|
2168 |
+
text = "M"
|
2169 |
+
intervals [303]:
|
2170 |
+
xmin = 28.69
|
2171 |
+
xmax = 28.78
|
2172 |
+
text = "IY1"
|
2173 |
+
intervals [304]:
|
2174 |
+
xmin = 28.78
|
2175 |
+
xmax = 28.91
|
2176 |
+
text = "HH"
|
2177 |
+
intervals [305]:
|
2178 |
+
xmin = 28.91
|
2179 |
+
xmax = 28.99
|
2180 |
+
text = "AW1"
|
2181 |
+
intervals [306]:
|
2182 |
+
xmin = 28.99
|
2183 |
+
xmax = 29.08
|
2184 |
+
text = "T"
|
2185 |
+
intervals [307]:
|
2186 |
+
xmin = 29.08
|
2187 |
+
xmax = 29.19
|
2188 |
+
text = "AH0"
|
2189 |
+
intervals [308]:
|
2190 |
+
xmin = 29.19
|
2191 |
+
xmax = 29.27
|
2192 |
+
text = "L"
|
2193 |
+
intervals [309]:
|
2194 |
+
xmin = 29.27
|
2195 |
+
xmax = 29.52
|
2196 |
+
text = "AH1"
|
2197 |
+
intervals [310]:
|
2198 |
+
xmin = 29.52
|
2199 |
+
xmax = 29.61
|
2200 |
+
text = "V"
|
2201 |
+
intervals [311]:
|
2202 |
+
xmin = 29.61
|
2203 |
+
xmax = 29.78
|
2204 |
+
text = "AE1"
|
2205 |
+
intervals [312]:
|
2206 |
+
xmin = 29.78
|
2207 |
+
xmax = 29.86
|
2208 |
+
text = "N"
|
2209 |
+
intervals [313]:
|
2210 |
+
xmin = 29.86
|
2211 |
+
xmax = 29.93
|
2212 |
+
text = "D"
|
2213 |
+
intervals [314]:
|
2214 |
+
xmin = 29.93
|
2215 |
+
xmax = 29.97
|
2216 |
+
text = "B"
|
2217 |
+
intervals [315]:
|
2218 |
+
xmin = 29.97
|
2219 |
+
xmax = 30.09
|
2220 |
+
text = "IY1"
|
2221 |
+
intervals [316]:
|
2222 |
+
xmin = 30.09
|
2223 |
+
xmax = 30.21
|
2224 |
+
text = "L"
|
2225 |
+
intervals [317]:
|
2226 |
+
xmin = 30.21
|
2227 |
+
xmax = 30.33
|
2228 |
+
text = "AH1"
|
2229 |
+
intervals [318]:
|
2230 |
+
xmin = 30.33
|
2231 |
+
xmax = 30.43
|
2232 |
+
text = "V"
|
2233 |
+
intervals [319]:
|
2234 |
+
xmin = 30.43
|
2235 |
+
xmax = 30.53
|
2236 |
+
text = "D"
|
2237 |
+
intervals [320]:
|
2238 |
+
xmin = 30.53
|
2239 |
+
xmax = 30.96
|
2240 |
+
text = ""
|
2241 |
+
intervals [321]:
|
2242 |
+
xmin = 30.96
|
2243 |
+
xmax = 31.09
|
2244 |
+
text = "M"
|
2245 |
+
intervals [322]:
|
2246 |
+
xmin = 31.09
|
2247 |
+
xmax = 31.14
|
2248 |
+
text = "AO0"
|
2249 |
+
intervals [323]:
|
2250 |
+
xmin = 31.14
|
2251 |
+
xmax = 31.22
|
2252 |
+
text = "R"
|
2253 |
+
intervals [324]:
|
2254 |
+
xmin = 31.22
|
2255 |
+
xmax = 31.5
|
2256 |
+
text = "OW1"
|
2257 |
+
intervals [325]:
|
2258 |
+
xmin = 31.5
|
2259 |
+
xmax = 31.53
|
2260 |
+
text = "V"
|
2261 |
+
intervals [326]:
|
2262 |
+
xmin = 31.53
|
2263 |
+
xmax = 31.68
|
2264 |
+
text = "ER0"
|
2265 |
+
intervals [327]:
|
2266 |
+
xmin = 31.68
|
2267 |
+
xmax = 31.74
|
2268 |
+
text = "W"
|
2269 |
+
intervals [328]:
|
2270 |
+
xmin = 31.74
|
2271 |
+
xmax = 31.81
|
2272 |
+
text = "IY1"
|
2273 |
+
intervals [329]:
|
2274 |
+
xmin = 31.81
|
2275 |
+
xmax = 32.01
|
2276 |
+
text = ""
|
2277 |
+
intervals [330]:
|
2278 |
+
xmin = 32.01
|
2279 |
+
xmax = 32.13
|
2280 |
+
text = "K"
|
2281 |
+
intervals [331]:
|
2282 |
+
xmin = 32.13
|
2283 |
+
xmax = 32.39
|
2284 |
+
text = "AE1"
|
2285 |
+
intervals [332]:
|
2286 |
+
xmin = 32.39
|
2287 |
+
xmax = 32.51
|
2288 |
+
text = "N"
|
2289 |
+
intervals [333]:
|
2290 |
+
xmin = 32.51
|
2291 |
+
xmax = 32.56
|
2292 |
+
text = ""
|
2293 |
+
intervals [334]:
|
2294 |
+
xmin = 32.56
|
2295 |
+
xmax = 32.65
|
2296 |
+
text = "L"
|
2297 |
+
intervals [335]:
|
2298 |
+
xmin = 32.65
|
2299 |
+
xmax = 32.68
|
2300 |
+
text = "ER1"
|
2301 |
+
intervals [336]:
|
2302 |
+
xmin = 32.68
|
2303 |
+
xmax = 32.72
|
2304 |
+
text = "N"
|
2305 |
+
intervals [337]:
|
2306 |
+
xmin = 32.72
|
2307 |
+
xmax = 33.02
|
2308 |
+
text = "W"
|
2309 |
+
intervals [338]:
|
2310 |
+
xmin = 33.02
|
2311 |
+
xmax = 33.09
|
2312 |
+
text = "IY1"
|
2313 |
+
intervals [339]:
|
2314 |
+
xmin = 33.09
|
2315 |
+
xmax = 33.16
|
2316 |
+
text = "K"
|
2317 |
+
intervals [340]:
|
2318 |
+
xmin = 33.16
|
2319 |
+
xmax = 33.21
|
2320 |
+
text = "AH0"
|
2321 |
+
intervals [341]:
|
2322 |
+
xmin = 33.21
|
2323 |
+
xmax = 33.25
|
2324 |
+
text = "N"
|
2325 |
+
intervals [342]:
|
2326 |
+
xmin = 33.25
|
2327 |
+
xmax = 33.4
|
2328 |
+
text = "L"
|
2329 |
+
intervals [343]:
|
2330 |
+
xmin = 33.4
|
2331 |
+
xmax = 33.58
|
2332 |
+
text = "ER1"
|
2333 |
+
intervals [344]:
|
2334 |
+
xmin = 33.58
|
2335 |
+
xmax = 34.05
|
2336 |
+
text = "N"
|
2337 |
+
intervals [345]:
|
2338 |
+
xmin = 34.05
|
2339 |
+
xmax = 34.2
|
2340 |
+
text = ""
|
2341 |
+
intervals [346]:
|
2342 |
+
xmin = 34.2
|
2343 |
+
xmax = 34.91
|
2344 |
+
text = "M"
|
2345 |
+
intervals [347]:
|
2346 |
+
xmin = 34.91
|
2347 |
+
xmax = 35.05
|
2348 |
+
text = "AO1"
|
2349 |
+
intervals [348]:
|
2350 |
+
xmin = 35.05
|
2351 |
+
xmax = 35.12
|
2352 |
+
text = "R"
|
2353 |
+
intervals [349]:
|
2354 |
+
xmin = 35.12
|
2355 |
+
xmax = 35.23
|
2356 |
+
text = "F"
|
2357 |
+
intervals [350]:
|
2358 |
+
xmin = 35.23
|
2359 |
+
xmax = 35.32
|
2360 |
+
text = "R"
|
2361 |
+
intervals [351]:
|
2362 |
+
xmin = 35.32
|
2363 |
+
xmax = 35.36
|
2364 |
+
text = "AH1"
|
2365 |
+
intervals [352]:
|
2366 |
+
xmin = 35.36
|
2367 |
+
xmax = 35.44
|
2368 |
+
text = "M"
|
2369 |
+
intervals [353]:
|
2370 |
+
xmin = 35.44
|
2371 |
+
xmax = 35.56
|
2372 |
+
text = "IH0"
|
2373 |
+
intervals [354]:
|
2374 |
+
xmin = 35.56
|
2375 |
+
xmax = 35.66
|
2376 |
+
text = "T"
|
2377 |
+
intervals [355]:
|
2378 |
+
xmin = 35.66
|
2379 |
+
xmax = 35.76
|
2380 |
+
text = "S"
|
2381 |
+
intervals [356]:
|
2382 |
+
xmin = 35.76
|
2383 |
+
xmax = 35.84
|
2384 |
+
text = "AH1"
|
2385 |
+
intervals [357]:
|
2386 |
+
xmin = 35.84
|
2387 |
+
xmax = 35.98
|
2388 |
+
text = "CH"
|
2389 |
+
intervals [358]:
|
2390 |
+
xmin = 35.98
|
2391 |
+
xmax = 36.06
|
2392 |
+
text = "TH"
|
2393 |
+
intervals [359]:
|
2394 |
+
xmin = 36.06
|
2395 |
+
xmax = 36.16
|
2396 |
+
text = "IH1"
|
2397 |
+
intervals [360]:
|
2398 |
+
xmin = 36.16
|
2399 |
+
xmax = 36.24
|
2400 |
+
text = "NG"
|
2401 |
+
intervals [361]:
|
2402 |
+
xmin = 36.24
|
2403 |
+
xmax = 36.35
|
2404 |
+
text = "Z"
|
2405 |
+
intervals [362]:
|
2406 |
+
xmin = 36.35
|
2407 |
+
xmax = 36.56
|
2408 |
+
text = "AE1"
|
2409 |
+
intervals [363]:
|
2410 |
+
xmin = 36.56
|
2411 |
+
xmax = 36.69
|
2412 |
+
text = "Z"
|
2413 |
+
intervals [364]:
|
2414 |
+
xmin = 36.69
|
2415 |
+
xmax = 36.89
|
2416 |
+
text = ""
|
2417 |
+
intervals [365]:
|
2418 |
+
xmin = 36.89
|
2419 |
+
xmax = 37.03
|
2420 |
+
text = "L"
|
2421 |
+
intervals [366]:
|
2422 |
+
xmin = 37.03
|
2423 |
+
xmax = 37.16
|
2424 |
+
text = "OY1"
|
2425 |
+
intervals [367]:
|
2426 |
+
xmin = 37.16
|
2427 |
+
xmax = 37.23
|
2428 |
+
text = "AH0"
|
2429 |
+
intervals [368]:
|
2430 |
+
xmin = 37.23
|
2431 |
+
xmax = 37.32
|
2432 |
+
text = "L"
|
2433 |
+
intervals [369]:
|
2434 |
+
xmin = 37.32
|
2435 |
+
xmax = 37.4
|
2436 |
+
text = "T"
|
2437 |
+
intervals [370]:
|
2438 |
+
xmin = 37.4
|
2439 |
+
xmax = 37.59
|
2440 |
+
text = "IY0"
|
2441 |
+
intervals [371]:
|
2442 |
+
xmin = 37.59
|
2443 |
+
xmax = 37.68
|
2444 |
+
text = "AE1"
|
2445 |
+
intervals [372]:
|
2446 |
+
xmin = 37.68
|
2447 |
+
xmax = 37.73
|
2448 |
+
text = "N"
|
2449 |
+
intervals [373]:
|
2450 |
+
xmin = 37.73
|
2451 |
+
xmax = 37.76
|
2452 |
+
text = "D"
|
2453 |
+
intervals [374]:
|
2454 |
+
xmin = 37.76
|
2455 |
+
xmax = 37.8
|
2456 |
+
text = "W"
|
2457 |
+
intervals [375]:
|
2458 |
+
xmin = 37.8
|
2459 |
+
xmax = 37.83
|
2460 |
+
text = "AH1"
|
2461 |
+
intervals [376]:
|
2462 |
+
xmin = 37.83
|
2463 |
+
xmax = 37.88
|
2464 |
+
text = "T"
|
2465 |
+
intervals [377]:
|
2466 |
+
xmin = 37.88
|
2467 |
+
xmax = 37.94
|
2468 |
+
text = "W"
|
2469 |
+
intervals [378]:
|
2470 |
+
xmin = 37.94
|
2471 |
+
xmax = 37.99
|
2472 |
+
text = "IY1"
|
2473 |
+
intervals [379]:
|
2474 |
+
xmin = 37.99
|
2475 |
+
xmax = 38.15
|
2476 |
+
text = "T"
|
2477 |
+
intervals [380]:
|
2478 |
+
xmin = 38.15
|
2479 |
+
xmax = 38.21
|
2480 |
+
text = "R"
|
2481 |
+
intervals [381]:
|
2482 |
+
xmin = 38.21
|
2483 |
+
xmax = 38.26
|
2484 |
+
text = "EH1"
|
2485 |
+
intervals [382]:
|
2486 |
+
xmin = 38.26
|
2487 |
+
xmax = 38.38
|
2488 |
+
text = "ZH"
|
2489 |
+
intervals [383]:
|
2490 |
+
xmin = 38.38
|
2491 |
+
xmax = 38.47
|
2492 |
+
text = "ER0"
|
2493 |
+
intervals [384]:
|
2494 |
+
xmin = 38.47
|
2495 |
+
xmax = 38.53
|
2496 |
+
text = "IH0"
|
2497 |
+
intervals [385]:
|
2498 |
+
xmin = 38.53
|
2499 |
+
xmax = 38.58
|
2500 |
+
text = "N"
|
2501 |
+
intervals [386]:
|
2502 |
+
xmin = 38.58
|
2503 |
+
xmax = 38.64
|
2504 |
+
text = "AA1"
|
2505 |
+
intervals [387]:
|
2506 |
+
xmin = 38.64
|
2507 |
+
xmax = 38.71
|
2508 |
+
text = "R"
|
2509 |
+
intervals [388]:
|
2510 |
+
xmin = 38.71
|
2511 |
+
xmax = 38.77
|
2512 |
+
text = "L"
|
2513 |
+
intervals [389]:
|
2514 |
+
xmin = 38.77
|
2515 |
+
xmax = 38.96
|
2516 |
+
text = "AY1"
|
2517 |
+
intervals [390]:
|
2518 |
+
xmin = 38.96
|
2519 |
+
xmax = 39.02
|
2520 |
+
text = "V"
|
2521 |
+
intervals [391]:
|
2522 |
+
xmin = 39.02
|
2523 |
+
xmax = 39.11
|
2524 |
+
text = "Z"
|
2525 |
+
intervals [392]:
|
2526 |
+
xmin = 39.11
|
2527 |
+
xmax = 39.4
|
2528 |
+
text = ""
|
2529 |
+
intervals [393]:
|
2530 |
+
xmin = 39.4
|
2531 |
+
xmax = 39.57
|
2532 |
+
text = "AH0"
|
2533 |
+
intervals [394]:
|
2534 |
+
xmin = 39.57
|
2535 |
+
xmax = 39.63
|
2536 |
+
text = "N"
|
2537 |
+
intervals [395]:
|
2538 |
+
xmin = 39.63
|
2539 |
+
xmax = 39.69
|
2540 |
+
text = "AH1"
|
2541 |
+
intervals [396]:
|
2542 |
+
xmin = 39.69
|
2543 |
+
xmax = 39.73
|
2544 |
+
text = "DH"
|
2545 |
+
intervals [397]:
|
2546 |
+
xmin = 39.73
|
2547 |
+
xmax = 39.8
|
2548 |
+
text = "ER0"
|
2549 |
+
intervals [398]:
|
2550 |
+
xmin = 39.8
|
2551 |
+
xmax = 39.85
|
2552 |
+
text = "M"
|
2553 |
+
intervals [399]:
|
2554 |
+
xmin = 39.85
|
2555 |
+
xmax = 39.98
|
2556 |
+
text = "UW1"
|
2557 |
+
intervals [400]:
|
2558 |
+
xmin = 39.98
|
2559 |
+
xmax = 40.06
|
2560 |
+
text = "V"
|
2561 |
+
intervals [401]:
|
2562 |
+
xmin = 40.06
|
2563 |
+
xmax = 40.13
|
2564 |
+
text = "IY0"
|
2565 |
+
intervals [402]:
|
2566 |
+
xmin = 40.13
|
2567 |
+
xmax = 40.25
|
2568 |
+
text = "AH0"
|
2569 |
+
intervals [403]:
|
2570 |
+
xmin = 40.25
|
2571 |
+
xmax = 40.31
|
2572 |
+
text = "B"
|
2573 |
+
intervals [404]:
|
2574 |
+
xmin = 40.31
|
2575 |
+
xmax = 40.46
|
2576 |
+
text = "AW1"
|
2577 |
+
intervals [405]:
|
2578 |
+
xmin = 40.46
|
2579 |
+
xmax = 40.51
|
2580 |
+
text = "T"
|
2581 |
+
intervals [406]:
|
2582 |
+
xmin = 40.51
|
2583 |
+
xmax = 40.62
|
2584 |
+
text = "L"
|
2585 |
+
intervals [407]:
|
2586 |
+
xmin = 40.62
|
2587 |
+
xmax = 40.76
|
2588 |
+
text = "AH1"
|
2589 |
+
intervals [408]:
|
2590 |
+
xmin = 40.76
|
2591 |
+
xmax = 40.83
|
2592 |
+
text = "V"
|
2593 |
+
intervals [409]:
|
2594 |
+
xmin = 40.83
|
2595 |
+
xmax = 41.01
|
2596 |
+
text = "IH1"
|
2597 |
+
intervals [410]:
|
2598 |
+
xmin = 41.01
|
2599 |
+
xmax = 41.08
|
2600 |
+
text = "Z"
|
2601 |
+
intervals [411]:
|
2602 |
+
xmin = 41.08
|
2603 |
+
xmax = 41.11
|
2604 |
+
text = "DH"
|
2605 |
+
intervals [412]:
|
2606 |
+
xmin = 41.11
|
2607 |
+
xmax = 41.24
|
2608 |
+
text = "AH0"
|
2609 |
+
intervals [413]:
|
2610 |
+
xmin = 41.24
|
2611 |
+
xmax = 41.3
|
2612 |
+
text = ""
|
2613 |
+
intervals [414]:
|
2614 |
+
xmin = 41.3
|
2615 |
+
xmax = 41.47
|
2616 |
+
text = "S"
|
2617 |
+
intervals [415]:
|
2618 |
+
xmin = 41.47
|
2619 |
+
xmax = 41.53
|
2620 |
+
text = "IY1"
|
2621 |
+
intervals [416]:
|
2622 |
+
xmin = 41.53
|
2623 |
+
xmax = 41.61
|
2624 |
+
text = "K"
|
2625 |
+
intervals [417]:
|
2626 |
+
xmin = 41.61
|
2627 |
+
xmax = 41.64
|
2628 |
+
text = "R"
|
2629 |
+
intervals [418]:
|
2630 |
+
xmin = 41.64
|
2631 |
+
xmax = 41.75
|
2632 |
+
text = "IH0"
|
2633 |
+
intervals [419]:
|
2634 |
+
xmin = 41.75
|
2635 |
+
xmax = 41.9
|
2636 |
+
text = "T"
|
2637 |
+
intervals [420]:
|
2638 |
+
xmin = 41.9
|
2639 |
+
xmax = 42.13
|
2640 |
+
text = ""
|
2641 |
+
intervals [421]:
|
2642 |
+
xmin = 42.13
|
2643 |
+
xmax = 42.35
|
2644 |
+
text = "DH"
|
2645 |
+
intervals [422]:
|
2646 |
+
xmin = 42.35
|
2647 |
+
xmax = 42.47
|
2648 |
+
text = "AH1"
|
2649 |
+
intervals [423]:
|
2650 |
+
xmin = 42.47
|
2651 |
+
xmax = 42.56
|
2652 |
+
text = "M"
|
2653 |
+
intervals [424]:
|
2654 |
+
xmin = 42.56
|
2655 |
+
xmax = 42.62
|
2656 |
+
text = "UW1"
|
2657 |
+
intervals [425]:
|
2658 |
+
xmin = 42.62
|
2659 |
+
xmax = 42.71
|
2660 |
+
text = "V"
|
2661 |
+
intervals [426]:
|
2662 |
+
xmin = 42.71
|
2663 |
+
xmax = 43.01
|
2664 |
+
text = "IY0"
|
2665 |
+
intervals [427]:
|
2666 |
+
xmin = 43.01
|
2667 |
+
xmax = 43.19
|
2668 |
+
text = "S"
|
2669 |
+
intervals [428]:
|
2670 |
+
xmin = 43.19
|
2671 |
+
xmax = 43.26
|
2672 |
+
text = "IY1"
|
2673 |
+
intervals [429]:
|
2674 |
+
xmin = 43.26
|
2675 |
+
xmax = 43.31
|
2676 |
+
text = "K"
|
2677 |
+
intervals [430]:
|
2678 |
+
xmin = 43.31
|
2679 |
+
xmax = 43.37
|
2680 |
+
text = "R"
|
2681 |
+
intervals [431]:
|
2682 |
+
xmin = 43.37
|
2683 |
+
xmax = 43.53
|
2684 |
+
text = "IH0"
|
2685 |
+
intervals [432]:
|
2686 |
+
xmin = 43.53
|
2687 |
+
xmax = 43.58
|
2688 |
+
text = "T"
|
2689 |
+
intervals [433]:
|
2690 |
+
xmin = 43.58
|
2691 |
+
xmax = 43.65
|
2692 |
+
text = "IH1"
|
2693 |
+
intervals [434]:
|
2694 |
+
xmin = 43.65
|
2695 |
+
xmax = 43.71
|
2696 |
+
text = "Z"
|
2697 |
+
intervals [435]:
|
2698 |
+
xmin = 43.71
|
2699 |
+
xmax = 43.77
|
2700 |
+
text = "AH0"
|
2701 |
+
intervals [436]:
|
2702 |
+
xmin = 43.77
|
2703 |
+
xmax = 43.84
|
2704 |
+
text = "B"
|
2705 |
+
intervals [437]:
|
2706 |
+
xmin = 43.84
|
2707 |
+
xmax = 44.03
|
2708 |
+
text = "AW1"
|
2709 |
+
intervals [438]:
|
2710 |
+
xmin = 44.03
|
2711 |
+
xmax = 44.1
|
2712 |
+
text = "T"
|
2713 |
+
intervals [439]:
|
2714 |
+
xmin = 44.1
|
2715 |
+
xmax = 44.15
|
2716 |
+
text = "AH0"
|
2717 |
+
intervals [440]:
|
2718 |
+
xmin = 44.15
|
2719 |
+
xmax = 44.33
|
2720 |
+
text = "S"
|
2721 |
+
intervals [441]:
|
2722 |
+
xmin = 44.33
|
2723 |
+
xmax = 44.4
|
2724 |
+
text = "T"
|
2725 |
+
intervals [442]:
|
2726 |
+
xmin = 44.4
|
2727 |
+
xmax = 44.51
|
2728 |
+
text = "AO1"
|
2729 |
+
intervals [443]:
|
2730 |
+
xmin = 44.51
|
2731 |
+
xmax = 44.65
|
2732 |
+
text = "R"
|
2733 |
+
intervals [444]:
|
2734 |
+
xmin = 44.65
|
2735 |
+
xmax = 44.88
|
2736 |
+
text = "IY0"
|
2737 |
+
intervals [445]:
|
2738 |
+
xmin = 44.88
|
2739 |
+
xmax = 44.95
|
2740 |
+
text = ""
|
2741 |
+
intervals [446]:
|
2742 |
+
xmin = 44.95
|
2743 |
+
xmax = 45.09
|
2744 |
+
text = "AH0"
|
2745 |
+
intervals [447]:
|
2746 |
+
xmin = 45.09
|
2747 |
+
xmax = 45.14
|
2748 |
+
text = "V"
|
2749 |
+
intervals [448]:
|
2750 |
+
xmin = 45.14
|
2751 |
+
xmax = 45.21
|
2752 |
+
text = "AH0"
|
2753 |
+
intervals [449]:
|
2754 |
+
xmin = 45.21
|
2755 |
+
xmax = 45.27
|
2756 |
+
text = "M"
|
2757 |
+
intervals [450]:
|
2758 |
+
xmin = 45.27
|
2759 |
+
xmax = 45.31
|
2760 |
+
text = "Y"
|
2761 |
+
intervals [451]:
|
2762 |
+
xmin = 45.31
|
2763 |
+
xmax = 45.34
|
2764 |
+
text = "UW1"
|
2765 |
+
intervals [452]:
|
2766 |
+
xmin = 45.34
|
2767 |
+
xmax = 45.41
|
2768 |
+
text = "Z"
|
2769 |
+
intervals [453]:
|
2770 |
+
xmin = 45.41
|
2771 |
+
xmax = 45.45
|
2772 |
+
text = "IH0"
|
2773 |
+
intervals [454]:
|
2774 |
+
xmin = 45.45
|
2775 |
+
xmax = 45.48
|
2776 |
+
text = "K"
|
2777 |
+
intervals [455]:
|
2778 |
+
xmin = 45.48
|
2779 |
+
xmax = 45.51
|
2780 |
+
text = "AH0"
|
2781 |
+
intervals [456]:
|
2782 |
+
xmin = 45.51
|
2783 |
+
xmax = 45.56
|
2784 |
+
text = "L"
|
2785 |
+
intervals [457]:
|
2786 |
+
xmin = 45.56
|
2787 |
+
xmax = 45.62
|
2788 |
+
text = "P"
|
2789 |
+
intervals [458]:
|
2790 |
+
xmin = 45.62
|
2791 |
+
xmax = 45.69
|
2792 |
+
text = "R"
|
2793 |
+
intervals [459]:
|
2794 |
+
xmin = 45.69
|
2795 |
+
xmax = 45.81
|
2796 |
+
text = "AA1"
|
2797 |
+
intervals [460]:
|
2798 |
+
xmin = 45.81
|
2799 |
+
xmax = 45.84
|
2800 |
+
text = "D"
|
2801 |
+
intervals [461]:
|
2802 |
+
xmin = 45.84
|
2803 |
+
xmax = 45.87
|
2804 |
+
text = "AH0"
|
2805 |
+
intervals [462]:
|
2806 |
+
xmin = 45.87
|
2807 |
+
xmax = 45.91
|
2808 |
+
text = "JH"
|
2809 |
+
intervals [463]:
|
2810 |
+
xmin = 45.91
|
2811 |
+
xmax = 45.96
|
2812 |
+
text = "IY0"
|
2813 |
+
intervals [464]:
|
2814 |
+
xmin = 45.96
|
2815 |
+
xmax = 45.99
|
2816 |
+
text = "D"
|
2817 |
+
intervals [465]:
|
2818 |
+
xmin = 45.99
|
2819 |
+
xmax = 46.04
|
2820 |
+
text = "UW1"
|
2821 |
+
intervals [466]:
|
2822 |
+
xmin = 46.04
|
2823 |
+
xmax = 46.09
|
2824 |
+
text = "DH"
|
2825 |
+
intervals [467]:
|
2826 |
+
xmin = 46.09
|
2827 |
+
xmax = 46.12
|
2828 |
+
text = "AH0"
|
2829 |
+
intervals [468]:
|
2830 |
+
xmin = 46.12
|
2831 |
+
xmax = 46.17
|
2832 |
+
text = "T"
|
2833 |
+
intervals [469]:
|
2834 |
+
xmin = 46.17
|
2835 |
+
xmax = 46.24
|
2836 |
+
text = "F"
|
2837 |
+
intervals [470]:
|
2838 |
+
xmin = 46.24
|
2839 |
+
xmax = 46.29
|
2840 |
+
text = "AO1"
|
2841 |
+
intervals [471]:
|
2842 |
+
xmin = 46.29
|
2843 |
+
xmax = 46.36
|
2844 |
+
text = "L"
|
2845 |
+
intervals [472]:
|
2846 |
+
xmin = 46.36
|
2847 |
+
xmax = 46.42
|
2848 |
+
text = "Z"
|
2849 |
+
intervals [473]:
|
2850 |
+
xmin = 46.42
|
2851 |
+
xmax = 46.46
|
2852 |
+
text = "IH0"
|
2853 |
+
intervals [474]:
|
2854 |
+
xmin = 46.46
|
2855 |
+
xmax = 46.49
|
2856 |
+
text = "N"
|
2857 |
+
intervals [475]:
|
2858 |
+
xmin = 46.49
|
2859 |
+
xmax = 46.53
|
2860 |
+
text = "L"
|
2861 |
+
intervals [476]:
|
2862 |
+
xmin = 46.53
|
2863 |
+
xmax = 46.59
|
2864 |
+
text = "AH1"
|
2865 |
+
intervals [477]:
|
2866 |
+
xmin = 46.59
|
2867 |
+
xmax = 46.62
|
2868 |
+
text = "V"
|
2869 |
+
intervals [478]:
|
2870 |
+
xmin = 46.62
|
2871 |
+
xmax = 46.65
|
2872 |
+
text = "W"
|
2873 |
+
intervals [479]:
|
2874 |
+
xmin = 46.65
|
2875 |
+
xmax = 46.68
|
2876 |
+
text = "IH0"
|
2877 |
+
intervals [480]:
|
2878 |
+
xmin = 46.68
|
2879 |
+
xmax = 46.72
|
2880 |
+
text = "DH"
|
2881 |
+
intervals [481]:
|
2882 |
+
xmin = 46.72
|
2883 |
+
xmax = 46.85
|
2884 |
+
text = "AH0"
|
2885 |
+
intervals [482]:
|
2886 |
+
xmin = 46.85
|
2887 |
+
xmax = 46.91
|
2888 |
+
text = ""
|
2889 |
+
intervals [483]:
|
2890 |
+
xmin = 46.91
|
2891 |
+
xmax = 47.04
|
2892 |
+
text = "G"
|
2893 |
+
intervals [484]:
|
2894 |
+
xmin = 47.04
|
2895 |
+
xmax = 47.13
|
2896 |
+
text = "ER1"
|
2897 |
+
intervals [485]:
|
2898 |
+
xmin = 47.13
|
2899 |
+
xmax = 47.21
|
2900 |
+
text = "L"
|
2901 |
+
intervals [486]:
|
2902 |
+
xmin = 47.21
|
2903 |
+
xmax = 47.27
|
2904 |
+
text = "HH"
|
2905 |
+
intervals [487]:
|
2906 |
+
xmin = 47.27
|
2907 |
+
xmax = 47.38
|
2908 |
+
text = "UW1"
|
2909 |
+
intervals [488]:
|
2910 |
+
xmin = 47.38
|
2911 |
+
xmax = 47.46
|
2912 |
+
text = "Z"
|
2913 |
+
intervals [489]:
|
2914 |
+
xmin = 47.46
|
2915 |
+
xmax = 47.55
|
2916 |
+
text = "D"
|
2917 |
+
intervals [490]:
|
2918 |
+
xmin = 47.55
|
2919 |
+
xmax = 47.73
|
2920 |
+
text = "AY1"
|
2921 |
+
intervals [491]:
|
2922 |
+
xmin = 47.73
|
2923 |
+
xmax = 47.84
|
2924 |
+
text = "IH0"
|
2925 |
+
intervals [492]:
|
2926 |
+
xmin = 47.84
|
2927 |
+
xmax = 48.01
|
2928 |
+
text = "NG"
|
2929 |
+
intervals [493]:
|
2930 |
+
xmin = 48.01
|
2931 |
+
xmax = 49.08
|
2932 |
+
text = ""
|
2933 |
+
intervals [494]:
|
2934 |
+
xmin = 49.08
|
2935 |
+
xmax = 49.15
|
2936 |
+
text = "DH"
|
2937 |
+
intervals [495]:
|
2938 |
+
xmin = 49.15
|
2939 |
+
xmax = 49.18
|
2940 |
+
text = "EH1"
|
2941 |
+
intervals [496]:
|
2942 |
+
xmin = 49.18
|
2943 |
+
xmax = 49.33
|
2944 |
+
text = "R"
|
2945 |
+
intervals [497]:
|
2946 |
+
xmin = 49.33
|
2947 |
+
xmax = 49.36
|
2948 |
+
text = "AA1"
|
2949 |
+
intervals [498]:
|
2950 |
+
xmin = 49.36
|
2951 |
+
xmax = 49.39
|
2952 |
+
text = "R"
|
2953 |
+
intervals [499]:
|
2954 |
+
xmin = 49.39
|
2955 |
+
xmax = 49.46
|
2956 |
+
text = "AH0"
|
2957 |
+
intervals [500]:
|
2958 |
+
xmin = 49.46
|
2959 |
+
xmax = 49.52
|
2960 |
+
text = "L"
|
2961 |
+
intervals [501]:
|
2962 |
+
xmin = 49.52
|
2963 |
+
xmax = 49.69
|
2964 |
+
text = "AA1"
|
2965 |
+
intervals [502]:
|
2966 |
+
xmin = 49.69
|
2967 |
+
xmax = 49.82
|
2968 |
+
text = "T"
|
2969 |
+
intervals [503]:
|
2970 |
+
xmin = 49.82
|
2971 |
+
xmax = 49.98
|
2972 |
+
text = "AH1"
|
2973 |
+
intervals [504]:
|
2974 |
+
xmin = 49.98
|
2975 |
+
xmax = 50.2
|
2976 |
+
text = "V"
|
2977 |
+
intervals [505]:
|
2978 |
+
xmin = 50.2
|
2979 |
+
xmax = 50.29
|
2980 |
+
text = ""
|
2981 |
+
intervals [506]:
|
2982 |
+
xmin = 50.29
|
2983 |
+
xmax = 50.43
|
2984 |
+
text = "EH1"
|
2985 |
+
intervals [507]:
|
2986 |
+
xmin = 50.43
|
2987 |
+
xmax = 50.52
|
2988 |
+
text = "N"
|
2989 |
+
intervals [508]:
|
2990 |
+
xmin = 50.52
|
2991 |
+
xmax = 50.56
|
2992 |
+
text = "V"
|
2993 |
+
intervals [509]:
|
2994 |
+
xmin = 50.56
|
2995 |
+
xmax = 50.65
|
2996 |
+
text = "IY0"
|
2997 |
+
intervals [510]:
|
2998 |
+
xmin = 50.65
|
2999 |
+
xmax = 50.7
|
3000 |
+
text = "AH0"
|
3001 |
+
intervals [511]:
|
3002 |
+
xmin = 50.7
|
3003 |
+
xmax = 50.75
|
3004 |
+
text = "B"
|
3005 |
+
intervals [512]:
|
3006 |
+
xmin = 50.75
|
3007 |
+
xmax = 50.78
|
3008 |
+
text = "AH0"
|
3009 |
+
intervals [513]:
|
3010 |
+
xmin = 50.78
|
3011 |
+
xmax = 50.88
|
3012 |
+
text = "L"
|
3013 |
+
intervals [514]:
|
3014 |
+
xmin = 50.88
|
3015 |
+
xmax = 50.94
|
3016 |
+
text = "M"
|
3017 |
+
intervals [515]:
|
3018 |
+
xmin = 50.94
|
3019 |
+
xmax = 51.05
|
3020 |
+
text = "OW1"
|
3021 |
+
intervals [516]:
|
3022 |
+
xmin = 51.05
|
3023 |
+
xmax = 51.12
|
3024 |
+
text = "M"
|
3025 |
+
intervals [517]:
|
3026 |
+
xmin = 51.12
|
3027 |
+
xmax = 51.16
|
3028 |
+
text = "AH0"
|
3029 |
+
intervals [518]:
|
3030 |
+
xmin = 51.16
|
3031 |
+
xmax = 51.19
|
3032 |
+
text = "N"
|
3033 |
+
intervals [519]:
|
3034 |
+
xmin = 51.19
|
3035 |
+
xmax = 51.23
|
3036 |
+
text = "T"
|
3037 |
+
intervals [520]:
|
3038 |
+
xmin = 51.23
|
3039 |
+
xmax = 51.3
|
3040 |
+
text = "S"
|
3041 |
+
intervals [521]:
|
3042 |
+
xmin = 51.3
|
3043 |
+
xmax = 51.34
|
3044 |
+
text = "IH0"
|
3045 |
+
intervals [522]:
|
3046 |
+
xmin = 51.34
|
3047 |
+
xmax = 51.37
|
3048 |
+
text = "N"
|
3049 |
+
intervals [523]:
|
3050 |
+
xmin = 51.37
|
3051 |
+
xmax = 51.4
|
3052 |
+
text = "DH"
|
3053 |
+
intervals [524]:
|
3054 |
+
xmin = 51.4
|
3055 |
+
xmax = 51.46
|
3056 |
+
text = "IH0"
|
3057 |
+
intervals [525]:
|
3058 |
+
xmin = 51.46
|
3059 |
+
xmax = 51.53
|
3060 |
+
text = "S"
|
3061 |
+
intervals [526]:
|
3062 |
+
xmin = 51.53
|
3063 |
+
xmax = 51.58
|
3064 |
+
text = "F"
|
3065 |
+
intervals [527]:
|
3066 |
+
xmin = 51.58
|
3067 |
+
xmax = 51.62
|
3068 |
+
text = "IH1"
|
3069 |
+
intervals [528]:
|
3070 |
+
xmin = 51.62
|
3071 |
+
xmax = 51.72
|
3072 |
+
text = "L"
|
3073 |
+
intervals [529]:
|
3074 |
+
xmin = 51.72
|
3075 |
+
xmax = 51.77
|
3076 |
+
text = "M"
|
3077 |
+
intervals [530]:
|
3078 |
+
xmin = 51.77
|
3079 |
+
xmax = 51.86
|
3080 |
+
text = "S"
|
3081 |
+
intervals [531]:
|
3082 |
+
xmin = 51.86
|
3083 |
+
xmax = 51.91
|
3084 |
+
text = "AH1"
|
3085 |
+
intervals [532]:
|
3086 |
+
xmin = 51.91
|
3087 |
+
xmax = 52.01
|
3088 |
+
text = "CH"
|
3089 |
+
intervals [533]:
|
3090 |
+
xmin = 52.01
|
3091 |
+
xmax = 52.09
|
3092 |
+
text = "EH1"
|
3093 |
+
intervals [534]:
|
3094 |
+
xmin = 52.09
|
3095 |
+
xmax = 52.2
|
3096 |
+
text = "Z"
|
3097 |
+
intervals [535]:
|
3098 |
+
xmin = 52.2
|
3099 |
+
xmax = 52.23
|
3100 |
+
text = "DH"
|
3101 |
+
intervals [536]:
|
3102 |
+
xmin = 52.23
|
3103 |
+
xmax = 52.3
|
3104 |
+
text = "AH0"
|
3105 |
+
intervals [537]:
|
3106 |
+
xmin = 52.3
|
3107 |
+
xmax = 52.39
|
3108 |
+
text = "S"
|
3109 |
+
intervals [538]:
|
3110 |
+
xmin = 52.39
|
3111 |
+
xmax = 52.43
|
3112 |
+
text = "IH1"
|
3113 |
+
intervals [539]:
|
3114 |
+
xmin = 52.43
|
3115 |
+
xmax = 52.46
|
3116 |
+
text = "M"
|
3117 |
+
intervals [540]:
|
3118 |
+
xmin = 52.46
|
3119 |
+
xmax = 52.5
|
3120 |
+
text = "P"
|
3121 |
+
intervals [541]:
|
3122 |
+
xmin = 52.5
|
3123 |
+
xmax = 52.53
|
3124 |
+
text = "AH0"
|
3125 |
+
intervals [542]:
|
3126 |
+
xmin = 52.53
|
3127 |
+
xmax = 52.57
|
3128 |
+
text = "L"
|
3129 |
+
intervals [543]:
|
3130 |
+
xmin = 52.57
|
3131 |
+
xmax = 52.66
|
3132 |
+
text = "L"
|
3133 |
+
intervals [544]:
|
3134 |
+
xmin = 52.66
|
3135 |
+
xmax = 52.71
|
3136 |
+
text = "AH1"
|
3137 |
+
intervals [545]:
|
3138 |
+
xmin = 52.71
|
3139 |
+
xmax = 52.74
|
3140 |
+
text = "V"
|
3141 |
+
intervals [546]:
|
3142 |
+
xmin = 52.74
|
3143 |
+
xmax = 52.79
|
3144 |
+
text = "B"
|
3145 |
+
intervals [547]:
|
3146 |
+
xmin = 52.79
|
3147 |
+
xmax = 52.83
|
3148 |
+
text = "IH0"
|
3149 |
+
intervals [548]:
|
3150 |
+
xmin = 52.83
|
3151 |
+
xmax = 52.91
|
3152 |
+
text = "T"
|
3153 |
+
intervals [549]:
|
3154 |
+
xmin = 52.91
|
3155 |
+
xmax = 52.99
|
3156 |
+
text = "W"
|
3157 |
+
intervals [550]:
|
3158 |
+
xmin = 52.99
|
3159 |
+
xmax = 53.03
|
3160 |
+
text = "IY1"
|
3161 |
+
intervals [551]:
|
3162 |
+
xmin = 53.03
|
3163 |
+
xmax = 53.06
|
3164 |
+
text = "N"
|
3165 |
+
intervals [552]:
|
3166 |
+
xmin = 53.06
|
3167 |
+
xmax = 53.18
|
3168 |
+
text = "HH"
|
3169 |
+
intervals [553]:
|
3170 |
+
xmin = 53.18
|
3171 |
+
xmax = 53.26
|
3172 |
+
text = "AY1"
|
3173 |
+
intervals [554]:
|
3174 |
+
xmin = 53.26
|
3175 |
+
xmax = 53.34
|
3176 |
+
text = "S"
|
3177 |
+
intervals [555]:
|
3178 |
+
xmin = 53.34
|
3179 |
+
xmax = 53.42
|
3180 |
+
text = "K"
|
3181 |
+
intervals [556]:
|
3182 |
+
xmin = 53.42
|
3183 |
+
xmax = 53.45
|
3184 |
+
text = "UW1"
|
3185 |
+
intervals [557]:
|
3186 |
+
xmin = 53.45
|
3187 |
+
xmax = 53.52
|
3188 |
+
text = "L"
|
3189 |
+
intervals [558]:
|
3190 |
+
xmin = 53.52
|
3191 |
+
xmax = 53.63
|
3192 |
+
text = "S"
|
3193 |
+
intervals [559]:
|
3194 |
+
xmin = 53.63
|
3195 |
+
xmax = 53.68
|
3196 |
+
text = "T"
|
3197 |
+
intervals [560]:
|
3198 |
+
xmin = 53.68
|
3199 |
+
xmax = 53.77
|
3200 |
+
text = "UW1"
|
3201 |
+
intervals [561]:
|
3202 |
+
xmin = 53.77
|
3203 |
+
xmax = 53.8
|
3204 |
+
text = "D"
|
3205 |
+
intervals [562]:
|
3206 |
+
xmin = 53.8
|
3207 |
+
xmax = 53.84
|
3208 |
+
text = "AH0"
|
3209 |
+
intervals [563]:
|
3210 |
+
xmin = 53.84
|
3211 |
+
xmax = 53.89
|
3212 |
+
text = "N"
|
3213 |
+
intervals [564]:
|
3214 |
+
xmin = 53.89
|
3215 |
+
xmax = 53.95
|
3216 |
+
text = "T"
|
3217 |
+
intervals [565]:
|
3218 |
+
xmin = 53.95
|
3219 |
+
xmax = 54.09
|
3220 |
+
text = "S"
|
3221 |
+
intervals [566]:
|
3222 |
+
xmin = 54.09
|
3223 |
+
xmax = 54.32
|
3224 |
+
text = ""
|
3225 |
+
intervals [567]:
|
3226 |
+
xmin = 54.32
|
3227 |
+
xmax = 54.42
|
3228 |
+
text = "EH1"
|
3229 |
+
intervals [568]:
|
3230 |
+
xmin = 54.42
|
3231 |
+
xmax = 54.45
|
3232 |
+
text = "V"
|
3233 |
+
intervals [569]:
|
3234 |
+
xmin = 54.45
|
3235 |
+
xmax = 54.51
|
3236 |
+
text = "R"
|
3237 |
+
intervals [570]:
|
3238 |
+
xmin = 54.51
|
3239 |
+
xmax = 54.56
|
3240 |
+
text = "IY0"
|
3241 |
+
intervals [571]:
|
3242 |
+
xmin = 54.56
|
3243 |
+
xmax = 54.65
|
3244 |
+
text = "T"
|
3245 |
+
intervals [572]:
|
3246 |
+
xmin = 54.65
|
3247 |
+
xmax = 54.83
|
3248 |
+
text = "AY1"
|
3249 |
+
intervals [573]:
|
3250 |
+
xmin = 54.83
|
3251 |
+
xmax = 54.93
|
3252 |
+
text = "M"
|
3253 |
+
intervals [574]:
|
3254 |
+
xmin = 54.93
|
3255 |
+
xmax = 54.96
|
3256 |
+
text = ""
|
3257 |
+
intervals [575]:
|
3258 |
+
xmin = 54.96
|
3259 |
+
xmax = 55.08
|
3260 |
+
text = "AY1"
|
3261 |
+
intervals [576]:
|
3262 |
+
xmin = 55.08
|
3263 |
+
xmax = 55.28
|
3264 |
+
text = "W"
|
3265 |
+
intervals [577]:
|
3266 |
+
xmin = 55.28
|
3267 |
+
xmax = 55.36
|
3268 |
+
text = "AA1"
|
3269 |
+
intervals [578]:
|
3270 |
+
xmin = 55.36
|
3271 |
+
xmax = 55.45
|
3272 |
+
text = "CH"
|
3273 |
+
intervals [579]:
|
3274 |
+
xmin = 55.45
|
3275 |
+
xmax = 55.53
|
3276 |
+
text = "DH"
|
3277 |
+
intervals [580]:
|
3278 |
+
xmin = 55.53
|
3279 |
+
xmax = 55.59
|
3280 |
+
text = "IH0"
|
3281 |
+
intervals [581]:
|
3282 |
+
xmin = 55.59
|
3283 |
+
xmax = 55.68
|
3284 |
+
text = "S"
|
3285 |
+
intervals [582]:
|
3286 |
+
xmin = 55.68
|
3287 |
+
xmax = 55.73
|
3288 |
+
text = "M"
|
3289 |
+
intervals [583]:
|
3290 |
+
xmin = 55.73
|
3291 |
+
xmax = 55.76
|
3292 |
+
text = "UW1"
|
3293 |
+
intervals [584]:
|
3294 |
+
xmin = 55.76
|
3295 |
+
xmax = 55.84
|
3296 |
+
text = "V"
|
3297 |
+
intervals [585]:
|
3298 |
+
xmin = 55.84
|
3299 |
+
xmax = 55.89
|
3300 |
+
text = "IY0"
|
3301 |
+
intervals [586]:
|
3302 |
+
xmin = 55.89
|
3303 |
+
xmax = 55.92
|
3304 |
+
text = "IH1"
|
3305 |
+
intervals [587]:
|
3306 |
+
xmin = 55.92
|
3307 |
+
xmax = 55.98
|
3308 |
+
text = "T"
|
3309 |
+
intervals [588]:
|
3310 |
+
xmin = 55.98
|
3311 |
+
xmax = 56.05
|
3312 |
+
text = "R"
|
3313 |
+
intervals [589]:
|
3314 |
+
xmin = 56.05
|
3315 |
+
xmax = 56.12
|
3316 |
+
text = "IY0"
|
3317 |
+
intervals [590]:
|
3318 |
+
xmin = 56.12
|
3319 |
+
xmax = 56.2
|
3320 |
+
text = "M"
|
3321 |
+
intervals [591]:
|
3322 |
+
xmin = 56.2
|
3323 |
+
xmax = 56.34
|
3324 |
+
text = "AY1"
|
3325 |
+
intervals [592]:
|
3326 |
+
xmin = 56.34
|
3327 |
+
xmax = 56.38
|
3328 |
+
text = "N"
|
3329 |
+
intervals [593]:
|
3330 |
+
xmin = 56.38
|
3331 |
+
xmax = 56.41
|
3332 |
+
text = "D"
|
3333 |
+
intervals [594]:
|
3334 |
+
xmin = 56.41
|
3335 |
+
xmax = 56.44
|
3336 |
+
text = "Z"
|
3337 |
+
intervals [595]:
|
3338 |
+
xmin = 56.44
|
3339 |
+
xmax = 56.49
|
3340 |
+
text = "M"
|
3341 |
+
intervals [596]:
|
3342 |
+
xmin = 56.49
|
3343 |
+
xmax = 56.55
|
3344 |
+
text = "IY1"
|
3345 |
+
intervals [597]:
|
3346 |
+
xmin = 56.55
|
3347 |
+
xmax = 56.6
|
3348 |
+
text = "AH0"
|
3349 |
+
intervals [598]:
|
3350 |
+
xmin = 56.6
|
3351 |
+
xmax = 56.63
|
3352 |
+
text = "V"
|
3353 |
+
intervals [599]:
|
3354 |
+
xmin = 56.63
|
3355 |
+
xmax = 56.7
|
3356 |
+
text = "AH0"
|
3357 |
+
intervals [600]:
|
3358 |
+
xmin = 56.7
|
3359 |
+
xmax = 56.82
|
3360 |
+
text = "T"
|
3361 |
+
intervals [601]:
|
3362 |
+
xmin = 56.82
|
3363 |
+
xmax = 56.94
|
3364 |
+
text = "AY1"
|
3365 |
+
intervals [602]:
|
3366 |
+
xmin = 56.94
|
3367 |
+
xmax = 56.99
|
3368 |
+
text = "M"
|
3369 |
+
intervals [603]:
|
3370 |
+
xmin = 56.99
|
3371 |
+
xmax = 57.02
|
3372 |
+
text = "DH"
|
3373 |
+
intervals [604]:
|
3374 |
+
xmin = 57.02
|
3375 |
+
xmax = 57.05
|
3376 |
+
text = "AH0"
|
3377 |
+
intervals [605]:
|
3378 |
+
xmin = 57.05
|
3379 |
+
xmax = 57.08
|
3380 |
+
text = "T"
|
3381 |
+
intervals [606]:
|
3382 |
+
xmin = 57.08
|
3383 |
+
xmax = 57.13
|
3384 |
+
text = "AY1"
|
3385 |
+
intervals [607]:
|
3386 |
+
xmin = 57.13
|
3387 |
+
xmax = 57.17
|
3388 |
+
text = "W"
|
3389 |
+
intervals [608]:
|
3390 |
+
xmin = 57.17
|
3391 |
+
xmax = 57.2
|
3392 |
+
text = "AH0"
|
3393 |
+
intervals [609]:
|
3394 |
+
xmin = 57.2
|
3395 |
+
xmax = 57.23
|
3396 |
+
text = "Z"
|
3397 |
+
intervals [610]:
|
3398 |
+
xmin = 57.23
|
3399 |
+
xmax = 57.26
|
3400 |
+
text = "IH0"
|
3401 |
+
intervals [611]:
|
3402 |
+
xmin = 57.26
|
3403 |
+
xmax = 57.29
|
3404 |
+
text = "N"
|
3405 |
+
intervals [612]:
|
3406 |
+
xmin = 57.29
|
3407 |
+
xmax = 57.41
|
3408 |
+
text = "HH"
|
3409 |
+
intervals [613]:
|
3410 |
+
xmin = 57.41
|
3411 |
+
xmax = 57.53
|
3412 |
+
text = "AY1"
|
3413 |
+
intervals [614]:
|
3414 |
+
xmin = 57.53
|
3415 |
+
xmax = 57.66
|
3416 |
+
text = "S"
|
3417 |
+
intervals [615]:
|
3418 |
+
xmin = 57.66
|
3419 |
+
xmax = 57.69
|
3420 |
+
text = "K"
|
3421 |
+
intervals [616]:
|
3422 |
+
xmin = 57.69
|
3423 |
+
xmax = 57.84
|
3424 |
+
text = "UW1"
|
3425 |
+
intervals [617]:
|
3426 |
+
xmin = 57.84
|
3427 |
+
xmax = 57.88
|
3428 |
+
text = "L"
|
3429 |
+
intervals [618]:
|
3430 |
+
xmin = 57.88
|
3431 |
+
xmax = 57.91
|
3432 |
+
text = "AH0"
|
3433 |
+
intervals [619]:
|
3434 |
+
xmin = 57.91
|
3435 |
+
xmax = 57.94
|
3436 |
+
text = "N"
|
3437 |
+
intervals [620]:
|
3438 |
+
xmin = 57.94
|
3439 |
+
xmax = 58.03
|
3440 |
+
text = "D"
|
3441 |
+
intervals [621]:
|
3442 |
+
xmin = 58.03
|
3443 |
+
xmax = 58.25
|
3444 |
+
text = ""
|
3445 |
+
intervals [622]:
|
3446 |
+
xmin = 58.25
|
3447 |
+
xmax = 58.36
|
3448 |
+
text = "Y"
|
3449 |
+
intervals [623]:
|
3450 |
+
xmin = 58.36
|
3451 |
+
xmax = 58.4
|
3452 |
+
text = "UW1"
|
3453 |
+
intervals [624]:
|
3454 |
+
xmin = 58.4
|
3455 |
+
xmax = 58.45
|
3456 |
+
text = "M"
|
3457 |
+
intervals [625]:
|
3458 |
+
xmin = 58.45
|
3459 |
+
xmax = 58.51
|
3460 |
+
text = "AY1"
|
3461 |
+
intervals [626]:
|
3462 |
+
xmin = 58.51
|
3463 |
+
xmax = 58.55
|
3464 |
+
text = "T"
|
3465 |
+
intervals [627]:
|
3466 |
+
xmin = 58.55
|
3467 |
+
xmax = 58.59
|
3468 |
+
text = "R"
|
3469 |
+
intervals [628]:
|
3470 |
+
xmin = 58.59
|
3471 |
+
xmax = 58.66
|
3472 |
+
text = "IH0"
|
3473 |
+
intervals [629]:
|
3474 |
+
xmin = 58.66
|
3475 |
+
xmax = 58.7
|
3476 |
+
text = "M"
|
3477 |
+
intervals [630]:
|
3478 |
+
xmin = 58.7
|
3479 |
+
xmax = 58.76
|
3480 |
+
text = "EH1"
|
3481 |
+
intervals [631]:
|
3482 |
+
xmin = 58.76
|
3483 |
+
xmax = 58.79
|
3484 |
+
text = "M"
|
3485 |
+
intervals [632]:
|
3486 |
+
xmin = 58.79
|
3487 |
+
xmax = 58.84
|
3488 |
+
text = "B"
|
3489 |
+
intervals [633]:
|
3490 |
+
xmin = 58.84
|
3491 |
+
xmax = 59.1
|
3492 |
+
text = "ER0"
|
3493 |
+
intervals [634]:
|
3494 |
+
xmin = 59.1
|
3495 |
+
xmax = 59.29
|
3496 |
+
text = ""
|
3497 |
+
intervals [635]:
|
3498 |
+
xmin = 59.29
|
3499 |
+
xmax = 59.38
|
3500 |
+
text = "DH"
|
3501 |
+
intervals [636]:
|
3502 |
+
xmin = 59.38
|
3503 |
+
xmax = 59.44
|
3504 |
+
text = "AH0"
|
3505 |
+
intervals [637]:
|
3506 |
+
xmin = 59.44
|
3507 |
+
xmax = 59.56
|
3508 |
+
text = "K"
|
3509 |
+
intervals [638]:
|
3510 |
+
xmin = 59.56
|
3511 |
+
xmax = 59.63
|
3512 |
+
text = "R"
|
3513 |
+
intervals [639]:
|
3514 |
+
xmin = 59.63
|
3515 |
+
xmax = 59.69
|
3516 |
+
text = "AH1"
|
3517 |
+
intervals [640]:
|
3518 |
+
xmin = 59.69
|
3519 |
+
xmax = 59.83
|
3520 |
+
text = "SH"
|
3521 |
+
intervals [641]:
|
3522 |
+
xmin = 59.83
|
3523 |
+
xmax = 59.89
|
3524 |
+
text = "Y"
|
3525 |
+
intervals [642]:
|
3526 |
+
xmin = 59.89
|
3527 |
+
xmax = 59.94
|
3528 |
+
text = "UW1"
|
3529 |
+
intervals [643]:
|
3530 |
+
xmin = 59.94
|
3531 |
+
xmax = 60.03
|
3532 |
+
text = "HH"
|
3533 |
+
intervals [644]:
|
3534 |
+
xmin = 60.03
|
3535 |
+
xmax = 60.12
|
3536 |
+
text = "AE1"
|
3537 |
+
intervals [645]:
|
3538 |
+
xmin = 60.12
|
3539 |
+
xmax = 60.16
|
3540 |
+
text = "D"
|
3541 |
+
intervals [646]:
|
3542 |
+
xmin = 60.16
|
3543 |
+
xmax = 60.2
|
3544 |
+
text = "IH0"
|
3545 |
+
intervals [647]:
|
3546 |
+
xmin = 60.2
|
3547 |
+
xmax = 60.27
|
3548 |
+
text = "N"
|
3549 |
+
intervals [648]:
|
3550 |
+
xmin = 60.27
|
3551 |
+
xmax = 60.37
|
3552 |
+
text = "S"
|
3553 |
+
intervals [649]:
|
3554 |
+
xmin = 60.37
|
3555 |
+
xmax = 60.43
|
3556 |
+
text = "K"
|
3557 |
+
intervals [650]:
|
3558 |
+
xmin = 60.43
|
3559 |
+
xmax = 60.54
|
3560 |
+
text = "UW1"
|
3561 |
+
intervals [651]:
|
3562 |
+
xmin = 60.54
|
3563 |
+
xmax = 60.74
|
3564 |
+
text = "L"
|
3565 |
+
intervals [652]:
|
3566 |
+
xmin = 60.74
|
3567 |
+
xmax = 60.9
|
3568 |
+
text = ""
|
3569 |
+
intervals [653]:
|
3570 |
+
xmin = 60.9
|
3571 |
+
xmax = 61.06
|
3572 |
+
text = "AE1"
|
3573 |
+
intervals [654]:
|
3574 |
+
xmin = 61.06
|
3575 |
+
xmax = 61.09
|
3576 |
+
text = "N"
|
3577 |
+
intervals [655]:
|
3578 |
+
xmin = 61.09
|
3579 |
+
xmax = 61.12
|
3580 |
+
text = "D"
|
3581 |
+
intervals [656]:
|
3582 |
+
xmin = 61.12
|
3583 |
+
xmax = 61.2
|
3584 |
+
text = "HH"
|
3585 |
+
intervals [657]:
|
3586 |
+
xmin = 61.2
|
3587 |
+
xmax = 61.24
|
3588 |
+
text = "AW1"
|
3589 |
+
intervals [658]:
|
3590 |
+
xmin = 61.24
|
3591 |
+
xmax = 61.29
|
3592 |
+
text = "Y"
|
3593 |
+
intervals [659]:
|
3594 |
+
xmin = 61.29
|
3595 |
+
xmax = 61.36
|
3596 |
+
text = "UW1"
|
3597 |
+
intervals [660]:
|
3598 |
+
xmin = 61.36
|
3599 |
+
xmax = 61.4
|
3600 |
+
text = "W"
|
3601 |
+
intervals [661]:
|
3602 |
+
xmin = 61.4
|
3603 |
+
xmax = 61.43
|
3604 |
+
text = "UH1"
|
3605 |
+
intervals [662]:
|
3606 |
+
xmin = 61.43
|
3607 |
+
xmax = 61.48
|
3608 |
+
text = "D"
|
3609 |
+
intervals [663]:
|
3610 |
+
xmin = 61.48
|
3611 |
+
xmax = 61.57
|
3612 |
+
text = "L"
|
3613 |
+
intervals [664]:
|
3614 |
+
xmin = 61.57
|
3615 |
+
xmax = 61.63
|
3616 |
+
text = "UH1"
|
3617 |
+
intervals [665]:
|
3618 |
+
xmin = 61.63
|
3619 |
+
xmax = 61.7
|
3620 |
+
text = "K"
|
3621 |
+
intervals [666]:
|
3622 |
+
xmin = 61.7
|
3623 |
+
xmax = 61.73
|
3624 |
+
text = "AE1"
|
3625 |
+
intervals [667]:
|
3626 |
+
xmin = 61.73
|
3627 |
+
xmax = 61.77
|
3628 |
+
text = "T"
|
3629 |
+
intervals [668]:
|
3630 |
+
xmin = 61.77
|
3631 |
+
xmax = 61.84
|
3632 |
+
text = "HH"
|
3633 |
+
intervals [669]:
|
3634 |
+
xmin = 61.84
|
3635 |
+
xmax = 61.98
|
3636 |
+
text = "IH1"
|
3637 |
+
intervals [670]:
|
3638 |
+
xmin = 61.98
|
3639 |
+
xmax = 62.16
|
3640 |
+
text = "M"
|
3641 |
+
intervals [671]:
|
3642 |
+
xmin = 62.16
|
3643 |
+
xmax = 62.37
|
3644 |
+
text = ""
|
3645 |
+
intervals [672]:
|
3646 |
+
xmin = 62.37
|
3647 |
+
xmax = 62.42
|
3648 |
+
text = "HH"
|
3649 |
+
intervals [673]:
|
3650 |
+
xmin = 62.42
|
3651 |
+
xmax = 62.46
|
3652 |
+
text = "W"
|
3653 |
+
intervals [674]:
|
3654 |
+
xmin = 62.46
|
3655 |
+
xmax = 62.49
|
3656 |
+
text = "AY1"
|
3657 |
+
intervals [675]:
|
3658 |
+
xmin = 62.49
|
3659 |
+
xmax = 62.54
|
3660 |
+
text = "L"
|
3661 |
+
intervals [676]:
|
3662 |
+
xmin = 62.54
|
3663 |
+
xmax = 62.59
|
3664 |
+
text = "HH"
|
3665 |
+
intervals [677]:
|
3666 |
+
xmin = 62.59
|
3667 |
+
xmax = 62.64
|
3668 |
+
text = "IY1"
|
3669 |
+
intervals [678]:
|
3670 |
+
xmin = 62.64
|
3671 |
+
xmax = 62.74
|
3672 |
+
text = "Z"
|
3673 |
+
intervals [679]:
|
3674 |
+
xmin = 62.74
|
3675 |
+
xmax = 62.93
|
3676 |
+
text = "AE1"
|
3677 |
+
intervals [680]:
|
3678 |
+
xmin = 62.93
|
3679 |
+
xmax = 63.02
|
3680 |
+
text = "T"
|
3681 |
+
intervals [681]:
|
3682 |
+
xmin = 63.02
|
3683 |
+
xmax = 63.5
|
3684 |
+
text = "IH1"
|
3685 |
+
intervals [682]:
|
3686 |
+
xmin = 63.5
|
3687 |
+
xmax = 63.61
|
3688 |
+
text = "N"
|
3689 |
+
intervals [683]:
|
3690 |
+
xmin = 63.61
|
3691 |
+
xmax = 63.7
|
3692 |
+
text = "K"
|
3693 |
+
intervals [684]:
|
3694 |
+
xmin = 63.7
|
3695 |
+
xmax = 63.77
|
3696 |
+
text = "L"
|
3697 |
+
intervals [685]:
|
3698 |
+
xmin = 63.77
|
3699 |
+
xmax = 63.93
|
3700 |
+
text = "AE1"
|
3701 |
+
intervals [686]:
|
3702 |
+
xmin = 63.93
|
3703 |
+
xmax = 64.04
|
3704 |
+
text = "S"
|
3705 |
+
intervals [687]:
|
3706 |
+
xmin = 64.04
|
3707 |
+
xmax = 64.13
|
3708 |
+
text = "W"
|
3709 |
+
intervals [688]:
|
3710 |
+
xmin = 64.13
|
3711 |
+
xmax = 64.16
|
3712 |
+
text = "IH0"
|
3713 |
+
intervals [689]:
|
3714 |
+
xmin = 64.16
|
3715 |
+
xmax = 64.2
|
3716 |
+
text = "DH"
|
3717 |
+
intervals [690]:
|
3718 |
+
xmin = 64.2
|
3719 |
+
xmax = 64.3
|
3720 |
+
text = "AW1"
|
3721 |
+
intervals [691]:
|
3722 |
+
xmin = 64.3
|
3723 |
+
xmax = 64.38
|
3724 |
+
text = "T"
|
3725 |
+
intervals [692]:
|
3726 |
+
xmin = 64.38
|
3727 |
+
xmax = 64.45
|
3728 |
+
text = "TH"
|
3729 |
+
intervals [693]:
|
3730 |
+
xmin = 64.45
|
3731 |
+
xmax = 64.52
|
3732 |
+
text = "IH1"
|
3733 |
+
intervals [694]:
|
3734 |
+
xmin = 64.52
|
3735 |
+
xmax = 64.58
|
3736 |
+
text = "NG"
|
3737 |
+
intervals [695]:
|
3738 |
+
xmin = 64.58
|
3739 |
+
xmax = 64.64
|
3740 |
+
text = "K"
|
3741 |
+
intervals [696]:
|
3742 |
+
xmin = 64.64
|
3743 |
+
xmax = 64.76
|
3744 |
+
text = "IH0"
|
3745 |
+
intervals [697]:
|
3746 |
+
xmin = 64.76
|
3747 |
+
xmax = 64.83
|
3748 |
+
text = "NG"
|
3749 |
+
intervals [698]:
|
3750 |
+
xmin = 64.83
|
3751 |
+
xmax = 64.88
|
3752 |
+
text = "AO1"
|
3753 |
+
intervals [699]:
|
3754 |
+
xmin = 64.88
|
3755 |
+
xmax = 64.95
|
3756 |
+
text = "R"
|
3757 |
+
intervals [700]:
|
3758 |
+
xmin = 64.95
|
3759 |
+
xmax = 64.98
|
3760 |
+
text = ""
|
3761 |
+
intervals [701]:
|
3762 |
+
xmin = 64.98
|
3763 |
+
xmax = 65.13
|
3764 |
+
text = "W"
|
3765 |
+
intervals [702]:
|
3766 |
+
xmin = 65.13
|
3767 |
+
xmax = 65.17
|
3768 |
+
text = "AA1"
|
3769 |
+
intervals [703]:
|
3770 |
+
xmin = 65.17
|
3771 |
+
xmax = 65.21
|
3772 |
+
text = "N"
|
3773 |
+
intervals [704]:
|
3774 |
+
xmin = 65.21
|
3775 |
+
xmax = 65.24
|
3776 |
+
text = "IH0"
|
3777 |
+
intervals [705]:
|
3778 |
+
xmin = 65.24
|
3779 |
+
xmax = 65.27
|
3780 |
+
text = "NG"
|
3781 |
+
intervals [706]:
|
3782 |
+
xmin = 65.27
|
3783 |
+
xmax = 65.31
|
3784 |
+
text = "T"
|
3785 |
+
intervals [707]:
|
3786 |
+
xmin = 65.31
|
3787 |
+
xmax = 65.36
|
3788 |
+
text = "AH0"
|
3789 |
+
intervals [708]:
|
3790 |
+
xmin = 65.36
|
3791 |
+
xmax = 65.42
|
3792 |
+
text = "G"
|
3793 |
+
intervals [709]:
|
3794 |
+
xmin = 65.42
|
3795 |
+
xmax = 65.54
|
3796 |
+
text = "OW1"
|
3797 |
+
intervals [710]:
|
3798 |
+
xmin = 65.54
|
3799 |
+
xmax = 65.63
|
3800 |
+
text = "P"
|
3801 |
+
intervals [711]:
|
3802 |
+
xmin = 65.63
|
3803 |
+
xmax = 65.7
|
3804 |
+
text = "L"
|
3805 |
+
intervals [712]:
|
3806 |
+
xmin = 65.7
|
3807 |
+
xmax = 65.76
|
3808 |
+
text = "EY1"
|
3809 |
+
intervals [713]:
|
3810 |
+
xmin = 65.76
|
3811 |
+
xmax = 65.83
|
3812 |
+
text = "S"
|
3813 |
+
intervals [714]:
|
3814 |
+
xmin = 65.83
|
3815 |
+
xmax = 65.88
|
3816 |
+
text = "IH0"
|
3817 |
+
intervals [715]:
|
3818 |
+
xmin = 65.88
|
3819 |
+
xmax = 65.95
|
3820 |
+
text = "Z"
|
3821 |
+
intervals [716]:
|
3822 |
+
xmin = 65.95
|
3823 |
+
xmax = 66.0
|
3824 |
+
text = "W"
|
3825 |
+
intervals [717]:
|
3826 |
+
xmin = 66.0
|
3827 |
+
xmax = 66.03
|
3828 |
+
text = "IH1"
|
3829 |
+
intervals [718]:
|
3830 |
+
xmin = 66.03
|
3831 |
+
xmax = 66.12
|
3832 |
+
text = "DH"
|
3833 |
+
intervals [719]:
|
3834 |
+
xmin = 66.12
|
3835 |
+
xmax = 66.2
|
3836 |
+
text = "IH0"
|
3837 |
+
intervals [720]:
|
3838 |
+
xmin = 66.2
|
3839 |
+
xmax = 66.38
|
3840 |
+
text = "M"
|
3841 |
+
intervals [721]:
|
3842 |
+
xmin = 66.38
|
3843 |
+
xmax = 67
|
3844 |
+
text = ""
|
EMAGE/test_sequences/wave16k/2_scott_0_1_1.wav
ADDED
Binary file (481 kB). View file
|
|
EMAGE/test_sequences/wave16k/2_scott_0_2_2.wav
ADDED
Binary file (235 kB). View file
|
|
EMAGE/test_sequences/wave16k/2_scott_0_3_3.wav
ADDED
Binary file (231 kB). View file
|
|
EMAGE/test_sequences/wave16k/2_scott_0_4_4.wav
ADDED
Binary file (124 kB). View file
|
|
EMAGE/test_sequences/weights/AESKConv_240_100.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cd9566b24264f34d44003b3de62cdfd50aa85b7cdde2d369214599023c40f55
|
3 |
+
size 17558653
|
EMAGE/test_sequences/weights/mean_vel_smplxflame_30.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53b5e48f2a7bf78c41a6de6395d6bb4f29018465ca5d0ee2820a2be3eebb7137
|
3 |
+
size 348
|
EMAGE/test_sequences/weights/vocab.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54fbcea7b19e0ee9b5c5836c85087a682d3a9513041091ce3e95d83eed0b2acd
|
3 |
+
size 13821361
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
title: EMAGE
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.24.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: EMAGE
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: yellow
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.24.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
ae_trainer.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import train
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import csv
|
5 |
+
import sys
|
6 |
+
import warnings
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
import time
|
10 |
+
import pprint
|
11 |
+
import pickle
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from torch.utils.tensorboard import SummaryWriter
|
17 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
18 |
+
from loguru import logger
|
19 |
+
import smplx
|
20 |
+
|
21 |
+
from utils import config, logger_tools, other_tools, metric
|
22 |
+
from utils import rotation_conversions as rc
|
23 |
+
from dataloaders import data_tools
|
24 |
+
from optimizers.optim_factory import create_optimizer
|
25 |
+
from optimizers.scheduler_factory import create_scheduler
|
26 |
+
from optimizers.loss_factory import get_loss_func
|
27 |
+
from scipy.spatial.transform import Rotation
|
28 |
+
|
29 |
+
|
30 |
+
class CustomTrainer(train.BaseTrainer):
|
31 |
+
"""
|
32 |
+
motion representation learning
|
33 |
+
"""
|
34 |
+
def __init__(self, args):
|
35 |
+
super().__init__(args)
|
36 |
+
self.joints = self.train_data.joints
|
37 |
+
self.smplx = smplx.create(
|
38 |
+
self.args.data_path_1+"smplx_models/",
|
39 |
+
model_type='smplx',
|
40 |
+
gender='NEUTRAL_2020',
|
41 |
+
use_face_contour=False,
|
42 |
+
num_betas=300,
|
43 |
+
num_expression_coeffs=100,
|
44 |
+
ext='npz',
|
45 |
+
use_pca=False,
|
46 |
+
).cuda().eval()
|
47 |
+
self.tracker = other_tools.EpochTracker(["rec", "vel", "ver", "com", "kl", "acc"], [False, False, False, False, False, False])
|
48 |
+
if not self.args.rot6d: #"rot6d" not in args.pose_rep:
|
49 |
+
logger.error(f"this script is for rot6d, your pose rep. is {args.pose_rep}")
|
50 |
+
self.rec_loss = get_loss_func("GeodesicLoss")
|
51 |
+
self.vel_loss = torch.nn.L1Loss(reduction='mean')
|
52 |
+
self.vectices_loss = torch.nn.MSELoss(reduction='mean')
|
53 |
+
|
54 |
+
def inverse_selection(self, filtered_t, selection_array, n):
|
55 |
+
# 创建一个全为零的数组,形状为 n*165
|
56 |
+
original_shape_t = np.zeros((n, selection_array.size))
|
57 |
+
|
58 |
+
# 找到选择数组中为1的索引位置
|
59 |
+
selected_indices = np.where(selection_array == 1)[0]
|
60 |
+
|
61 |
+
# 将 filtered_t 的值填充到 original_shape_t 中相应的位置
|
62 |
+
for i in range(n):
|
63 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
64 |
+
|
65 |
+
return original_shape_t
|
66 |
+
|
67 |
+
def inverse_selection_tensor(self, filtered_t, selection_array, n):
|
68 |
+
# 创建一个全为零的数组,形状为 n*165
|
69 |
+
selection_array = torch.from_numpy(selection_array).cuda()
|
70 |
+
original_shape_t = torch.zeros((n, 165)).cuda()
|
71 |
+
|
72 |
+
# 找到选择数组中为1的索引位置
|
73 |
+
selected_indices = torch.where(selection_array == 1)[0]
|
74 |
+
|
75 |
+
# 将 filtered_t 的值填充到 original_shape_t 中相应的位置
|
76 |
+
for i in range(n):
|
77 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
78 |
+
|
79 |
+
return original_shape_t
|
80 |
+
|
81 |
+
def train(self, epoch):
|
82 |
+
self.model.train()
|
83 |
+
t_start = time.time()
|
84 |
+
self.tracker.reset()
|
85 |
+
for its, dict_data in enumerate(self.train_loader):
|
86 |
+
tar_pose = dict_data["pose"]
|
87 |
+
tar_beta = dict_data["beta"].cuda()
|
88 |
+
tar_trans = dict_data["trans"].cuda()
|
89 |
+
tar_pose = tar_pose.cuda()
|
90 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
91 |
+
tar_exps = torch.zeros((bs, n, 100)).cuda()
|
92 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
93 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
94 |
+
t_data = time.time() - t_start
|
95 |
+
|
96 |
+
self.opt.zero_grad()
|
97 |
+
g_loss_final = 0
|
98 |
+
net_out = self.model(tar_pose)
|
99 |
+
rec_pose = net_out["rec_pose"]
|
100 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
101 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
102 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
103 |
+
loss_rec = self.rec_loss(rec_pose, tar_pose) * self.args.rec_weight * self.args.rec_pos_weight
|
104 |
+
self.tracker.update_meter("rec", "train", loss_rec.item())
|
105 |
+
g_loss_final += loss_rec
|
106 |
+
|
107 |
+
velocity_loss = self.vel_loss(rec_pose[:, 1:] - rec_pose[:, :-1], tar_pose[:, 1:] - tar_pose[:, :-1]) * self.args.rec_weight
|
108 |
+
acceleration_loss = self.vel_loss(rec_pose[:, 2:] + rec_pose[:, :-2] - 2 * rec_pose[:, 1:-1], tar_pose[:, 2:] + tar_pose[:, :-2] - 2 * tar_pose[:, 1:-1]) * self.args.rec_weight
|
109 |
+
self.tracker.update_meter("vel", "train", velocity_loss.item())
|
110 |
+
self.tracker.update_meter("acc", "train", acceleration_loss.item())
|
111 |
+
g_loss_final += velocity_loss
|
112 |
+
g_loss_final += acceleration_loss
|
113 |
+
# vertices loss
|
114 |
+
if self.args.rec_ver_weight > 0:
|
115 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
116 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
117 |
+
rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
|
118 |
+
tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
|
119 |
+
vertices_rec = self.smplx(
|
120 |
+
betas=tar_beta.reshape(bs*n, 300),
|
121 |
+
transl=tar_trans.reshape(bs*n, 3),
|
122 |
+
expression=tar_exps.reshape(bs*n, 100),
|
123 |
+
jaw_pose=rec_pose[:, 66:69],
|
124 |
+
global_orient=rec_pose[:,:3],
|
125 |
+
body_pose=rec_pose[:,3:21*3+3],
|
126 |
+
left_hand_pose=rec_pose[:,25*3:40*3],
|
127 |
+
right_hand_pose=rec_pose[:,40*3:55*3],
|
128 |
+
return_verts=True,
|
129 |
+
return_joints=True,
|
130 |
+
leye_pose=tar_pose[:, 69:72],
|
131 |
+
reye_pose=tar_pose[:, 72:75],
|
132 |
+
)
|
133 |
+
vertices_tar = self.smplx(
|
134 |
+
betas=tar_beta.reshape(bs*n, 300),
|
135 |
+
transl=tar_trans.reshape(bs*n, 3),
|
136 |
+
expression=tar_exps.reshape(bs*n, 100),
|
137 |
+
jaw_pose=tar_pose[:, 66:69],
|
138 |
+
global_orient=tar_pose[:,:3],
|
139 |
+
body_pose=tar_pose[:,3:21*3+3],
|
140 |
+
left_hand_pose=tar_pose[:,25*3:40*3],
|
141 |
+
right_hand_pose=tar_pose[:,40*3:55*3],
|
142 |
+
return_verts=True,
|
143 |
+
return_joints=True,
|
144 |
+
leye_pose=tar_pose[:, 69:72],
|
145 |
+
reye_pose=tar_pose[:, 72:75],
|
146 |
+
)
|
147 |
+
vectices_loss = self.vectices_loss(vertices_rec['vertices'], vertices_tar['vertices'])
|
148 |
+
self.tracker.update_meter("ver", "train", vectices_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
|
149 |
+
g_loss_final += vectices_loss*self.args.rec_weight*self.args.rec_ver_weight
|
150 |
+
|
151 |
+
vertices_vel_loss = self.vel_loss(vertices_rec['vertices'][:, 1:] - vertices_rec['vertices'][:, :-1], vertices_tar['vertices'][:, 1:] - vertices_tar['vertices'][:, :-1]) * self.args.rec_weight
|
152 |
+
vertices_acc_loss = self.vel_loss(vertices_rec['vertices'][:, 2:] + vertices_rec['vertices'][:, :-2] - 2 * vertices_rec['vertices'][:, 1:-1], vertices_tar['vertices'][:, 2:] + vertices_tar['vertices'][:, :-2] - 2 * vertices_tar['vertices'][:, 1:-1]) * self.args.rec_weight
|
153 |
+
g_loss_final += vertices_vel_loss * self.args.rec_weight * self.args.rec_ver_weight
|
154 |
+
g_loss_final += vertices_acc_loss * self.args.rec_weight * self.args.rec_ver_weight
|
155 |
+
|
156 |
+
# if self.args.vel_weight > 0:
|
157 |
+
# pos_rec_vel = other_tools.estimate_linear_velocity(vertices_rec['joints'], 1/self.pose_fps)
|
158 |
+
# pos_tar_vel = other_tools.estimate_linear_velocity(vertices_tar['joints'], 1/self.pose_fps)
|
159 |
+
# vel_rec_loss = self.vel_loss(pos_rec_vel, pos_tar_vel)
|
160 |
+
# tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
161 |
+
# rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, j, 3))
|
162 |
+
# rot_rec_vel = other_tools.estimate_angular_velocity(rec_pose, 1/self.pose_fps)
|
163 |
+
# rot_tar_vel = other_tools.estimate_angular_velocity(tar_pose, 1/self.pose_fps)
|
164 |
+
# vel_rec_loss += self.vel_loss(pos_rec_vel, pos_tar_vel)
|
165 |
+
# self.tracker.update_meter("vel", "train", vel_rec_loss.item()*self.args.vel_weight)
|
166 |
+
# loss += (vel_rec_loss*self.args.vel_weight)
|
167 |
+
|
168 |
+
# ---------------------- vae -------------------------- #
|
169 |
+
if "VQVAE" in self.args.g_name:
|
170 |
+
loss_embedding = net_out["embedding_loss"]
|
171 |
+
g_loss_final += loss_embedding
|
172 |
+
self.tracker.update_meter("com", "train", loss_embedding.item())
|
173 |
+
# elif "VAE" in self.args.g_name:
|
174 |
+
# pose_mu, pose_logvar = net_out["pose_mu"], net_out["pose_logvar"]
|
175 |
+
# KLD = -0.5 * torch.sum(1 + pose_logvar - pose_mu.pow(2) - pose_logvar.exp())
|
176 |
+
# if epoch < 0:
|
177 |
+
# KLD_weight = 0
|
178 |
+
# else:
|
179 |
+
# KLD_weight = min(1.0, (epoch - 0) * 0.05) * 0.01
|
180 |
+
# loss += KLD_weight * KLD
|
181 |
+
# self.tracker.update_meter("kl", "train", KLD_weight * KLD.item())
|
182 |
+
g_loss_final.backward()
|
183 |
+
if self.args.grad_norm != 0:
|
184 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.grad_norm)
|
185 |
+
self.opt.step()
|
186 |
+
t_train = time.time() - t_start - t_data
|
187 |
+
t_start = time.time()
|
188 |
+
mem_cost = torch.cuda.memory_cached() / 1E9
|
189 |
+
lr_g = self.opt.param_groups[0]['lr']
|
190 |
+
if its % self.args.log_period == 0:
|
191 |
+
self.train_recording(epoch, its, t_data, t_train, mem_cost, lr_g)
|
192 |
+
if self.args.debug:
|
193 |
+
if its == 1: break
|
194 |
+
self.opt_s.step(epoch)
|
195 |
+
|
196 |
+
def val(self, epoch):
|
197 |
+
self.model.eval()
|
198 |
+
t_start = time.time()
|
199 |
+
with torch.no_grad():
|
200 |
+
for its, dict_data in enumerate(self.val_loader):
|
201 |
+
tar_pose = dict_data["pose"]
|
202 |
+
tar_beta = dict_data["beta"].cuda()
|
203 |
+
tar_trans = dict_data["trans"].cuda()
|
204 |
+
tar_pose = tar_pose.cuda()
|
205 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
206 |
+
tar_exps = torch.zeros((bs, n, 100)).cuda()
|
207 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
208 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
209 |
+
t_data = time.time() - t_start
|
210 |
+
|
211 |
+
#self.opt.zero_grad()
|
212 |
+
#g_loss_final = 0
|
213 |
+
net_out = self.model(tar_pose)
|
214 |
+
rec_pose = net_out["rec_pose"]
|
215 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
216 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
217 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
218 |
+
loss_rec = self.rec_loss(rec_pose, tar_pose) * self.args.rec_weight * self.args.rec_pos_weight
|
219 |
+
self.tracker.update_meter("rec", "val", loss_rec.item())
|
220 |
+
#g_loss_final += loss_rec
|
221 |
+
|
222 |
+
# vertices loss
|
223 |
+
if self.args.rec_ver_weight > 0:
|
224 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
225 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
226 |
+
rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
|
227 |
+
tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
|
228 |
+
vertices_rec = self.smplx(
|
229 |
+
betas=tar_beta.reshape(bs*n, 300),
|
230 |
+
transl=tar_trans.reshape(bs*n, 3),
|
231 |
+
expression=tar_exps.reshape(bs*n, 100),
|
232 |
+
jaw_pose=rec_pose[:, 66:69],
|
233 |
+
global_orient=rec_pose[:,:3],
|
234 |
+
body_pose=rec_pose[:,3:21*3+3],
|
235 |
+
left_hand_pose=rec_pose[:,25*3:40*3],
|
236 |
+
right_hand_pose=rec_pose[:,40*3:55*3],
|
237 |
+
return_verts=True,
|
238 |
+
leye_pose=tar_pose[:, 69:72],
|
239 |
+
reye_pose=tar_pose[:, 72:75],
|
240 |
+
)
|
241 |
+
vertices_tar = self.smplx(
|
242 |
+
betas=tar_beta.reshape(bs*n, 300),
|
243 |
+
transl=tar_trans.reshape(bs*n, 3),
|
244 |
+
expression=tar_exps.reshape(bs*n, 100),
|
245 |
+
jaw_pose=tar_pose[:, 66:69],
|
246 |
+
global_orient=tar_pose[:,:3],
|
247 |
+
body_pose=tar_pose[:,3:21*3+3],
|
248 |
+
left_hand_pose=tar_pose[:,25*3:40*3],
|
249 |
+
right_hand_pose=tar_pose[:,40*3:55*3],
|
250 |
+
return_verts=True,
|
251 |
+
leye_pose=tar_pose[:, 69:72],
|
252 |
+
reye_pose=tar_pose[:, 72:75],
|
253 |
+
)
|
254 |
+
vectices_loss = self.vectices_loss(vertices_rec['vertices'], vertices_tar['vertices'])
|
255 |
+
self.tracker.update_meter("ver", "val", vectices_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
|
256 |
+
if "VQVAE" in self.args.g_name:
|
257 |
+
loss_embedding = net_out["embedding_loss"]
|
258 |
+
self.tracker.update_meter("com", "val", loss_embedding.item())
|
259 |
+
#g_loss_final += vectices_loss*self.args.rec_weight*self.args.rec_ver_weight
|
260 |
+
self.val_recording(epoch)
|
261 |
+
|
262 |
+
def test(self, epoch):
|
263 |
+
results_save_path = self.checkpoint_path + f"/{epoch}/"
|
264 |
+
if os.path.exists(results_save_path):
|
265 |
+
return 0
|
266 |
+
os.makedirs(results_save_path)
|
267 |
+
start_time = time.time()
|
268 |
+
total_length = 0
|
269 |
+
test_seq_list = self.test_data.selected_file
|
270 |
+
self.model.eval()
|
271 |
+
with torch.no_grad():
|
272 |
+
for its, dict_data in enumerate(self.test_loader):
|
273 |
+
tar_pose = dict_data["pose"]
|
274 |
+
tar_pose = tar_pose.cuda()
|
275 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
276 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
277 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
278 |
+
remain = n%self.args.pose_length
|
279 |
+
tar_pose = tar_pose[:, :n-remain, :]
|
280 |
+
#print(tar_pose.shape)
|
281 |
+
if True:
|
282 |
+
net_out = self.model(tar_pose)
|
283 |
+
rec_pose = net_out["rec_pose"]
|
284 |
+
n = rec_pose.shape[1]
|
285 |
+
tar_pose = tar_pose[:, :n, :]
|
286 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
287 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
288 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
289 |
+
rec_pose = rec_pose.cpu().numpy()
|
290 |
+
else:
|
291 |
+
pass
|
292 |
+
# for i in range(tar_pose.shape[1]//(self.args.vae_test_len)):
|
293 |
+
# tar_pose_new = tar_pose[:,i*(self.args.vae_test_len):i*(self.args.vae_test_len)+self.args.vae_test_len,:]
|
294 |
+
# net_out = self.model(**dict(inputs=tar_pose_new))
|
295 |
+
# rec_pose = net_out["rec_pose"]
|
296 |
+
# rec_pose = (rec_pose.reshape(rec_pose.shape[0], rec_pose.shape[1], -1, 6) * self.joint_level_mask_cuda).reshape(rec_pose.shape[0], rec_pose.shape[1], -1)
|
297 |
+
# if "rot6d" in self.args.pose_rep:
|
298 |
+
# rec_pose = data_transfer.rotation_6d_to_matrix(rec_pose.reshape(tar_pose.shape[0], self.args.vae_test_len, -1, 6))
|
299 |
+
# rec_pose = data_transfer.matrix_to_euler_angles(rec_pose, "XYZ").reshape(rec_pose.shape[0], rec_pose.shape[1], -1)
|
300 |
+
# if "smplx" not in self.args.pose_rep:
|
301 |
+
# rec_pose = torch.rad2deg(rec_pose)
|
302 |
+
# rec_pose = rec_pose * self.joint_mask_cuda
|
303 |
+
|
304 |
+
# out_sub = rec_pose.cpu().numpy().reshape(-1, rec_pose.shape[2])
|
305 |
+
# if i != 0:
|
306 |
+
# out_final = np.concatenate((out_final,out_sub), 0)
|
307 |
+
# else:
|
308 |
+
# out_final = out_sub
|
309 |
+
|
310 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
311 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
312 |
+
tar_pose = tar_pose.cpu().numpy()
|
313 |
+
|
314 |
+
total_length += n
|
315 |
+
# --- save --- #
|
316 |
+
if 'smplx' in self.args.pose_rep:
|
317 |
+
gt_npz = np.load(self.args.data_path+self.args.pose_rep+"/"+test_seq_list.iloc[its]['id']+'.npz', allow_pickle=True)
|
318 |
+
stride = int(30 / self.args.pose_fps)
|
319 |
+
tar_pose = self.inverse_selection(tar_pose, self.test_data.joint_mask, tar_pose.shape[0])
|
320 |
+
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
321 |
+
betas=gt_npz["betas"],
|
322 |
+
poses=tar_pose[:n],
|
323 |
+
expressions=gt_npz["expressions"]-gt_npz["expressions"],
|
324 |
+
trans=gt_npz["trans"][::stride][:n] - gt_npz["trans"][::stride][:n],
|
325 |
+
model='smplx2020',
|
326 |
+
gender='neutral',
|
327 |
+
mocap_frame_rate = 30 ,
|
328 |
+
)
|
329 |
+
rec_pose = self.inverse_selection(rec_pose, self.test_data.joint_mask, rec_pose.shape[0])
|
330 |
+
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
331 |
+
betas=gt_npz["betas"],
|
332 |
+
poses=rec_pose,
|
333 |
+
expressions=gt_npz["expressions"]-gt_npz["expressions"],
|
334 |
+
trans=gt_npz["trans"][::stride][:n] - gt_npz["trans"][::stride][:n],
|
335 |
+
model='smplx2020',
|
336 |
+
gender='neutral',
|
337 |
+
mocap_frame_rate = 30 ,
|
338 |
+
)
|
339 |
+
else:
|
340 |
+
rec_pose = rc.axis_angle_to_matrix(torch.from_numpy(rec_pose.reshape(bs*n, j, 3)))
|
341 |
+
rec_pose = np.rad2deg(rc.matrix_to_euler_angles(rec_pose, "XYZ")).reshape(bs*n, j*3).numpy()
|
342 |
+
tar_pose = rc.axis_angle_to_matrix(torch.from_numpy(tar_pose.reshape(bs*n, j, 3)))
|
343 |
+
tar_pose = np.rad2deg(rc.matrix_to_euler_angles(tar_pose, "XYZ")).reshape(bs*n, j*3).numpy()
|
344 |
+
#trans="0.000000 0.000000 0.000000"
|
345 |
+
|
346 |
+
with open(f"{self.args.data_path}{self.args.pose_rep}/{test_seq_list.iloc[its]['id']}.bvh", "r") as f_demo:
|
347 |
+
with open(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.bvh', 'w+') as f_gt:
|
348 |
+
with open(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.bvh', 'w+') as f_real:
|
349 |
+
for i, line_data in enumerate(f_demo.readlines()):
|
350 |
+
if i < 431:
|
351 |
+
f_real.write(line_data)
|
352 |
+
f_gt.write(line_data)
|
353 |
+
else: break
|
354 |
+
for line_id in range(n): #,args.pre_frames, args.pose_length
|
355 |
+
line_data = np.array2string(rec_pose[line_id], max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
|
356 |
+
f_real.write(line_data[1:-2]+'\n')
|
357 |
+
for line_id in range(n): #,args.pre_frames, args.pose_length
|
358 |
+
line_data = np.array2string(tar_pose[line_id], max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
|
359 |
+
f_gt.write(line_data[1:-2]+'\n')
|
360 |
+
# with open(results_save_path+"gt_"+test_seq_list[its]+'.pkl', 'wb') as fw:
|
361 |
+
# pickle.dump(new_dict, fw)
|
362 |
+
# #new_dict2["fullpose"] = out_final
|
363 |
+
# with open(results_save_path+"res_"+test_seq_list[its]+'.pkl', 'wb') as fw1:
|
364 |
+
# pickle.dump(new_dict2, fw1)
|
365 |
+
|
366 |
+
# other_tools.render_one_sequence(
|
367 |
+
# results_save_path+"res_"+test_seq_list[its]+'.pkl',
|
368 |
+
# results_save_path+"gt_"+test_seq_list[its]+'.pkl',
|
369 |
+
# results_save_path,
|
370 |
+
# self.args.data_path + self.args.test_data_path + 'wave16k/' + test_seq_list[its]+'.npy',
|
371 |
+
# )
|
372 |
+
|
373 |
+
#if its == 1:break
|
374 |
+
end_time = time.time() - start_time
|
375 |
+
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
|
aeface_trainer.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import train
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import csv
|
5 |
+
import sys
|
6 |
+
import warnings
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
import time
|
10 |
+
import pprint
|
11 |
+
import pickle
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from torch.utils.tensorboard import SummaryWriter
|
17 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
18 |
+
from loguru import logger
|
19 |
+
import smplx
|
20 |
+
|
21 |
+
from utils import config, logger_tools, other_tools, metric
|
22 |
+
from utils import rotation_conversions as rc
|
23 |
+
from dataloaders import data_tools
|
24 |
+
from optimizers.optim_factory import create_optimizer
|
25 |
+
from optimizers.scheduler_factory import create_scheduler
|
26 |
+
from optimizers.loss_factory import get_loss_func
|
27 |
+
from scipy.spatial.transform import Rotation
|
28 |
+
|
29 |
+
|
30 |
+
class CustomTrainer(train.BaseTrainer):
|
31 |
+
"""
|
32 |
+
motion representation learning
|
33 |
+
"""
|
34 |
+
def __init__(self, args):
|
35 |
+
super().__init__(args)
|
36 |
+
self.joints = self.train_data.joints
|
37 |
+
self.tracker = other_tools.EpochTracker(["rec", "vel", "acc", "com", "face", "face_vel", "face_acc", "ver", "ver_vel", "ver_acc"], [False, False, False, False, False, False, False, False, False, False])
|
38 |
+
self.rec_loss = get_loss_func("GeodesicLoss")
|
39 |
+
self.mse_loss = torch.nn.MSELoss(reduction='mean')
|
40 |
+
self.vel_loss = torch.nn.MSELoss(reduction='mean') #torch.nn.L1Loss(reduction='mean')
|
41 |
+
self.vectices_loss = torch.nn.MSELoss(reduction='mean')
|
42 |
+
|
43 |
+
def inverse_selection(self, filtered_t, selection_array, n):
|
44 |
+
# 创建一个全为零的数组,形状为 n*165
|
45 |
+
original_shape_t = np.zeros((n, selection_array.size))
|
46 |
+
|
47 |
+
# 找到选择数组中为1的索引位置
|
48 |
+
selected_indices = np.where(selection_array == 1)[0]
|
49 |
+
|
50 |
+
# 将 filtered_t 的值填充到 original_shape_t 中相应的位置
|
51 |
+
for i in range(n):
|
52 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
53 |
+
|
54 |
+
return original_shape_t
|
55 |
+
|
56 |
+
def train(self, epoch):
|
57 |
+
self.model.train()
|
58 |
+
t_start = time.time()
|
59 |
+
self.tracker.reset()
|
60 |
+
for its, dict_data in enumerate(self.train_loader):
|
61 |
+
tar_pose = dict_data["pose"]
|
62 |
+
tar_beta = dict_data["beta"].cuda()
|
63 |
+
tar_trans = dict_data["trans"].cuda()
|
64 |
+
tar_pose = tar_pose.cuda()
|
65 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
66 |
+
tar_exps = dict_data["facial"].to(self.rank)
|
67 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
68 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
69 |
+
in_tar_pose = torch.cat([tar_pose, tar_exps], -1) # 103
|
70 |
+
t_data = time.time() - t_start
|
71 |
+
|
72 |
+
self.opt.zero_grad()
|
73 |
+
g_loss_final = 0
|
74 |
+
net_out = self.model(in_tar_pose)
|
75 |
+
# jaw open 6d loss
|
76 |
+
rec_pose = net_out["rec_pose"][:, :, :j*6]
|
77 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
78 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
79 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
80 |
+
loss_rec = self.rec_loss(rec_pose, tar_pose) * self.args.rec_weight * self.args.rec_pos_weight
|
81 |
+
self.tracker.update_meter("rec", "train", loss_rec.item())
|
82 |
+
g_loss_final += loss_rec
|
83 |
+
# jaw open 6d vel and acc loss
|
84 |
+
velocity_loss = self.vel_loss(rec_pose[:, 1:] - rec_pose[:, :-1], tar_pose[:, 1:] - tar_pose[:, :-1]) * self.args.rec_weight
|
85 |
+
acceleration_loss = self.vel_loss(rec_pose[:, 2:] + rec_pose[:, :-2] - 2 * rec_pose[:, 1:-1], tar_pose[:, 2:] + tar_pose[:, :-2] - 2 * tar_pose[:, 1:-1]) * self.args.rec_weight
|
86 |
+
self.tracker.update_meter("vel", "train", velocity_loss.item())
|
87 |
+
self.tracker.update_meter("acc", "train", acceleration_loss.item())
|
88 |
+
g_loss_final += velocity_loss
|
89 |
+
g_loss_final += acceleration_loss
|
90 |
+
# face parameter l1 loss
|
91 |
+
rec_exps = net_out["rec_pose"][:, :, j*6:]
|
92 |
+
loss_face = self.mse_loss(rec_exps, tar_exps) * self.args.rec_weight
|
93 |
+
self.tracker.update_meter("face", "train", loss_face.item())
|
94 |
+
g_loss_final += loss_face
|
95 |
+
# face parameter l1 vel and acc loss
|
96 |
+
face_velocity_loss = self.vel_loss(rec_exps[:, 1:] - rec_exps[:, :-1], tar_exps[:, 1:] - tar_exps[:, :-1]) * self.args.rec_weight
|
97 |
+
face_acceleration_loss = self.vel_loss(rec_exps[:, 2:] + rec_exps[:, :-2] - 2 * rec_exps[:, 1:-1], tar_exps[:, 2:] + tar_exps[:, :-2] - 2 * tar_exps[:, 1:-1]) * self.args.rec_weight
|
98 |
+
self.tracker.update_meter("face_vel", "train", face_velocity_loss.item())
|
99 |
+
self.tracker.update_meter("face_acc", "train", face_acceleration_loss.item())
|
100 |
+
g_loss_final += face_velocity_loss
|
101 |
+
g_loss_final += face_acceleration_loss
|
102 |
+
|
103 |
+
# vertices loss
|
104 |
+
if self.args.rec_ver_weight > 0:
|
105 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
106 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
107 |
+
vertices_rec = self.smplx(
|
108 |
+
betas=tar_beta.reshape(bs*n, 300),
|
109 |
+
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
|
110 |
+
expression=tar_exps.reshape(bs*n, 100),
|
111 |
+
jaw_pose=rec_pose,
|
112 |
+
global_orient=torch.zeros(bs*n, 3).cuda(),
|
113 |
+
body_pose=torch.zeros(bs*n, 21*3).cuda(),
|
114 |
+
left_hand_pose=torch.zeros(bs*n, 15*3).cuda(),
|
115 |
+
right_hand_pose=torch.zeros(bs*n, 15*3).cuda(),
|
116 |
+
return_verts=True,
|
117 |
+
# return_joints=True,
|
118 |
+
leye_pose=torch.zeros(bs*n, 3).cuda(),
|
119 |
+
reye_pose=torch.zeros(bs*n, 3).cuda(),
|
120 |
+
)
|
121 |
+
vertices_tar = self.smplx(
|
122 |
+
betas=tar_beta.reshape(bs*n, 300),
|
123 |
+
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
|
124 |
+
expression=rec_exps.reshape(bs*n, 100),
|
125 |
+
jaw_pose=tar_pose,
|
126 |
+
global_orient=torch.zeros(bs*n, 3).cuda(),
|
127 |
+
body_pose=torch.zeros(bs*n, 21*3).cuda(),
|
128 |
+
left_hand_pose=torch.zeros(bs*n, 15*3).cuda(),
|
129 |
+
right_hand_pose=torch.zeros(bs*n, 15*3).cuda(),
|
130 |
+
return_verts=True,
|
131 |
+
# return_joints=True,
|
132 |
+
leye_pose=torch.zeros(bs*n, 3).cuda(),
|
133 |
+
reye_pose=torch.zeros(bs*n, 3).cuda(),
|
134 |
+
)
|
135 |
+
vectices_loss = self.mse_loss(vertices_rec['vertices'], vertices_tar['vertices'])
|
136 |
+
self.tracker.update_meter("ver", "train", vectices_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
|
137 |
+
g_loss_final += vectices_loss*self.args.rec_weight*self.args.rec_ver_weight
|
138 |
+
# vertices vel and acc loss
|
139 |
+
vert_velocity_loss = self.vel_loss(vertices_rec['vertices'][:, 1:] - vertices_rec['vertices'][:, :-1], vertices_tar['vertices'][:, 1:] - vertices_tar['vertices'][:, :-1]) * self.args.rec_weight * self.args.rec_ver_weight
|
140 |
+
vert_acceleration_loss = self.vel_loss(vertices_rec['vertices'][:, 2:] + vertices_rec['vertices'][:, :-2] - 2 * vertices_rec['vertices'][:, 1:-1], vertices_tar['vertices'][:, 2:] + vertices_tar['vertices'][:, :-2] - 2 * vertices_tar['vertices'][:, 1:-1]) * self.args.rec_weight * self.args.rec_ver_weight
|
141 |
+
self.tracker.update_meter("ver_vel", "train", vert_velocity_loss.item())
|
142 |
+
self.tracker.update_meter("ver_acc", "train", vert_acceleration_loss.item())
|
143 |
+
g_loss_final += vert_velocity_loss
|
144 |
+
g_loss_final += vert_acceleration_loss
|
145 |
+
|
146 |
+
# ---------------------- vae -------------------------- #
|
147 |
+
if "VQVAE" in self.args.g_name:
|
148 |
+
loss_embedding = net_out["embedding_loss"]
|
149 |
+
g_loss_final += loss_embedding
|
150 |
+
self.tracker.update_meter("com", "train", loss_embedding.item())
|
151 |
+
# elif "VAE" in self.args.g_name:
|
152 |
+
# pose_mu, pose_logvar = net_out["pose_mu"], net_out["pose_logvar"]
|
153 |
+
# KLD = -0.5 * torch.sum(1 + pose_logvar - pose_mu.pow(2) - pose_logvar.exp())
|
154 |
+
# if epoch < 0:
|
155 |
+
# KLD_weight = 0
|
156 |
+
# else:
|
157 |
+
# KLD_weight = min(1.0, (epoch - 0) * 0.05) * 0.01
|
158 |
+
# loss += KLD_weight * KLD
|
159 |
+
# self.tracker.update_meter("kl", "train", KLD_weight * KLD.item())
|
160 |
+
g_loss_final.backward()
|
161 |
+
if self.args.grad_norm != 0:
|
162 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.grad_norm)
|
163 |
+
self.opt.step()
|
164 |
+
t_train = time.time() - t_start - t_data
|
165 |
+
t_start = time.time()
|
166 |
+
mem_cost = torch.cuda.memory_cached() / 1E9
|
167 |
+
lr_g = self.opt.param_groups[0]['lr']
|
168 |
+
if its % self.args.log_period == 0:
|
169 |
+
self.train_recording(epoch, its, t_data, t_train, mem_cost, lr_g)
|
170 |
+
if self.args.debug:
|
171 |
+
if its == 1: break
|
172 |
+
self.opt_s.step(epoch)
|
173 |
+
|
174 |
+
def val(self, epoch):
|
175 |
+
self.model.eval()
|
176 |
+
t_start = time.time()
|
177 |
+
with torch.no_grad():
|
178 |
+
for its, dict_data in enumerate(self.val_loader):
|
179 |
+
tar_pose = dict_data["pose"]
|
180 |
+
tar_beta = dict_data["beta"].cuda()
|
181 |
+
tar_trans = dict_data["trans"].cuda()
|
182 |
+
tar_pose = tar_pose.cuda()
|
183 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
184 |
+
tar_exps = dict_data["facial"].to(self.rank)
|
185 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
186 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
187 |
+
in_tar_pose = torch.cat([tar_pose, tar_exps], -1) # 103
|
188 |
+
# print(tar_pose.shape, in_tar_pose.shape, tar_exps.shape)
|
189 |
+
t_data = time.time() - t_start
|
190 |
+
|
191 |
+
#self.opt.zero_grad()
|
192 |
+
#g_loss_final = 0
|
193 |
+
net_out = self.model(in_tar_pose)
|
194 |
+
# jaw open 6d loss
|
195 |
+
rec_pose = net_out["rec_pose"][:, :, :j*6]
|
196 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
197 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
198 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
199 |
+
loss_rec = self.rec_loss(rec_pose, tar_pose) * self.args.rec_weight * self.args.rec_pos_weight
|
200 |
+
self.tracker.update_meter("rec", "val", loss_rec.item())
|
201 |
+
# g_loss_final += loss_rec
|
202 |
+
# jaw open 6d vel and acc loss
|
203 |
+
velocity_loss = self.vel_loss(rec_pose[:, 1:] - rec_pose[:, :-1], tar_pose[:, 1:] - tar_pose[:, :-1]) * self.args.rec_weight
|
204 |
+
acceleration_loss = self.vel_loss(rec_pose[:, 2:] + rec_pose[:, :-2] - 2 * rec_pose[:, 1:-1], tar_pose[:, 2:] + tar_pose[:, :-2] - 2 * tar_pose[:, 1:-1]) * self.args.rec_weight
|
205 |
+
self.tracker.update_meter("vel", "val", velocity_loss.item())
|
206 |
+
self.tracker.update_meter("acc", "val", acceleration_loss.item())
|
207 |
+
# g_loss_final += velocity_loss
|
208 |
+
# g_loss_final += acceleration_loss
|
209 |
+
# face parameter l1 loss
|
210 |
+
rec_exps = net_out["rec_pose"][:, :, j*6:]
|
211 |
+
loss_face = self.vel_loss(rec_exps, tar_exps) * self.args.rec_weight
|
212 |
+
self.tracker.update_meter("face", "val", loss_face.item())
|
213 |
+
# g_loss_final += loss_face
|
214 |
+
# face parameter l1 vel and acc loss
|
215 |
+
face_velocity_loss = self.vel_loss(rec_exps[:, 1:] - rec_exps[:, :-1], tar_exps[:, 1:] - tar_exps[:, :-1]) * self.args.rec_weight
|
216 |
+
face_acceleration_loss = self.vel_loss(rec_exps[:, 2:] + rec_exps[:, :-2] - 2 * rec_exps[:, 1:-1], tar_exps[:, 2:] + tar_exps[:, :-2] - 2 * tar_exps[:, 1:-1]) * self.args.rec_weight
|
217 |
+
self.tracker.update_meter("face_vel", "val", face_velocity_loss.item())
|
218 |
+
self.tracker.update_meter("face_acc", "val", face_acceleration_loss.item())
|
219 |
+
# g_loss_final += face_velocity_loss
|
220 |
+
# g_loss_final += face_acceleration_loss
|
221 |
+
|
222 |
+
# vertices loss
|
223 |
+
if self.args.rec_ver_weight > 0:
|
224 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
225 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
226 |
+
vertices_rec = self.smplx(
|
227 |
+
betas=tar_beta.reshape(bs*n, 300),
|
228 |
+
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
|
229 |
+
expression=tar_exps.reshape(bs*n, 100),
|
230 |
+
jaw_pose=rec_pose,
|
231 |
+
global_orient=torch.zeros(bs*n, 3).cuda(),
|
232 |
+
body_pose=torch.zeros(bs*n, 21*3).cuda(),
|
233 |
+
left_hand_pose=torch.zeros(bs*n, 15*3).cuda(),
|
234 |
+
right_hand_pose=torch.zeros(bs*n, 15*3).cuda(),
|
235 |
+
return_verts=True,
|
236 |
+
# return_joints=True,
|
237 |
+
leye_pose=torch.zeros(bs*n, 3).cuda(),
|
238 |
+
reye_pose=torch.zeros(bs*n, 3).cuda(),
|
239 |
+
)
|
240 |
+
vertices_tar = self.smplx(
|
241 |
+
betas=tar_beta.reshape(bs*n, 300),
|
242 |
+
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
|
243 |
+
expression=rec_exps.reshape(bs*n, 100),
|
244 |
+
jaw_pose=tar_pose,
|
245 |
+
global_orient=torch.zeros(bs*n, 3).cuda(),
|
246 |
+
body_pose=torch.zeros(bs*n, 21*3).cuda(),
|
247 |
+
left_hand_pose=torch.zeros(bs*n, 15*3).cuda(),
|
248 |
+
right_hand_pose=torch.zeros(bs*n, 15*3).cuda(),
|
249 |
+
return_verts=True,
|
250 |
+
# return_joints=True,
|
251 |
+
leye_pose=torch.zeros(bs*n, 3).cuda(),
|
252 |
+
reye_pose=torch.zeros(bs*n, 3).cuda(),
|
253 |
+
)
|
254 |
+
vectices_loss = self.mse_loss(vertices_rec['vertices'], vertices_tar['vertices'])
|
255 |
+
self.tracker.update_meter("ver", "val", vectices_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
|
256 |
+
# g_loss_final += vectices_loss*self.args.rec_weight*self.args.rec_ver_weight
|
257 |
+
# vertices vel and acc loss
|
258 |
+
vert_velocity_loss = self.vel_loss(vertices_rec['vertices'][:, 1:] - vertices_rec['vertices'][:, :-1], vertices_tar['vertices'][:, 1:] - vertices_tar['vertices'][:, :-1]) * self.args.rec_weight * self.args.rec_ver_weight
|
259 |
+
vert_acceleration_loss = self.vel_loss(vertices_rec['vertices'][:, 2:] + vertices_rec['vertices'][:, :-2] - 2 * vertices_rec['vertices'][:, 1:-1], vertices_tar['vertices'][:, 2:] + vertices_tar['vertices'][:, :-2] - 2 * vertices_tar['vertices'][:, 1:-1]) * self.args.rec_weight * self.args.rec_ver_weight
|
260 |
+
self.tracker.update_meter("ver_vel", "val", vert_velocity_loss.item())
|
261 |
+
self.tracker.update_meter("ver_acc", "val", vert_acceleration_loss.item())
|
262 |
+
# g_loss_final += vert_velocity_loss
|
263 |
+
# g_loss_final += vert_acceleration_loss
|
264 |
+
if "VQVAE" in self.args.g_name:
|
265 |
+
loss_embedding = net_out["embedding_loss"]
|
266 |
+
self.tracker.update_meter("com", "val", loss_embedding.item())
|
267 |
+
#g_loss_final += vectices_loss*self.args.rec_weight*self.args.rec_ver_weight
|
268 |
+
self.val_recording(epoch)
|
269 |
+
|
270 |
+
def test(self, epoch):
|
271 |
+
results_save_path = self.checkpoint_path + f"/{epoch}/"
|
272 |
+
if os.path.exists(results_save_path):
|
273 |
+
return 0
|
274 |
+
os.makedirs(results_save_path)
|
275 |
+
start_time = time.time()
|
276 |
+
total_length = 0
|
277 |
+
test_seq_list = self.test_data.selected_file
|
278 |
+
self.model.eval()
|
279 |
+
with torch.no_grad():
|
280 |
+
for its, dict_data in enumerate(self.test_loader):
|
281 |
+
tar_pose = dict_data["pose"]
|
282 |
+
tar_pose = tar_pose.cuda()
|
283 |
+
tar_exps = dict_data["facial"].to(self.rank)
|
284 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
285 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
286 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
287 |
+
remain = n%self.args.pose_length
|
288 |
+
tar_pose = tar_pose[:, :n-remain, :]
|
289 |
+
# print(tar_exps.shape)
|
290 |
+
in_tar_pose = torch.cat([tar_pose, tar_exps[:, :n-remain, :]], -1) # 103
|
291 |
+
#print(tar_pose.shape)
|
292 |
+
if True:
|
293 |
+
net_out = self.model(in_tar_pose)
|
294 |
+
rec_pose = net_out["rec_pose"][:, :, :j*6]
|
295 |
+
n = rec_pose.shape[1]
|
296 |
+
tar_pose = tar_pose[:, :n, :]
|
297 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
298 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
299 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
300 |
+
rec_pose = rec_pose.cpu().numpy()
|
301 |
+
rec_exps = net_out["rec_pose"][:, :, j*6:]
|
302 |
+
rec_exps = rec_exps.cpu().numpy().reshape(bs*n, 100)
|
303 |
+
else:
|
304 |
+
pass
|
305 |
+
# for i in range(tar_pose.shape[1]//(self.args.vae_test_len)):
|
306 |
+
# tar_pose_new = tar_pose[:,i*(self.args.vae_test_len):i*(self.args.vae_test_len)+self.args.vae_test_len,:]
|
307 |
+
# net_out = self.model(**dict(inputs=tar_pose_new))
|
308 |
+
# rec_pose = net_out["rec_pose"]
|
309 |
+
# rec_pose = (rec_pose.reshape(rec_pose.shape[0], rec_pose.shape[1], -1, 6) * self.joint_level_mask_cuda).reshape(rec_pose.shape[0], rec_pose.shape[1], -1)
|
310 |
+
# if "rot6d" in self.args.pose_rep:
|
311 |
+
# rec_pose = data_transfer.rotation_6d_to_matrix(rec_pose.reshape(tar_pose.shape[0], self.args.vae_test_len, -1, 6))
|
312 |
+
# rec_pose = data_transfer.matrix_to_euler_angles(rec_pose, "XYZ").reshape(rec_pose.shape[0], rec_pose.shape[1], -1)
|
313 |
+
# if "smplx" not in self.args.pose_rep:
|
314 |
+
# rec_pose = torch.rad2deg(rec_pose)
|
315 |
+
# rec_pose = rec_pose * self.joint_mask_cuda
|
316 |
+
|
317 |
+
# out_sub = rec_pose.cpu().numpy().reshape(-1, rec_pose.shape[2])
|
318 |
+
# if i != 0:
|
319 |
+
# out_final = np.concatenate((out_final,out_sub), 0)
|
320 |
+
# else:
|
321 |
+
# out_final = out_sub
|
322 |
+
|
323 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
324 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
325 |
+
tar_pose = tar_pose.cpu().numpy()
|
326 |
+
|
327 |
+
total_length += n
|
328 |
+
# --- save --- #
|
329 |
+
if 'smplx' in self.args.pose_rep:
|
330 |
+
gt_npz = np.load(self.args.data_path+self.args.pose_rep+"/"+test_seq_list.iloc[its]['id']+'.npz', allow_pickle=True)
|
331 |
+
stride = int(30 / self.args.pose_fps)
|
332 |
+
tar_pose = self.inverse_selection(tar_pose, self.test_data.joint_mask, tar_pose.shape[0])
|
333 |
+
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
334 |
+
betas=gt_npz["betas"],
|
335 |
+
poses=tar_pose[:n],
|
336 |
+
expressions=gt_npz["expressions"],
|
337 |
+
trans=gt_npz["trans"][::stride][:n] - gt_npz["trans"][::stride][:n],
|
338 |
+
model='smplx2020',
|
339 |
+
gender='neutral',
|
340 |
+
mocap_frame_rate = 30 ,
|
341 |
+
)
|
342 |
+
rec_pose = self.inverse_selection(rec_pose, self.test_data.joint_mask, rec_pose.shape[0])
|
343 |
+
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
344 |
+
betas=gt_npz["betas"],
|
345 |
+
poses=rec_pose,
|
346 |
+
expressions=rec_exps,
|
347 |
+
trans=gt_npz["trans"][::stride][:n] - gt_npz["trans"][::stride][:n],
|
348 |
+
model='smplx2020',
|
349 |
+
gender='neutral',
|
350 |
+
mocap_frame_rate = 30 ,
|
351 |
+
)
|
352 |
+
else:
|
353 |
+
rec_pose = rc.axis_angle_to_matrix(torch.from_numpy(rec_pose.reshape(bs*n, j, 3)))
|
354 |
+
rec_pose = np.rad2deg(rc.matrix_to_euler_angles(rec_pose, "XYZ")).reshape(bs*n, j*3).numpy()
|
355 |
+
tar_pose = rc.axis_angle_to_matrix(torch.from_numpy(tar_pose.reshape(bs*n, j, 3)))
|
356 |
+
tar_pose = np.rad2deg(rc.matrix_to_euler_angles(tar_pose, "XYZ")).reshape(bs*n, j*3).numpy()
|
357 |
+
#trans="0.000000 0.000000 0.000000"
|
358 |
+
|
359 |
+
with open(f"{self.args.data_path}{self.args.pose_rep}/{test_seq_list.iloc[its]['id']}.bvh", "r") as f_demo:
|
360 |
+
with open(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.bvh', 'w+') as f_gt:
|
361 |
+
with open(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.bvh', 'w+') as f_real:
|
362 |
+
for i, line_data in enumerate(f_demo.readlines()):
|
363 |
+
if i < 431:
|
364 |
+
f_real.write(line_data)
|
365 |
+
f_gt.write(line_data)
|
366 |
+
else: break
|
367 |
+
for line_id in range(n): #,args.pre_frames, args.pose_length
|
368 |
+
line_data = np.array2string(rec_pose[line_id], max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
|
369 |
+
f_real.write(line_data[1:-2]+'\n')
|
370 |
+
for line_id in range(n): #,args.pre_frames, args.pose_length
|
371 |
+
line_data = np.array2string(tar_pose[line_id], max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
|
372 |
+
f_gt.write(line_data[1:-2]+'\n')
|
373 |
+
# with open(results_save_path+"gt_"+test_seq_list[its]+'.pkl', 'wb') as fw:
|
374 |
+
# pickle.dump(new_dict, fw)
|
375 |
+
# #new_dict2["fullpose"] = out_final
|
376 |
+
# with open(results_save_path+"res_"+test_seq_list[its]+'.pkl', 'wb') as fw1:
|
377 |
+
# pickle.dump(new_dict2, fw1)
|
378 |
+
|
379 |
+
# other_tools.render_one_sequence(
|
380 |
+
# results_save_path+"res_"+test_seq_list[its]+'.pkl',
|
381 |
+
# results_save_path+"gt_"+test_seq_list[its]+'.pkl',
|
382 |
+
# results_save_path,
|
383 |
+
# self.args.data_path + self.args.test_data_path + 'wave16k/' + test_seq_list[its]+'.npy',
|
384 |
+
# )
|
385 |
+
|
386 |
+
#if its == 1:break
|
387 |
+
end_time = time.time() - start_time
|
388 |
+
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
|
aelower_trainer.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import train
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import csv
|
5 |
+
import sys
|
6 |
+
import warnings
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
import time
|
10 |
+
import pprint
|
11 |
+
import pickle
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from torch.utils.tensorboard import SummaryWriter
|
17 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
18 |
+
from loguru import logger
|
19 |
+
import smplx
|
20 |
+
|
21 |
+
from utils import config, logger_tools, other_tools, metric
|
22 |
+
from utils import rotation_conversions as rc
|
23 |
+
from dataloaders import data_tools
|
24 |
+
from optimizers.optim_factory import create_optimizer
|
25 |
+
from optimizers.scheduler_factory import create_scheduler
|
26 |
+
from optimizers.loss_factory import get_loss_func
|
27 |
+
from scipy.spatial.transform import Rotation
|
28 |
+
|
29 |
+
|
30 |
+
class CustomTrainer(train.BaseTrainer):
|
31 |
+
"""
|
32 |
+
motion representation learning
|
33 |
+
"""
|
34 |
+
def __init__(self, args):
|
35 |
+
super().__init__(args)
|
36 |
+
self.joints = self.train_data.joints
|
37 |
+
self.smplx = smplx.create(
|
38 |
+
self.args.data_path_1+"smplx_models/",
|
39 |
+
model_type='smplx',
|
40 |
+
gender='NEUTRAL_2020',
|
41 |
+
use_face_contour=False,
|
42 |
+
num_betas=300,
|
43 |
+
num_expression_coeffs=100,
|
44 |
+
ext='npz',
|
45 |
+
use_pca=False,
|
46 |
+
).cuda().eval()
|
47 |
+
self.tracker = other_tools.EpochTracker(["rec", "contact", "vel", "foot", "ver", "com", "kl", "acc", "trans", "transv"], [False,False, False, False, False, False, False, False, False, False])
|
48 |
+
if not self.args.rot6d: #"rot6d" not in args.pose_rep:
|
49 |
+
logger.error(f"this script is for rot6d, your pose rep. is {args.pose_rep}")
|
50 |
+
self.rec_loss = get_loss_func("GeodesicLoss")
|
51 |
+
self.vel_loss = torch.nn.L1Loss(reduction='mean')
|
52 |
+
self.vectices_loss = torch.nn.MSELoss(reduction='mean')
|
53 |
+
|
54 |
+
def inverse_selection(self, filtered_t, selection_array, n):
|
55 |
+
# 创建一个全为零的数组,形状为 n*165
|
56 |
+
original_shape_t = np.zeros((n, selection_array.size))
|
57 |
+
|
58 |
+
# 找到选择数组中为1的索引位置
|
59 |
+
selected_indices = np.where(selection_array == 1)[0]
|
60 |
+
|
61 |
+
# 将 filtered_t 的值填充到 original_shape_t 中相应的位置
|
62 |
+
for i in range(n):
|
63 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
64 |
+
|
65 |
+
return original_shape_t
|
66 |
+
|
67 |
+
def inverse_selection_tensor(self, filtered_t, selection_array, n):
|
68 |
+
# 创建一个全为零的数组,形状为 n*165
|
69 |
+
selection_array = torch.from_numpy(selection_array).cuda()
|
70 |
+
original_shape_t = torch.zeros((n, 165)).cuda()
|
71 |
+
|
72 |
+
# 找到选择数组中为1的索引位置
|
73 |
+
selected_indices = torch.where(selection_array == 1)[0]
|
74 |
+
|
75 |
+
# 将 filtered_t 的值填充到 original_shape_t 中相应的位置
|
76 |
+
for i in range(n):
|
77 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
78 |
+
|
79 |
+
return original_shape_t
|
80 |
+
|
81 |
+
|
82 |
+
def train(self, epoch):
|
83 |
+
self.model.train()
|
84 |
+
t_start = time.time()
|
85 |
+
self.tracker.reset()
|
86 |
+
for its, dict_data in enumerate(self.train_loader):
|
87 |
+
tar_pose_raw = dict_data["pose"]
|
88 |
+
tar_beta = dict_data["beta"].cuda()
|
89 |
+
tar_trans = dict_data["trans"].cuda()
|
90 |
+
tar_trans_vel_x = other_tools.estimate_linear_velocity(tar_trans[:, :, 0:1], dt=1/self.args.pose_fps)
|
91 |
+
tar_trans_vel_z = other_tools.estimate_linear_velocity(tar_trans[:, :, 2:3], dt=1/self.args.pose_fps)
|
92 |
+
tar_pose = tar_pose_raw[:, :, :27].cuda()
|
93 |
+
tar_contact = tar_pose_raw[:, :, 27:31].cuda()
|
94 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
95 |
+
tar_exps = torch.zeros((bs, n, 100)).cuda()
|
96 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
97 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
98 |
+
tar_trans_copy = tar_trans-tar_trans
|
99 |
+
tar_contact_copy = tar_contact-tar_contact
|
100 |
+
in_tar_pose = torch.cat((tar_pose, tar_trans_copy, tar_contact_copy), dim=-1)
|
101 |
+
|
102 |
+
t_data = time.time() - t_start
|
103 |
+
|
104 |
+
self.opt.zero_grad()
|
105 |
+
g_loss_final = 0
|
106 |
+
net_out = self.model(in_tar_pose)
|
107 |
+
rec_pose = tar_pose#net_out["rec_pose"][:, :, :j*6]
|
108 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
109 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
110 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
111 |
+
# loss_rec = self.rec_loss(rec_pose, tar_pose) * self.args.rec_weight * self.args.rec_pos_weight
|
112 |
+
# self.tracker.update_meter("rec", "train", loss_rec.item())
|
113 |
+
# g_loss_final += loss_rec
|
114 |
+
|
115 |
+
rec_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
|
116 |
+
loss_contact = self.vectices_loss(rec_contact, tar_contact) * self.args.rec_weight * self.args.rec_pos_weight
|
117 |
+
self.tracker.update_meter("contact", "train", loss_contact.item())
|
118 |
+
g_loss_final += loss_contact
|
119 |
+
|
120 |
+
# velocity_loss = self.vel_loss(rec_pose[:, 1:] - rec_pose[:, :-1], tar_pose[:, 1:] - tar_pose[:, :-1]) * self.args.rec_weight
|
121 |
+
# acceleration_loss = self.vel_loss(rec_pose[:, 2:] + rec_pose[:, :-2] - 2 * rec_pose[:, 1:-1], tar_pose[:, 2:] + tar_pose[:, :-2] - 2 * tar_pose[:, 1:-1]) * self.args.rec_weight
|
122 |
+
# self.tracker.update_meter("vel", "train", velocity_loss.item())
|
123 |
+
# self.tracker.update_meter("acc", "train", acceleration_loss.item())
|
124 |
+
# g_loss_final += velocity_loss
|
125 |
+
# g_loss_final += acceleration_loss
|
126 |
+
|
127 |
+
rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
|
128 |
+
rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
|
129 |
+
rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
|
130 |
+
rec_y_trans = rec_trans[:,:,1:2]
|
131 |
+
rec_xyz_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
132 |
+
loss_trans_vel = self.vel_loss(rec_trans[:, :, 0:1], tar_trans_vel_x) * self.args.rec_weight \
|
133 |
+
+ self.vel_loss(rec_trans[:, :, 2:3], tar_trans_vel_z) * self.args.rec_weight
|
134 |
+
v3 = self.vel_loss(rec_trans[:, :, 0:1][:, 1:] - rec_trans[:, :, 0:1][:, :-1], tar_trans_vel_x[:, 1:] - tar_trans_vel_x[:, :-1]) * self.args.rec_weight \
|
135 |
+
+ self.vel_loss(rec_trans[:, :, 2:3][:, 1:] - rec_trans[:, :, 2:3][:, :-1], tar_trans_vel_z[:, 1:] - tar_trans_vel_z[:, :-1]) * self.args.rec_weight
|
136 |
+
a3 = self.vel_loss(rec_trans[:, :, 0:1][:, 2:] + rec_trans[:, :, 0:1][:, :-2] - 2 * rec_trans[:, :, 0:1][:, 1:-1], tar_trans_vel_x[:, 2:] + tar_trans_vel_x[:, :-2] - 2 * tar_trans_vel_x[:, 1:-1]) * self.args.rec_weight \
|
137 |
+
+ self.vel_loss(rec_trans[:, :, 2:3][:, 2:] + rec_trans[:, :, 2:3][:, :-2] - 2 * rec_trans[:, :, 2:3][:, 1:-1], tar_trans_vel_z[:, 2:] + tar_trans_vel_z[:, :-2] - 2 * tar_trans_vel_z[:, 1:-1]) * self.args.rec_weight
|
138 |
+
g_loss_final += 5*v3
|
139 |
+
g_loss_final += 5*a3
|
140 |
+
v2 = self.vel_loss(rec_xyz_trans[:, 1:] - rec_xyz_trans[:, :-1], tar_trans[:, 1:] - tar_trans[:, :-1]) * self.args.rec_weight
|
141 |
+
a2 = self.vel_loss(rec_xyz_trans[:, 2:] + rec_xyz_trans[:, :-2] - 2 * rec_xyz_trans[:, 1:-1], tar_trans[:, 2:] + tar_trans[:, :-2] - 2 * tar_trans[:, 1:-1]) * self.args.rec_weight
|
142 |
+
g_loss_final += 5*v2
|
143 |
+
g_loss_final += 5*a2
|
144 |
+
self.tracker.update_meter("transv", "train", loss_trans_vel.item())
|
145 |
+
g_loss_final += loss_trans_vel
|
146 |
+
loss_trans = self.vel_loss(rec_xyz_trans, tar_trans) * self.args.rec_weight
|
147 |
+
self.tracker.update_meter("trans", "train", loss_trans.item())
|
148 |
+
g_loss_final += loss_trans
|
149 |
+
|
150 |
+
# vertices loss
|
151 |
+
if self.args.rec_ver_weight > 0:
|
152 |
+
# print(tar_pose.shape, j)
|
153 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
154 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
155 |
+
rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
|
156 |
+
tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
|
157 |
+
vertices_rec = self.smplx(
|
158 |
+
betas=tar_beta.reshape(bs*n, 300),
|
159 |
+
transl=rec_xyz_trans.reshape(bs*n, 3),
|
160 |
+
expression=tar_exps.reshape(bs*n, 100),
|
161 |
+
jaw_pose=rec_pose[:, 66:69],
|
162 |
+
global_orient=rec_pose[:,:3],
|
163 |
+
body_pose=rec_pose[:,3:21*3+3],
|
164 |
+
left_hand_pose=rec_pose[:,25*3:40*3],
|
165 |
+
right_hand_pose=rec_pose[:,40*3:55*3],
|
166 |
+
return_verts=True,
|
167 |
+
return_joints=True,
|
168 |
+
leye_pose=tar_pose[:, 69:72],
|
169 |
+
reye_pose=tar_pose[:, 72:75],
|
170 |
+
)
|
171 |
+
vertices_tar = self.smplx(
|
172 |
+
betas=tar_beta.reshape(bs*n, 300),
|
173 |
+
transl=tar_trans.reshape(bs*n, 3),
|
174 |
+
expression=tar_exps.reshape(bs*n, 100),
|
175 |
+
jaw_pose=tar_pose[:, 66:69],
|
176 |
+
global_orient=tar_pose[:,:3],
|
177 |
+
body_pose=tar_pose[:,3:21*3+3],
|
178 |
+
left_hand_pose=tar_pose[:,25*3:40*3],
|
179 |
+
right_hand_pose=tar_pose[:,40*3:55*3],
|
180 |
+
return_verts=True,
|
181 |
+
return_joints=True,
|
182 |
+
leye_pose=tar_pose[:, 69:72],
|
183 |
+
reye_pose=tar_pose[:, 72:75],
|
184 |
+
)
|
185 |
+
joints_rec = vertices_rec['joints']
|
186 |
+
# print(joints_rec.shape)
|
187 |
+
joints_rec = joints_rec.reshape(bs, n, -1, 3)
|
188 |
+
vectices_loss = self.vectices_loss(vertices_rec['vertices'], vertices_tar['vertices'])
|
189 |
+
vertices_vel_loss = self.vectices_loss(
|
190 |
+
vertices_rec['vertices'][:, 1:] - vertices_rec['vertices'][:, :-1],
|
191 |
+
vertices_tar['vertices'][:, 1:] - vertices_tar['vertices'][:, :-1])
|
192 |
+
vertices_acc_loss = self.vectices_loss(
|
193 |
+
vertices_rec['vertices'][:, 2:] + vertices_rec['vertices'][:, :-2] - 2 * vertices_rec['vertices'][:, 1:-1],
|
194 |
+
vertices_tar['vertices'][:, 2:] + vertices_tar['vertices'][:, :-2] - 2 * vertices_tar['vertices'][:, 1:-1])
|
195 |
+
foot_idx = [7, 8, 10, 11]
|
196 |
+
model_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
|
197 |
+
# find static indices consistent with model's own predictions
|
198 |
+
static_idx = model_contact > 0.95 # N x S x 4
|
199 |
+
# print(model_contact,static_idx)
|
200 |
+
model_feet = joints_rec[:, :, foot_idx] # foot positions (N, S, 4, 3)
|
201 |
+
model_foot_v = torch.zeros_like(model_feet)
|
202 |
+
model_foot_v[:, :-1] = (
|
203 |
+
model_feet[:, 1:, :, :] - model_feet[:, :-1, :, :]
|
204 |
+
) # (N, S-1, 4, 3)
|
205 |
+
model_foot_v[~static_idx] = 0
|
206 |
+
foot_loss = self.vel_loss(
|
207 |
+
model_foot_v, torch.zeros_like(model_foot_v)
|
208 |
+
)
|
209 |
+
self.tracker.update_meter("foot", "train", foot_loss.item()*self.args.rec_weight * self.args.rec_ver_weight*1000)
|
210 |
+
self.tracker.update_meter("ver", "train", vectices_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
|
211 |
+
g_loss_final += (vectices_loss+5*vertices_vel_loss+5*vertices_acc_loss)*self.args.rec_weight*self.args.rec_ver_weight
|
212 |
+
g_loss_final += foot_loss*self.args.rec_weight*self.args.rec_ver_weight*20
|
213 |
+
|
214 |
+
# ---------------------- vae -------------------------- #
|
215 |
+
if "VQVAE" in self.args.g_name:
|
216 |
+
loss_embedding = net_out["embedding_loss"]
|
217 |
+
g_loss_final += loss_embedding
|
218 |
+
self.tracker.update_meter("com", "train", loss_embedding.item())
|
219 |
+
# elif "VAE" in self.args.g_name:
|
220 |
+
# pose_mu, pose_logvar = net_out["pose_mu"], net_out["pose_logvar"]
|
221 |
+
# KLD = -0.5 * torch.sum(1 + pose_logvar - pose_mu.pow(2) - pose_logvar.exp())
|
222 |
+
# if epoch < 0:
|
223 |
+
# KLD_weight = 0
|
224 |
+
# else:
|
225 |
+
# KLD_weight = min(1.0, (epoch - 0) * 0.05) * 0.01
|
226 |
+
# loss += KLD_weight * KLD
|
227 |
+
# self.tracker.update_meter("kl", "train", KLD_weight * KLD.item())
|
228 |
+
g_loss_final.backward()
|
229 |
+
if self.args.grad_norm != 0:
|
230 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.grad_norm)
|
231 |
+
self.opt.step()
|
232 |
+
t_train = time.time() - t_start - t_data
|
233 |
+
t_start = time.time()
|
234 |
+
mem_cost = torch.cuda.memory_cached() / 1E9
|
235 |
+
lr_g = self.opt.param_groups[0]['lr']
|
236 |
+
if its % self.args.log_period == 0:
|
237 |
+
self.train_recording(epoch, its, t_data, t_train, mem_cost, lr_g)
|
238 |
+
if self.args.debug:
|
239 |
+
if its == 1: break
|
240 |
+
self.opt_s.step(epoch)
|
241 |
+
|
242 |
+
def val(self, epoch):
|
243 |
+
self.model.eval()
|
244 |
+
t_start = time.time()
|
245 |
+
with torch.no_grad():
|
246 |
+
for its, dict_data in enumerate(self.val_loader):
|
247 |
+
tar_pose_raw = dict_data["pose"]
|
248 |
+
tar_beta = dict_data["beta"].cuda()
|
249 |
+
tar_trans = dict_data["trans"].cuda()
|
250 |
+
tar_trans_vel_x = other_tools.estimate_linear_velocity(tar_trans[:, :, 0:1], dt=1/self.args.pose_fps)
|
251 |
+
tar_trans_vel_z = other_tools.estimate_linear_velocity(tar_trans[:, :, 2:3], dt=1/self.args.pose_fps)
|
252 |
+
#print(tar_pose.shape)
|
253 |
+
tar_pose = tar_pose_raw[:, :, :27].cuda()
|
254 |
+
|
255 |
+
tar_contact = tar_pose_raw[:, :, 27:31].cuda()
|
256 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
257 |
+
tar_exps = torch.zeros((bs, n, 100)).cuda()
|
258 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
259 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
260 |
+
tar_trans_copy = tar_trans-tar_trans
|
261 |
+
tar_contact_copy = tar_contact-tar_contact
|
262 |
+
in_tar_pose = torch.cat((tar_pose, tar_trans_copy, tar_contact_copy), dim=-1)
|
263 |
+
t_data = time.time() - t_start
|
264 |
+
|
265 |
+
#self.opt.zero_grad()
|
266 |
+
#g_loss_final = 0
|
267 |
+
net_out = self.model(in_tar_pose)
|
268 |
+
rec_pose = tar_pose
|
269 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
270 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
271 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
272 |
+
# loss_rec = self.rec_loss(rec_pose, tar_pose) * self.args.rec_weight * self.args.rec_pos_weight
|
273 |
+
# self.tracker.update_meter("rec", "val", loss_rec.item())
|
274 |
+
rec_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
|
275 |
+
# print(rec_contact.shape, tar_contact.shape)
|
276 |
+
loss_contact = self.vel_loss(rec_contact, tar_contact) * self.args.rec_weight * self.args.rec_pos_weight
|
277 |
+
self.tracker.update_meter("contact", "val", loss_contact.item())
|
278 |
+
#g_loss_final += loss_rec
|
279 |
+
# rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
|
280 |
+
# rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
|
281 |
+
# rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
|
282 |
+
# rec_y_trans = rec_trans[:,:,1:2]
|
283 |
+
# rec_xyz_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
284 |
+
|
285 |
+
rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
|
286 |
+
rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
|
287 |
+
rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
|
288 |
+
rec_y_trans = rec_trans[:,:,1:2]
|
289 |
+
rec_xyz_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
290 |
+
loss_trans_vel = self.vel_loss(rec_trans[:, :, 0:1], tar_trans_vel_x) * self.args.rec_weight \
|
291 |
+
+ self.vel_loss(rec_trans[:, :, 2:3], tar_trans_vel_z) * self.args.rec_weight
|
292 |
+
# v3 = self.vel_loss(rec_trans[:, :, 0:1][:, 1:] - rec_trans[:, :, 0:1][:, :-1], tar_trans_vel_x[:, 1:] - tar_trans_vel_x[:, :-1]) * self.args.rec_weight \
|
293 |
+
# + self.vel_loss(rec_trans[:, :, 2:3][:, 1:] - rec_trans[:, :, 2:3][:, :-1], tar_trans_vel_z[:, 1:] - tar_trans_vel_z[:, :-1]) * self.args.rec_weight
|
294 |
+
# a3 = self.vel_loss(rec_trans[:, :, 0:1][:, 2:] + rec_trans[:, :, 0:1][:, :-2] - 2 * rec_trans[:, :, 0:1][:, 1:-1], tar_trans_vel_x[:, 2:] + tar_trans_vel_x[:, :-2] - 2 * tar_trans_vel_x[:, 1:-1]) * self.args.rec_weight \
|
295 |
+
# + self.vel_loss(rec_trans[:, :, 2:3][:, 2:] + rec_trans[:, :, 2:3][:, :-2] - 2 * rec_trans[:, :, 2:3][:, 1:-1], tar_trans_vel_z[:, 2:] + tar_trans_vel_z[:, :-2] - 2 * tar_trans_vel_z[:, 1:-1]) * self.args.rec_weight
|
296 |
+
# #g_loss_final += 5*v3
|
297 |
+
# #g_loss_final += 5*a3
|
298 |
+
# v2 = self.vel_loss(rec_xyz_trans[:, 1:] - rec_xyz_trans[:, :-1], tar_trans[:, 1:] - tar_trans[:, :-1]) * self.args.rec_weight
|
299 |
+
# a2 = self.vel_loss(rec_xyz_trans[:, 2:] + rec_xyz_trans[:, :-2] - 2 * rec_xyz_trans[:, 1:-1], tar_trans[:, 2:] + tar_trans[:, :-2] - 2 * tar_trans[:, 1:-1]) * self.args.rec_weight
|
300 |
+
#g_loss_final += 5*v2
|
301 |
+
#g_loss_final += 5*a2
|
302 |
+
self.tracker.update_meter("transv", "val", loss_trans_vel.item())
|
303 |
+
#g_loss_final += loss_trans_vel
|
304 |
+
loss_trans = self.vel_loss(rec_xyz_trans, tar_trans) * self.args.rec_weight
|
305 |
+
self.tracker.update_meter("trans", "val", loss_trans.item())
|
306 |
+
#g_loss_final += loss_trans
|
307 |
+
|
308 |
+
# vertices loss
|
309 |
+
if self.args.rec_ver_weight > 0:
|
310 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
311 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
312 |
+
rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
|
313 |
+
tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
|
314 |
+
vertices_rec = self.smplx(
|
315 |
+
betas=tar_beta.reshape(bs*n, 300),
|
316 |
+
transl=rec_xyz_trans.reshape(bs*n, 3),
|
317 |
+
expression=tar_exps.reshape(bs*n, 100),
|
318 |
+
jaw_pose=rec_pose[:, 66:69],
|
319 |
+
global_orient=rec_pose[:,:3],
|
320 |
+
body_pose=rec_pose[:,3:21*3+3],
|
321 |
+
left_hand_pose=rec_pose[:,25*3:40*3],
|
322 |
+
right_hand_pose=rec_pose[:,40*3:55*3],
|
323 |
+
return_verts=False,
|
324 |
+
return_joints=True,
|
325 |
+
leye_pose=tar_pose[:, 69:72],
|
326 |
+
reye_pose=tar_pose[:, 72:75],
|
327 |
+
)
|
328 |
+
vertices_tar = self.smplx(
|
329 |
+
betas=tar_beta.reshape(bs*n, 300),
|
330 |
+
transl=tar_trans.reshape(bs*n, 3),
|
331 |
+
expression=tar_exps.reshape(bs*n, 100),
|
332 |
+
jaw_pose=tar_pose[:, 66:69],
|
333 |
+
global_orient=tar_pose[:,:3],
|
334 |
+
body_pose=tar_pose[:,3:21*3+3],
|
335 |
+
left_hand_pose=tar_pose[:,25*3:40*3],
|
336 |
+
right_hand_pose=tar_pose[:,40*3:55*3],
|
337 |
+
return_verts=False,
|
338 |
+
return_joints=True,
|
339 |
+
leye_pose=tar_pose[:, 69:72],
|
340 |
+
reye_pose=tar_pose[:, 72:75],
|
341 |
+
)
|
342 |
+
joints_rec = vertices_rec['joints']
|
343 |
+
joints_rec = joints_rec.reshape(bs, n, -1, 3)
|
344 |
+
vectices_loss = self.vectices_loss(vertices_rec['joints'], vertices_tar['joints'])
|
345 |
+
foot_idx = [7, 8, 10, 11]
|
346 |
+
model_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
|
347 |
+
# find static indices consistent with model's own predictions
|
348 |
+
static_idx = model_contact > 0.95 # N x S x 4
|
349 |
+
# print(model_contact)
|
350 |
+
model_feet = joints_rec[:, :, foot_idx] # foot positions (N, S, 4, 3)
|
351 |
+
model_foot_v = torch.zeros_like(model_feet)
|
352 |
+
model_foot_v[:, :-1] = (
|
353 |
+
model_feet[:, 1:, :, :] - model_feet[:, :-1, :, :]
|
354 |
+
) # (N, S-1, 4, 3)
|
355 |
+
model_foot_v[~static_idx] = 0
|
356 |
+
foot_loss = self.vectices_loss(
|
357 |
+
model_foot_v, torch.zeros_like(model_foot_v)
|
358 |
+
)
|
359 |
+
self.tracker.update_meter("foot", "val", foot_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
|
360 |
+
self.tracker.update_meter("ver", "val", vectices_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
|
361 |
+
if "VQVAE" in self.args.g_name:
|
362 |
+
loss_embedding = net_out["embedding_loss"]
|
363 |
+
self.tracker.update_meter("com", "val", loss_embedding.item())
|
364 |
+
#g_loss_final += vectices_loss*self.args.rec_weight*self.args.rec_ver_weight
|
365 |
+
self.val_recording(epoch)
|
366 |
+
|
367 |
+
def test(self, epoch):
|
368 |
+
results_save_path = self.checkpoint_path + f"/{epoch}/"
|
369 |
+
if os.path.exists(results_save_path):
|
370 |
+
return 0
|
371 |
+
os.makedirs(results_save_path)
|
372 |
+
start_time = time.time()
|
373 |
+
total_length = 0
|
374 |
+
test_seq_list = self.test_data.selected_file
|
375 |
+
self.model.eval()
|
376 |
+
with torch.no_grad():
|
377 |
+
for its, dict_data in enumerate(self.test_loader):
|
378 |
+
tar_pose_raw = dict_data["pose"]
|
379 |
+
tar_trans = dict_data["trans"].to(self.rank)
|
380 |
+
tar_pose = tar_pose_raw[:, :, :27].cuda()
|
381 |
+
tar_contact = tar_pose_raw[:, :, 27:31].cuda()
|
382 |
+
# tar_pose = tar_pose.cuda()
|
383 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
384 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
385 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
386 |
+
remain = n%self.args.pose_length
|
387 |
+
tar_pose = tar_pose[:, :n-remain, :]
|
388 |
+
tar_contact = tar_contact[:, :n-remain, :]
|
389 |
+
tar_trans_copy = tar_trans[:, :n-remain, :]-tar_trans[:, :n-remain, :]
|
390 |
+
tar_contact_copy = tar_contact-tar_contact
|
391 |
+
in_tar_pose = torch.cat([tar_pose, tar_trans_copy, tar_contact_copy], dim=-1)
|
392 |
+
#print(tar_pose.shape)
|
393 |
+
if True:
|
394 |
+
net_out = self.model(in_tar_pose)
|
395 |
+
rec_pose = tar_pose #net_out["rec_pose"][:, :, :j*6]
|
396 |
+
rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
|
397 |
+
# print(rec_trans.shape)
|
398 |
+
rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
|
399 |
+
rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
|
400 |
+
rec_y_trans = rec_trans[:,:,1:2]
|
401 |
+
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
402 |
+
n = rec_pose.shape[1]
|
403 |
+
rec_trans = rec_trans.cpu().numpy().reshape(bs*n, 3)
|
404 |
+
tar_pose = tar_pose[:, :n, :]
|
405 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
406 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
407 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
408 |
+
rec_pose = rec_pose.cpu().numpy()
|
409 |
+
else:
|
410 |
+
pass
|
411 |
+
# for i in range(tar_pose.shape[1]//(self.args.vae_test_len)):
|
412 |
+
# tar_pose_new = tar_pose[:,i*(self.args.vae_test_len):i*(self.args.vae_test_len)+self.args.vae_test_len,:]
|
413 |
+
# net_out = self.model(**dict(inputs=tar_pose_new))
|
414 |
+
# rec_pose = net_out["rec_pose"]
|
415 |
+
# rec_pose = (rec_pose.reshape(rec_pose.shape[0], rec_pose.shape[1], -1, 6) * self.joint_level_mask_cuda).reshape(rec_pose.shape[0], rec_pose.shape[1], -1)
|
416 |
+
# if "rot6d" in self.args.pose_rep:
|
417 |
+
# rec_pose = data_transfer.rotation_6d_to_matrix(rec_pose.reshape(tar_pose.shape[0], self.args.vae_test_len, -1, 6))
|
418 |
+
# rec_pose = data_transfer.matrix_to_euler_angles(rec_pose, "XYZ").reshape(rec_pose.shape[0], rec_pose.shape[1], -1)
|
419 |
+
# if "smplx" not in self.args.pose_rep:
|
420 |
+
# rec_pose = torch.rad2deg(rec_pose)
|
421 |
+
# rec_pose = rec_pose * self.joint_mask_cuda
|
422 |
+
|
423 |
+
# out_sub = rec_pose.cpu().numpy().reshape(-1, rec_pose.shape[2])
|
424 |
+
# if i != 0:
|
425 |
+
# out_final = np.concatenate((out_final,out_sub), 0)
|
426 |
+
# else:
|
427 |
+
# out_final = out_sub
|
428 |
+
|
429 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
430 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
431 |
+
tar_pose = tar_pose.cpu().numpy()
|
432 |
+
|
433 |
+
total_length += n
|
434 |
+
# --- save --- #
|
435 |
+
if 'smplx' in self.args.pose_rep:
|
436 |
+
gt_npz = np.load(self.args.data_path+self.args.pose_rep+"/"+test_seq_list.iloc[its]['id']+'.npz', allow_pickle=True)
|
437 |
+
stride = int(30 / self.args.pose_fps)
|
438 |
+
tar_pose = self.inverse_selection(tar_pose, self.test_data.joint_mask, tar_pose.shape[0])
|
439 |
+
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
440 |
+
betas=gt_npz["betas"],
|
441 |
+
poses=tar_pose[:n],
|
442 |
+
expressions=gt_npz["expressions"]-gt_npz["expressions"],
|
443 |
+
trans=gt_npz["trans"][::stride][:n],
|
444 |
+
model='smplx2020',
|
445 |
+
gender='neutral',
|
446 |
+
mocap_frame_rate = 30 ,
|
447 |
+
)
|
448 |
+
rec_pose = self.inverse_selection(rec_pose, self.test_data.joint_mask, rec_pose.shape[0])
|
449 |
+
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
450 |
+
betas=gt_npz["betas"],
|
451 |
+
poses=rec_pose,
|
452 |
+
expressions=gt_npz["expressions"]-gt_npz["expressions"],
|
453 |
+
trans=rec_trans,
|
454 |
+
model='smplx2020',
|
455 |
+
gender='neutral',
|
456 |
+
mocap_frame_rate = 30 ,
|
457 |
+
)
|
458 |
+
else:
|
459 |
+
rec_pose = rc.axis_angle_to_matrix(torch.from_numpy(rec_pose.reshape(bs*n, j, 3)))
|
460 |
+
rec_pose = np.rad2deg(rc.matrix_to_euler_angles(rec_pose, "XYZ")).reshape(bs*n, j*3).numpy()
|
461 |
+
tar_pose = rc.axis_angle_to_matrix(torch.from_numpy(tar_pose.reshape(bs*n, j, 3)))
|
462 |
+
tar_pose = np.rad2deg(rc.matrix_to_euler_angles(tar_pose, "XYZ")).reshape(bs*n, j*3).numpy()
|
463 |
+
#trans="0.000000 0.000000 0.000000"
|
464 |
+
|
465 |
+
with open(f"{self.args.data_path}{self.args.pose_rep}/{test_seq_list.iloc[its]['id']}.bvh", "r") as f_demo:
|
466 |
+
with open(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.bvh', 'w+') as f_gt:
|
467 |
+
with open(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.bvh', 'w+') as f_real:
|
468 |
+
for i, line_data in enumerate(f_demo.readlines()):
|
469 |
+
if i < 431:
|
470 |
+
f_real.write(line_data)
|
471 |
+
f_gt.write(line_data)
|
472 |
+
else: break
|
473 |
+
for line_id in range(n): #,args.pre_frames, args.pose_length
|
474 |
+
line_data = np.array2string(rec_pose[line_id], max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
|
475 |
+
f_real.write(line_data[1:-2]+'\n')
|
476 |
+
for line_id in range(n): #,args.pre_frames, args.pose_length
|
477 |
+
line_data = np.array2string(tar_pose[line_id], max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
|
478 |
+
f_gt.write(line_data[1:-2]+'\n')
|
479 |
+
# with open(results_save_path+"gt_"+test_seq_list[its]+'.pkl', 'wb') as fw:
|
480 |
+
# pickle.dump(new_dict, fw)
|
481 |
+
# #new_dict2["fullpose"] = out_final
|
482 |
+
# with open(results_save_path+"res_"+test_seq_list[its]+'.pkl', 'wb') as fw1:
|
483 |
+
# pickle.dump(new_dict2, fw1)
|
484 |
+
|
485 |
+
# other_tools.render_one_sequence(
|
486 |
+
# results_save_path+"res_"+test_seq_list[its]+'.pkl',
|
487 |
+
# results_save_path+"gt_"+test_seq_list[its]+'.pkl',
|
488 |
+
# results_save_path,
|
489 |
+
# self.args.data_path + self.args.test_data_path + 'wave16k/' + test_seq_list[its]+'.npy',
|
490 |
+
# )
|
491 |
+
|
492 |
+
#if its == 1:break
|
493 |
+
end_time = time.time() - start_time
|
494 |
+
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
|
aelowerfoot_trainer.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import train
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import csv
|
5 |
+
import sys
|
6 |
+
import warnings
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
import time
|
10 |
+
import pprint
|
11 |
+
import pickle
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from torch.utils.tensorboard import SummaryWriter
|
17 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
18 |
+
from loguru import logger
|
19 |
+
import smplx
|
20 |
+
|
21 |
+
from utils import config, logger_tools, other_tools, metric
|
22 |
+
from utils import rotation_conversions as rc
|
23 |
+
from dataloaders import data_tools
|
24 |
+
from optimizers.optim_factory import create_optimizer
|
25 |
+
from optimizers.scheduler_factory import create_scheduler
|
26 |
+
from optimizers.loss_factory import get_loss_func
|
27 |
+
from scipy.spatial.transform import Rotation
|
28 |
+
|
29 |
+
|
30 |
+
class CustomTrainer(train.BaseTrainer):
|
31 |
+
"""
|
32 |
+
motion representation learning
|
33 |
+
"""
|
34 |
+
def __init__(self, args):
|
35 |
+
super().__init__(args)
|
36 |
+
self.joints = self.train_data.joints
|
37 |
+
self.smplx = smplx.create(
|
38 |
+
self.args.data_path_1+"smplx_models/",
|
39 |
+
model_type='smplx',
|
40 |
+
gender='NEUTRAL_2020',
|
41 |
+
use_face_contour=False,
|
42 |
+
num_betas=300,
|
43 |
+
num_expression_coeffs=100,
|
44 |
+
ext='npz',
|
45 |
+
use_pca=False,
|
46 |
+
).cuda().eval()
|
47 |
+
self.tracker = other_tools.EpochTracker(["rec", "contact", "vel", "foot", "ver", "com", "kl", "acc", "trans", "transv"], [False,False, False, False, False, False, False, False, False, False])
|
48 |
+
if not self.args.rot6d: #"rot6d" not in args.pose_rep:
|
49 |
+
logger.error(f"this script is for rot6d, your pose rep. is {args.pose_rep}")
|
50 |
+
self.rec_loss = get_loss_func("GeodesicLoss")
|
51 |
+
self.vel_loss = torch.nn.L1Loss(reduction='mean')
|
52 |
+
self.vectices_loss = torch.nn.MSELoss(reduction='mean')
|
53 |
+
|
54 |
+
def inverse_selection(self, filtered_t, selection_array, n):
|
55 |
+
# 创建一个全为零的数组,形状为 n*165
|
56 |
+
original_shape_t = np.zeros((n, selection_array.size))
|
57 |
+
|
58 |
+
# 找到选择数组中为1的索引位置
|
59 |
+
selected_indices = np.where(selection_array == 1)[0]
|
60 |
+
|
61 |
+
# 将 filtered_t 的值填充到 original_shape_t 中相应的位置
|
62 |
+
for i in range(n):
|
63 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
64 |
+
|
65 |
+
return original_shape_t
|
66 |
+
|
67 |
+
def inverse_selection_tensor(self, filtered_t, selection_array, n):
|
68 |
+
# 创建一个全为零的数组,形状为 n*165
|
69 |
+
selection_array = torch.from_numpy(selection_array).cuda()
|
70 |
+
original_shape_t = torch.zeros((n, 165)).cuda()
|
71 |
+
|
72 |
+
# 找到选择数组中为1的索引位置
|
73 |
+
selected_indices = torch.where(selection_array == 1)[0]
|
74 |
+
|
75 |
+
# 将 filtered_t 的值填充到 original_shape_t 中相应的位置
|
76 |
+
for i in range(n):
|
77 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
78 |
+
|
79 |
+
return original_shape_t
|
80 |
+
|
81 |
+
|
82 |
+
def train(self, epoch):
|
83 |
+
self.model.train()
|
84 |
+
t_start = time.time()
|
85 |
+
self.tracker.reset()
|
86 |
+
for its, dict_data in enumerate(self.train_loader):
|
87 |
+
tar_pose_raw = dict_data["pose"]
|
88 |
+
tar_beta = dict_data["beta"].cuda()
|
89 |
+
tar_trans = dict_data["trans"].cuda()
|
90 |
+
# tar_trans_vel_x = other_tools.estimate_linear_velocity(tar_trans[:, :, 0:1], dt=1/self.args.pose_fps)
|
91 |
+
# tar_trans_vel_z = other_tools.estimate_linear_velocity(tar_trans[:, :, 2:3], dt=1/self.args.pose_fps)
|
92 |
+
tar_pose = tar_pose_raw[:, :, :27].cuda()
|
93 |
+
tar_contact = tar_pose_raw[:, :, 27:31].cuda()
|
94 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
95 |
+
tar_exps = torch.zeros((bs, n, 100)).cuda()
|
96 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
97 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
98 |
+
tar_trans_copy = tar_trans
|
99 |
+
tar_contact_copy = tar_contact
|
100 |
+
in_tar_pose = torch.cat((tar_pose, tar_trans_copy, tar_contact_copy), dim=-1)
|
101 |
+
|
102 |
+
t_data = time.time() - t_start
|
103 |
+
|
104 |
+
self.opt.zero_grad()
|
105 |
+
g_loss_final = 0
|
106 |
+
net_out = self.model(in_tar_pose)
|
107 |
+
rec_pose = net_out["rec_pose"][:, :, :j*6]
|
108 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
109 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
110 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
111 |
+
loss_rec = self.rec_loss(rec_pose, tar_pose) * self.args.rec_weight * self.args.rec_pos_weight
|
112 |
+
self.tracker.update_meter("rec", "train", loss_rec.item())
|
113 |
+
g_loss_final += loss_rec
|
114 |
+
|
115 |
+
rec_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
|
116 |
+
loss_contact = self.vectices_loss(rec_contact, tar_contact) * self.args.rec_weight * self.args.rec_pos_weight
|
117 |
+
self.tracker.update_meter("contact", "train", loss_contact.item())
|
118 |
+
g_loss_final += loss_contact
|
119 |
+
|
120 |
+
velocity_loss = self.vel_loss(rec_pose[:, 1:] - rec_pose[:, :-1], tar_pose[:, 1:] - tar_pose[:, :-1]) * self.args.rec_weight
|
121 |
+
acceleration_loss = self.vel_loss(rec_pose[:, 2:] + rec_pose[:, :-2] - 2 * rec_pose[:, 1:-1], tar_pose[:, 2:] + tar_pose[:, :-2] - 2 * tar_pose[:, 1:-1]) * self.args.rec_weight
|
122 |
+
self.tracker.update_meter("vel", "train", velocity_loss.item())
|
123 |
+
self.tracker.update_meter("acc", "train", acceleration_loss.item())
|
124 |
+
g_loss_final += velocity_loss
|
125 |
+
g_loss_final += acceleration_loss
|
126 |
+
|
127 |
+
# rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
|
128 |
+
# rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
|
129 |
+
# rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
|
130 |
+
# rec_y_trans = rec_trans[:,:,1:2]
|
131 |
+
# rec_xyz_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
132 |
+
# loss_trans_vel = self.vel_loss(rec_trans[:, :, 0:1], tar_trans_vel_x) * self.args.rec_weight \
|
133 |
+
# + self.vel_loss(rec_trans[:, :, 2:3], tar_trans_vel_z) * self.args.rec_weight
|
134 |
+
# v3 = self.vel_loss(rec_trans[:, :, 0:1][:, 1:] - rec_trans[:, :, 0:1][:, :-1], tar_trans_vel_x[:, 1:] - tar_trans_vel_x[:, :-1]) * self.args.rec_weight \
|
135 |
+
# + self.vel_loss(rec_trans[:, :, 2:3][:, 1:] - rec_trans[:, :, 2:3][:, :-1], tar_trans_vel_z[:, 1:] - tar_trans_vel_z[:, :-1]) * self.args.rec_weight
|
136 |
+
# a3 = self.vel_loss(rec_trans[:, :, 0:1][:, 2:] + rec_trans[:, :, 0:1][:, :-2] - 2 * rec_trans[:, :, 0:1][:, 1:-1], tar_trans_vel_x[:, 2:] + tar_trans_vel_x[:, :-2] - 2 * tar_trans_vel_x[:, 1:-1]) * self.args.rec_weight \
|
137 |
+
# + self.vel_loss(rec_trans[:, :, 2:3][:, 2:] + rec_trans[:, :, 2:3][:, :-2] - 2 * rec_trans[:, :, 2:3][:, 1:-1], tar_trans_vel_z[:, 2:] + tar_trans_vel_z[:, :-2] - 2 * tar_trans_vel_z[:, 1:-1]) * self.args.rec_weight
|
138 |
+
# g_loss_final += 5*v3
|
139 |
+
# g_loss_final += 5*a3
|
140 |
+
# v2 = self.vel_loss(rec_xyz_trans[:, 1:] - rec_xyz_trans[:, :-1], tar_trans[:, 1:] - tar_trans[:, :-1]) * self.args.rec_weight
|
141 |
+
# a2 = self.vel_loss(rec_xyz_trans[:, 2:] + rec_xyz_trans[:, :-2] - 2 * rec_xyz_trans[:, 1:-1], tar_trans[:, 2:] + tar_trans[:, :-2] - 2 * tar_trans[:, 1:-1]) * self.args.rec_weight
|
142 |
+
# g_loss_final += 5*v2
|
143 |
+
# g_loss_final += 5*a2
|
144 |
+
# self.tracker.update_meter("transv", "train", loss_trans_vel.item())
|
145 |
+
# g_loss_final += loss_trans_vel
|
146 |
+
# loss_trans = self.vel_loss(rec_xyz_trans, tar_trans) * self.args.rec_weight
|
147 |
+
# self.tracker.update_meter("trans", "train", loss_trans.item())
|
148 |
+
# g_loss_final += loss_trans
|
149 |
+
|
150 |
+
# vertices loss
|
151 |
+
if self.args.rec_ver_weight > 0:
|
152 |
+
# print(tar_pose.shape, bs, n, j)
|
153 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
154 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
155 |
+
rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
|
156 |
+
tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
|
157 |
+
vertices_rec = self.smplx(
|
158 |
+
betas=tar_beta.reshape(bs*n, 300),
|
159 |
+
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
|
160 |
+
expression=tar_exps.reshape(bs*n, 100),
|
161 |
+
jaw_pose=rec_pose[:, 66:69],
|
162 |
+
global_orient=rec_pose[:,:3],
|
163 |
+
body_pose=rec_pose[:,3:21*3+3],
|
164 |
+
left_hand_pose=rec_pose[:,25*3:40*3],
|
165 |
+
right_hand_pose=rec_pose[:,40*3:55*3],
|
166 |
+
return_verts=False,
|
167 |
+
return_joints=True,
|
168 |
+
leye_pose=tar_pose[:, 69:72],
|
169 |
+
reye_pose=tar_pose[:, 72:75],
|
170 |
+
)
|
171 |
+
vertices_tar = self.smplx(
|
172 |
+
betas=tar_beta.reshape(bs*n, 300),
|
173 |
+
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
|
174 |
+
expression=tar_exps.reshape(bs*n, 100),
|
175 |
+
jaw_pose=tar_pose[:, 66:69],
|
176 |
+
global_orient=tar_pose[:,:3],
|
177 |
+
body_pose=tar_pose[:,3:21*3+3],
|
178 |
+
left_hand_pose=tar_pose[:,25*3:40*3],
|
179 |
+
right_hand_pose=tar_pose[:,40*3:55*3],
|
180 |
+
return_verts=False,
|
181 |
+
return_joints=True,
|
182 |
+
leye_pose=tar_pose[:, 69:72],
|
183 |
+
reye_pose=tar_pose[:, 72:75],
|
184 |
+
)
|
185 |
+
joints_rec = vertices_rec['joints']
|
186 |
+
# print(joints_rec.shape)
|
187 |
+
joints_rec = joints_rec.reshape(bs, n, -1, 3)
|
188 |
+
vectices_loss = self.vectices_loss(vertices_rec['joints'], vertices_tar['joints'])
|
189 |
+
foot_idx = [7, 8, 10, 11]
|
190 |
+
model_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
|
191 |
+
# find static indices consistent with model's own predictions
|
192 |
+
static_idx = model_contact > 0.95 # N x S x 4
|
193 |
+
# print(model_contact,static_idx)
|
194 |
+
model_feet = joints_rec[:, :, foot_idx] # foot positions (N, S, 4, 3)
|
195 |
+
model_foot_v = torch.zeros_like(model_feet)
|
196 |
+
model_foot_v[:, :-1] = (
|
197 |
+
model_feet[:, 1:, :, :] - model_feet[:, :-1, :, :]
|
198 |
+
) # (N, S-1, 4, 3)
|
199 |
+
model_foot_v[~static_idx] = 0
|
200 |
+
foot_loss = self.vel_loss(
|
201 |
+
model_foot_v, torch.zeros_like(model_foot_v)
|
202 |
+
)
|
203 |
+
self.tracker.update_meter("foot", "train", foot_loss.item()*self.args.rec_weight * self.args.rec_ver_weight*20)
|
204 |
+
self.tracker.update_meter("ver", "train", vectices_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
|
205 |
+
g_loss_final += (vectices_loss)*self.args.rec_weight*self.args.rec_ver_weight
|
206 |
+
g_loss_final += foot_loss*self.args.rec_weight*self.args.rec_ver_weight*20
|
207 |
+
|
208 |
+
# ---------------------- vae -------------------------- #
|
209 |
+
if "VQVAE" in self.args.g_name:
|
210 |
+
loss_embedding = net_out["embedding_loss"]
|
211 |
+
g_loss_final += loss_embedding
|
212 |
+
self.tracker.update_meter("com", "train", loss_embedding.item())
|
213 |
+
# elif "VAE" in self.args.g_name:
|
214 |
+
# pose_mu, pose_logvar = net_out["pose_mu"], net_out["pose_logvar"]
|
215 |
+
# KLD = -0.5 * torch.sum(1 + pose_logvar - pose_mu.pow(2) - pose_logvar.exp())
|
216 |
+
# if epoch < 0:
|
217 |
+
# KLD_weight = 0
|
218 |
+
# else:
|
219 |
+
# KLD_weight = min(1.0, (epoch - 0) * 0.05) * 0.01
|
220 |
+
# loss += KLD_weight * KLD
|
221 |
+
# self.tracker.update_meter("kl", "train", KLD_weight * KLD.item())
|
222 |
+
g_loss_final.backward()
|
223 |
+
if self.args.grad_norm != 0:
|
224 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.grad_norm)
|
225 |
+
self.opt.step()
|
226 |
+
t_train = time.time() - t_start - t_data
|
227 |
+
t_start = time.time()
|
228 |
+
mem_cost = torch.cuda.memory_cached() / 1E9
|
229 |
+
lr_g = self.opt.param_groups[0]['lr']
|
230 |
+
if its % self.args.log_period == 0:
|
231 |
+
self.train_recording(epoch, its, t_data, t_train, mem_cost, lr_g)
|
232 |
+
if self.args.debug:
|
233 |
+
if its == 1: break
|
234 |
+
self.opt_s.step(epoch)
|
235 |
+
|
236 |
+
def val(self, epoch):
|
237 |
+
self.model.eval()
|
238 |
+
t_start = time.time()
|
239 |
+
with torch.no_grad():
|
240 |
+
for its, dict_data in enumerate(self.val_loader):
|
241 |
+
tar_pose_raw = dict_data["pose"]
|
242 |
+
tar_beta = dict_data["beta"].cuda()
|
243 |
+
tar_trans = dict_data["trans"].cuda()
|
244 |
+
tar_trans_vel_x = other_tools.estimate_linear_velocity(tar_trans[:, :, 0:1], dt=1/self.args.pose_fps)
|
245 |
+
tar_trans_vel_z = other_tools.estimate_linear_velocity(tar_trans[:, :, 2:3], dt=1/self.args.pose_fps)
|
246 |
+
#print(tar_pose.shape)
|
247 |
+
tar_pose = tar_pose_raw[:, :, :27].cuda()
|
248 |
+
|
249 |
+
tar_contact = tar_pose_raw[:, :, 27:31].cuda()
|
250 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
251 |
+
tar_exps = torch.zeros((bs, n, 100)).cuda()
|
252 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
253 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
254 |
+
tar_trans_copy = tar_trans
|
255 |
+
tar_contact_copy = tar_contact
|
256 |
+
in_tar_pose = torch.cat((tar_pose, tar_trans_copy, tar_contact_copy), dim=-1)
|
257 |
+
t_data = time.time() - t_start
|
258 |
+
|
259 |
+
#self.opt.zero_grad()
|
260 |
+
#g_loss_final = 0
|
261 |
+
net_out = self.model(in_tar_pose)
|
262 |
+
rec_pose = net_out["rec_pose"][:, :, :j*6]
|
263 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
264 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
265 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
266 |
+
loss_rec = self.rec_loss(rec_pose, tar_pose) * self.args.rec_weight * self.args.rec_pos_weight
|
267 |
+
self.tracker.update_meter("rec", "val", loss_rec.item())
|
268 |
+
rec_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
|
269 |
+
# print(rec_contact.shape, tar_contact.shape)
|
270 |
+
loss_contact = self.vel_loss(rec_contact, tar_contact) * self.args.rec_weight * self.args.rec_pos_weight
|
271 |
+
self.tracker.update_meter("contact", "val", loss_contact.item())
|
272 |
+
#g_loss_final += loss_rec
|
273 |
+
rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
|
274 |
+
rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
|
275 |
+
rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
|
276 |
+
rec_y_trans = rec_trans[:,:,1:2]
|
277 |
+
rec_xyz_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
278 |
+
|
279 |
+
# rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
|
280 |
+
# rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
|
281 |
+
# rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
|
282 |
+
# rec_y_trans = rec_trans[:,:,1:2]
|
283 |
+
# rec_xyz_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
284 |
+
# loss_trans_vel = self.vel_loss(rec_trans[:, :, 0:1], tar_trans_vel_x) * self.args.rec_weight \
|
285 |
+
# + self.vel_loss(rec_trans[:, :, 2:3], tar_trans_vel_z) * self.args.rec_weight
|
286 |
+
# v3 = self.vel_loss(rec_trans[:, :, 0:1][:, 1:] - rec_trans[:, :, 0:1][:, :-1], tar_trans_vel_x[:, 1:] - tar_trans_vel_x[:, :-1]) * self.args.rec_weight \
|
287 |
+
# + self.vel_loss(rec_trans[:, :, 2:3][:, 1:] - rec_trans[:, :, 2:3][:, :-1], tar_trans_vel_z[:, 1:] - tar_trans_vel_z[:, :-1]) * self.args.rec_weight
|
288 |
+
# a3 = self.vel_loss(rec_trans[:, :, 0:1][:, 2:] + rec_trans[:, :, 0:1][:, :-2] - 2 * rec_trans[:, :, 0:1][:, 1:-1], tar_trans_vel_x[:, 2:] + tar_trans_vel_x[:, :-2] - 2 * tar_trans_vel_x[:, 1:-1]) * self.args.rec_weight \
|
289 |
+
# + self.vel_loss(rec_trans[:, :, 2:3][:, 2:] + rec_trans[:, :, 2:3][:, :-2] - 2 * rec_trans[:, :, 2:3][:, 1:-1], tar_trans_vel_z[:, 2:] + tar_trans_vel_z[:, :-2] - 2 * tar_trans_vel_z[:, 1:-1]) * self.args.rec_weight
|
290 |
+
# #g_loss_final += 5*v3
|
291 |
+
# #g_loss_final += 5*a3
|
292 |
+
# v2 = self.vel_loss(rec_xyz_trans[:, 1:] - rec_xyz_trans[:, :-1], tar_trans[:, 1:] - tar_trans[:, :-1]) * self.args.rec_weight
|
293 |
+
# a2 = self.vel_loss(rec_xyz_trans[:, 2:] + rec_xyz_trans[:, :-2] - 2 * rec_xyz_trans[:, 1:-1], tar_trans[:, 2:] + tar_trans[:, :-2] - 2 * tar_trans[:, 1:-1]) * self.args.rec_weight
|
294 |
+
#g_loss_final += 5*v2
|
295 |
+
#g_loss_final += 5*a2
|
296 |
+
# self.tracker.update_meter("transv", "val", loss_trans_vel.item())
|
297 |
+
# #g_loss_final += loss_trans_vel
|
298 |
+
# loss_trans = self.vel_loss(rec_xyz_trans, tar_trans) * self.args.rec_weight
|
299 |
+
# self.tracker.update_meter("trans", "val", loss_trans.item())
|
300 |
+
#g_loss_final += loss_trans
|
301 |
+
|
302 |
+
# vertices loss
|
303 |
+
if self.args.rec_ver_weight > 0:
|
304 |
+
# print(tar_pose.shape, bs, n, j)
|
305 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
306 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
307 |
+
rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
|
308 |
+
tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
|
309 |
+
vertices_rec = self.smplx(
|
310 |
+
betas=tar_beta.reshape(bs*n, 300),
|
311 |
+
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
|
312 |
+
expression=tar_exps.reshape(bs*n, 100),
|
313 |
+
jaw_pose=rec_pose[:, 66:69],
|
314 |
+
global_orient=rec_pose[:,:3],
|
315 |
+
body_pose=rec_pose[:,3:21*3+3],
|
316 |
+
left_hand_pose=rec_pose[:,25*3:40*3],
|
317 |
+
right_hand_pose=rec_pose[:,40*3:55*3],
|
318 |
+
return_verts=False,
|
319 |
+
return_joints=True,
|
320 |
+
leye_pose=tar_pose[:, 69:72],
|
321 |
+
reye_pose=tar_pose[:, 72:75],
|
322 |
+
)
|
323 |
+
vertices_tar = self.smplx(
|
324 |
+
betas=tar_beta.reshape(bs*n, 300),
|
325 |
+
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
|
326 |
+
expression=tar_exps.reshape(bs*n, 100),
|
327 |
+
jaw_pose=tar_pose[:, 66:69],
|
328 |
+
global_orient=tar_pose[:,:3],
|
329 |
+
body_pose=tar_pose[:,3:21*3+3],
|
330 |
+
left_hand_pose=tar_pose[:,25*3:40*3],
|
331 |
+
right_hand_pose=tar_pose[:,40*3:55*3],
|
332 |
+
return_verts=False,
|
333 |
+
return_joints=True,
|
334 |
+
leye_pose=tar_pose[:, 69:72],
|
335 |
+
reye_pose=tar_pose[:, 72:75],
|
336 |
+
)
|
337 |
+
joints_rec = vertices_rec['joints']
|
338 |
+
joints_rec = joints_rec.reshape(bs, n, -1, 3)
|
339 |
+
vectices_loss = self.vectices_loss(vertices_rec['joints'], vertices_tar['joints'])
|
340 |
+
foot_idx = [7, 8, 10, 11]
|
341 |
+
model_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
|
342 |
+
# find static indices consistent with model's own predictions
|
343 |
+
static_idx = model_contact > 0.95 # N x S x 4
|
344 |
+
# print(model_contact)
|
345 |
+
model_feet = joints_rec[:, :, foot_idx] # foot positions (N, S, 4, 3)
|
346 |
+
model_foot_v = torch.zeros_like(model_feet)
|
347 |
+
model_foot_v[:, :-1] = (
|
348 |
+
model_feet[:, 1:, :, :] - model_feet[:, :-1, :, :]
|
349 |
+
) # (N, S-1, 4, 3)
|
350 |
+
model_foot_v[~static_idx] = 0
|
351 |
+
foot_loss = self.vectices_loss(
|
352 |
+
model_foot_v, torch.zeros_like(model_foot_v)
|
353 |
+
)
|
354 |
+
self.tracker.update_meter("foot", "val", foot_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
|
355 |
+
self.tracker.update_meter("ver", "val", vectices_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
|
356 |
+
if "VQVAE" in self.args.g_name:
|
357 |
+
loss_embedding = net_out["embedding_loss"]
|
358 |
+
self.tracker.update_meter("com", "val", loss_embedding.item())
|
359 |
+
#g_loss_final += vectices_loss*self.args.rec_weight*self.args.rec_ver_weight
|
360 |
+
if self.args.debug:
|
361 |
+
if its == 1: break
|
362 |
+
self.val_recording(epoch)
|
363 |
+
|
364 |
+
def test(self, epoch):
|
365 |
+
results_save_path = self.checkpoint_path + f"/{epoch}/"
|
366 |
+
if os.path.exists(results_save_path):
|
367 |
+
return 0
|
368 |
+
os.makedirs(results_save_path)
|
369 |
+
start_time = time.time()
|
370 |
+
total_length = 0
|
371 |
+
test_seq_list = self.test_data.selected_file
|
372 |
+
self.model.eval()
|
373 |
+
with torch.no_grad():
|
374 |
+
for its, dict_data in enumerate(self.test_loader):
|
375 |
+
tar_pose_raw = dict_data["pose"]
|
376 |
+
tar_trans = dict_data["trans"].to(self.rank)
|
377 |
+
tar_pose = tar_pose_raw[:, :, :27].cuda()
|
378 |
+
tar_contact = tar_pose_raw[:, :, 27:31].cuda()
|
379 |
+
# tar_pose = tar_pose.cuda()
|
380 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
381 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
382 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
383 |
+
remain = n%self.args.pose_length
|
384 |
+
tar_pose = tar_pose[:, :n-remain, :]
|
385 |
+
tar_contact = tar_contact[:, :n-remain, :]
|
386 |
+
tar_trans_copy = tar_trans[:, :n-remain, :]
|
387 |
+
tar_contact_copy = tar_contact
|
388 |
+
in_tar_pose = torch.cat([tar_pose, tar_trans_copy, tar_contact_copy], dim=-1)
|
389 |
+
#print(tar_pose.shape)
|
390 |
+
if True:
|
391 |
+
net_out = self.model(in_tar_pose)
|
392 |
+
rec_pose = net_out["rec_pose"][:, :, :j*6]
|
393 |
+
rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3] - net_out["rec_pose"][:, :, j*6:j*6+3]
|
394 |
+
# print(rec_trans.shape)
|
395 |
+
rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
|
396 |
+
rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
|
397 |
+
rec_y_trans = rec_trans[:,:,1:2]
|
398 |
+
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
399 |
+
n = rec_pose.shape[1]
|
400 |
+
rec_trans = rec_trans.cpu().numpy().reshape(bs*n, 3)
|
401 |
+
tar_pose = tar_pose[:, :n, :]
|
402 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
403 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
|
404 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
405 |
+
rec_pose = rec_pose.cpu().numpy()
|
406 |
+
else:
|
407 |
+
pass
|
408 |
+
# for i in range(tar_pose.shape[1]//(self.args.vae_test_len)):
|
409 |
+
# tar_pose_new = tar_pose[:,i*(self.args.vae_test_len):i*(self.args.vae_test_len)+self.args.vae_test_len,:]
|
410 |
+
# net_out = self.model(**dict(inputs=tar_pose_new))
|
411 |
+
# rec_pose = net_out["rec_pose"]
|
412 |
+
# rec_pose = (rec_pose.reshape(rec_pose.shape[0], rec_pose.shape[1], -1, 6) * self.joint_level_mask_cuda).reshape(rec_pose.shape[0], rec_pose.shape[1], -1)
|
413 |
+
# if "rot6d" in self.args.pose_rep:
|
414 |
+
# rec_pose = data_transfer.rotation_6d_to_matrix(rec_pose.reshape(tar_pose.shape[0], self.args.vae_test_len, -1, 6))
|
415 |
+
# rec_pose = data_transfer.matrix_to_euler_angles(rec_pose, "XYZ").reshape(rec_pose.shape[0], rec_pose.shape[1], -1)
|
416 |
+
# if "smplx" not in self.args.pose_rep:
|
417 |
+
# rec_pose = torch.rad2deg(rec_pose)
|
418 |
+
# rec_pose = rec_pose * self.joint_mask_cuda
|
419 |
+
|
420 |
+
# out_sub = rec_pose.cpu().numpy().reshape(-1, rec_pose.shape[2])
|
421 |
+
# if i != 0:
|
422 |
+
# out_final = np.concatenate((out_final,out_sub), 0)
|
423 |
+
# else:
|
424 |
+
# out_final = out_sub
|
425 |
+
|
426 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
427 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
428 |
+
tar_pose = tar_pose.cpu().numpy()
|
429 |
+
|
430 |
+
total_length += n
|
431 |
+
# --- save --- #
|
432 |
+
if 'smplx' in self.args.pose_rep:
|
433 |
+
gt_npz = np.load(self.args.data_path+self.args.pose_rep+"/"+test_seq_list.iloc[its]['id']+'.npz', allow_pickle=True)
|
434 |
+
stride = int(30 / self.args.pose_fps)
|
435 |
+
tar_pose = self.inverse_selection(tar_pose, self.test_data.joint_mask, tar_pose.shape[0])
|
436 |
+
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
437 |
+
betas=gt_npz["betas"],
|
438 |
+
poses=tar_pose[:n],
|
439 |
+
expressions=gt_npz["expressions"]-gt_npz["expressions"],
|
440 |
+
trans=rec_trans-rec_trans,
|
441 |
+
model='smplx2020',
|
442 |
+
gender='neutral',
|
443 |
+
mocap_frame_rate = 30 ,
|
444 |
+
)
|
445 |
+
rec_pose = self.inverse_selection(rec_pose, self.test_data.joint_mask, rec_pose.shape[0])
|
446 |
+
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
447 |
+
betas=gt_npz["betas"],
|
448 |
+
poses=rec_pose,
|
449 |
+
expressions=gt_npz["expressions"]-gt_npz["expressions"],
|
450 |
+
trans=rec_trans-rec_trans,
|
451 |
+
model='smplx2020',
|
452 |
+
gender='neutral',
|
453 |
+
mocap_frame_rate = 30 ,
|
454 |
+
)
|
455 |
+
else:
|
456 |
+
rec_pose = rc.axis_angle_to_matrix(torch.from_numpy(rec_pose.reshape(bs*n, j, 3)))
|
457 |
+
rec_pose = np.rad2deg(rc.matrix_to_euler_angles(rec_pose, "XYZ")).reshape(bs*n, j*3).numpy()
|
458 |
+
tar_pose = rc.axis_angle_to_matrix(torch.from_numpy(tar_pose.reshape(bs*n, j, 3)))
|
459 |
+
tar_pose = np.rad2deg(rc.matrix_to_euler_angles(tar_pose, "XYZ")).reshape(bs*n, j*3).numpy()
|
460 |
+
#trans="0.000000 0.000000 0.000000"
|
461 |
+
|
462 |
+
with open(f"{self.args.data_path}{self.args.pose_rep}/{test_seq_list.iloc[its]['id']}.bvh", "r") as f_demo:
|
463 |
+
with open(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.bvh', 'w+') as f_gt:
|
464 |
+
with open(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.bvh', 'w+') as f_real:
|
465 |
+
for i, line_data in enumerate(f_demo.readlines()):
|
466 |
+
if i < 431:
|
467 |
+
f_real.write(line_data)
|
468 |
+
f_gt.write(line_data)
|
469 |
+
else: break
|
470 |
+
for line_id in range(n): #,args.pre_frames, args.pose_length
|
471 |
+
line_data = np.array2string(rec_pose[line_id], max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
|
472 |
+
f_real.write(line_data[1:-2]+'\n')
|
473 |
+
for line_id in range(n): #,args.pre_frames, args.pose_length
|
474 |
+
line_data = np.array2string(tar_pose[line_id], max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
|
475 |
+
f_gt.write(line_data[1:-2]+'\n')
|
476 |
+
# with open(results_save_path+"gt_"+test_seq_list[its]+'.pkl', 'wb') as fw:
|
477 |
+
# pickle.dump(new_dict, fw)
|
478 |
+
# #new_dict2["fullpose"] = out_final
|
479 |
+
# with open(results_save_path+"res_"+test_seq_list[its]+'.pkl', 'wb') as fw1:
|
480 |
+
# pickle.dump(new_dict2, fw1)
|
481 |
+
|
482 |
+
# other_tools.render_one_sequence(
|
483 |
+
# results_save_path+"res_"+test_seq_list[its]+'.pkl',
|
484 |
+
# results_save_path+"gt_"+test_seq_list[its]+'.pkl',
|
485 |
+
# results_save_path,
|
486 |
+
# self.args.data_path + self.args.test_data_path + 'wave16k/' + test_seq_list[its]+'.npy',
|
487 |
+
# )
|
488 |
+
|
489 |
+
#if its == 1:break
|
490 |
+
end_time = time.time() - start_time
|
491 |
+
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
|
app.py
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
# os.system("Xvfb :99 -ac &")
|
4 |
+
# os.environ["DISPLAY"] = ":99"
|
5 |
+
import OpenGL.GL as gl
|
6 |
+
os.environ["PYOPENGL_PLATFORM"] = "egl"
|
7 |
+
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
|
8 |
+
import signal
|
9 |
+
import time
|
10 |
+
import csv
|
11 |
+
import sys
|
12 |
+
import warnings
|
13 |
+
import random
|
14 |
+
import gradio as gr
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torch.distributed as dist
|
19 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
20 |
+
import torch.multiprocessing as mp
|
21 |
+
import numpy as np
|
22 |
+
import time
|
23 |
+
import pprint
|
24 |
+
from loguru import logger
|
25 |
+
import smplx
|
26 |
+
from torch.utils.tensorboard import SummaryWriter
|
27 |
+
import wandb
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
from utils import config, logger_tools, other_tools_hf, metric, data_transfer
|
30 |
+
from dataloaders import data_tools
|
31 |
+
from dataloaders.build_vocab import Vocab
|
32 |
+
from optimizers.optim_factory import create_optimizer
|
33 |
+
from optimizers.scheduler_factory import create_scheduler
|
34 |
+
from optimizers.loss_factory import get_loss_func
|
35 |
+
from dataloaders.data_tools import joints_list
|
36 |
+
from utils import rotation_conversions as rc
|
37 |
+
import soundfile as sf
|
38 |
+
import librosa
|
39 |
+
|
40 |
+
def inverse_selection_tensor(filtered_t, selection_array, n):
|
41 |
+
selection_array = torch.from_numpy(selection_array).cuda()
|
42 |
+
original_shape_t = torch.zeros((n, 165)).cuda()
|
43 |
+
selected_indices = torch.where(selection_array == 1)[0]
|
44 |
+
for i in range(n):
|
45 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
46 |
+
return original_shape_t
|
47 |
+
|
48 |
+
@spaces.GPU(duration=120)
|
49 |
+
def test_demo_gpu(
|
50 |
+
model, vq_model_face, vq_model_upper, vq_model_hands, vq_model_lower, global_motion, smplx_model,
|
51 |
+
dict_data,
|
52 |
+
args,
|
53 |
+
joints, joint_mask_upper, joint_mask_lower, joint_mask_hands,
|
54 |
+
log_softmax,
|
55 |
+
):
|
56 |
+
rank = 0
|
57 |
+
other_tools_hf.load_checkpoints(vq_model_face, args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name)
|
58 |
+
other_tools_hf.load_checkpoints(vq_model_upper, args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name)
|
59 |
+
other_tools_hf.load_checkpoints(vq_model_hands, args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name)
|
60 |
+
other_tools_hf.load_checkpoints(vq_model_lower, args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name)
|
61 |
+
other_tools_hf.load_checkpoints(global_motion, args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name)
|
62 |
+
other_tools_hf.load_checkpoints(model, args.test_ckpt, args.g_name)
|
63 |
+
model.to(rank).eval()
|
64 |
+
smplx_model.to(rank).eval()
|
65 |
+
vq_model_face.to(rank).eval()
|
66 |
+
vq_model_upper.to(rank).eval()
|
67 |
+
vq_model_hands.to(rank).eval()
|
68 |
+
vq_model_lower.to(rank).eval()
|
69 |
+
global_motion.to(rank).eval()
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
tar_pose_raw = dict_data["pose"]
|
73 |
+
tar_pose = tar_pose_raw[:, :, :165].to(rank)
|
74 |
+
tar_contact = tar_pose_raw[:, :, 165:169].to(rank)
|
75 |
+
tar_trans = dict_data["trans"].to(rank)
|
76 |
+
tar_exps = dict_data["facial"].to(rank)
|
77 |
+
in_audio = dict_data["audio"].to(rank)
|
78 |
+
in_word = None# dict_data["word"].to(rank)
|
79 |
+
tar_beta = dict_data["beta"].to(rank)
|
80 |
+
tar_id = dict_data["id"].to(rank).long()
|
81 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints
|
82 |
+
|
83 |
+
tar_pose_jaw = tar_pose[:, :, 66:69]
|
84 |
+
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
|
85 |
+
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
|
86 |
+
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
|
87 |
+
|
88 |
+
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
|
89 |
+
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
|
90 |
+
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
|
91 |
+
|
92 |
+
tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)]
|
93 |
+
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
|
94 |
+
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
|
95 |
+
|
96 |
+
tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)]
|
97 |
+
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
|
98 |
+
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
|
99 |
+
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
|
100 |
+
|
101 |
+
# tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
102 |
+
# tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
103 |
+
tar4dis = torch.cat([tar_pose_jaw, tar_pose_upper, tar_pose_hands, tar_pose_leg], dim=2)
|
104 |
+
|
105 |
+
tar_index_value_face_top = vq_model_face.map2index(tar_pose_face) # bs*n/4
|
106 |
+
tar_index_value_upper_top = vq_model_upper.map2index(tar_pose_upper) # bs*n/4
|
107 |
+
tar_index_value_hands_top = vq_model_hands.map2index(tar_pose_hands) # bs*n/4
|
108 |
+
tar_index_value_lower_top = vq_model_lower.map2index(tar_pose_lower) # bs*n/4
|
109 |
+
|
110 |
+
latent_face_top = vq_model_face.map2latent(tar_pose_face) # bs*n/4
|
111 |
+
latent_upper_top = vq_model_upper.map2latent(tar_pose_upper) # bs*n/4
|
112 |
+
latent_hands_top = vq_model_hands.map2latent(tar_pose_hands) # bs*n/4
|
113 |
+
latent_lower_top = vq_model_lower.map2latent(tar_pose_lower) # bs*n/4
|
114 |
+
|
115 |
+
latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2)
|
116 |
+
|
117 |
+
index_in = torch.stack([tar_index_value_upper_top, tar_index_value_hands_top, tar_index_value_lower_top], dim=-1).long()
|
118 |
+
|
119 |
+
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
|
120 |
+
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
|
121 |
+
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
|
122 |
+
|
123 |
+
loaded_data = {
|
124 |
+
"tar_pose_jaw": tar_pose_jaw,
|
125 |
+
"tar_pose_face": tar_pose_face,
|
126 |
+
"tar_pose_upper": tar_pose_upper,
|
127 |
+
"tar_pose_lower": tar_pose_lower,
|
128 |
+
"tar_pose_hands": tar_pose_hands,
|
129 |
+
'tar_pose_leg': tar_pose_leg,
|
130 |
+
"in_audio": in_audio,
|
131 |
+
"in_word": in_word,
|
132 |
+
"tar_trans": tar_trans,
|
133 |
+
"tar_exps": tar_exps,
|
134 |
+
"tar_beta": tar_beta,
|
135 |
+
"tar_pose": tar_pose,
|
136 |
+
"tar4dis": tar4dis,
|
137 |
+
"tar_index_value_face_top": tar_index_value_face_top,
|
138 |
+
"tar_index_value_upper_top": tar_index_value_upper_top,
|
139 |
+
"tar_index_value_hands_top": tar_index_value_hands_top,
|
140 |
+
"tar_index_value_lower_top": tar_index_value_lower_top,
|
141 |
+
"latent_face_top": latent_face_top,
|
142 |
+
"latent_upper_top": latent_upper_top,
|
143 |
+
"latent_hands_top": latent_hands_top,
|
144 |
+
"latent_lower_top": latent_lower_top,
|
145 |
+
"latent_in": latent_in,
|
146 |
+
"index_in": index_in,
|
147 |
+
"tar_id": tar_id,
|
148 |
+
"latent_all": latent_all,
|
149 |
+
"tar_pose_6d": tar_pose_6d,
|
150 |
+
"tar_contact": tar_contact,
|
151 |
+
}
|
152 |
+
|
153 |
+
mode = 'test'
|
154 |
+
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], joints
|
155 |
+
tar_pose = loaded_data["tar_pose"]
|
156 |
+
tar_beta = loaded_data["tar_beta"]
|
157 |
+
in_word =None# loaded_data["in_word"]
|
158 |
+
tar_exps = loaded_data["tar_exps"]
|
159 |
+
tar_contact = loaded_data["tar_contact"]
|
160 |
+
in_audio = loaded_data["in_audio"]
|
161 |
+
tar_trans = loaded_data["tar_trans"]
|
162 |
+
|
163 |
+
remain = n%8
|
164 |
+
if remain != 0:
|
165 |
+
tar_pose = tar_pose[:, :-remain, :]
|
166 |
+
tar_beta = tar_beta[:, :-remain, :]
|
167 |
+
tar_trans = tar_trans[:, :-remain, :]
|
168 |
+
# in_word = in_word[:, :-remain]
|
169 |
+
tar_exps = tar_exps[:, :-remain, :]
|
170 |
+
tar_contact = tar_contact[:, :-remain, :]
|
171 |
+
n = n - remain
|
172 |
+
|
173 |
+
tar_pose_jaw = tar_pose[:, :, 66:69]
|
174 |
+
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
|
175 |
+
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
|
176 |
+
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
|
177 |
+
|
178 |
+
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
|
179 |
+
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
|
180 |
+
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
|
181 |
+
|
182 |
+
tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)]
|
183 |
+
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
|
184 |
+
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
|
185 |
+
|
186 |
+
tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)]
|
187 |
+
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
|
188 |
+
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
|
189 |
+
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
|
190 |
+
|
191 |
+
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
|
192 |
+
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
|
193 |
+
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
|
194 |
+
|
195 |
+
rec_index_all_face = []
|
196 |
+
rec_index_all_upper = []
|
197 |
+
rec_index_all_lower = []
|
198 |
+
rec_index_all_hands = []
|
199 |
+
|
200 |
+
roundt = (n - args.pre_frames) // (args.pose_length - args.pre_frames)
|
201 |
+
remain = (n - args.pre_frames) % (args.pose_length - args.pre_frames)
|
202 |
+
round_l = args.pose_length - args.pre_frames
|
203 |
+
|
204 |
+
for i in range(0, roundt):
|
205 |
+
# in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+args.pre_frames]
|
206 |
+
# audio fps is 16000 and pose fps is 30
|
207 |
+
in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*args.pre_frames]
|
208 |
+
in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+args.pre_frames]
|
209 |
+
mask_val = torch.ones(bs, args.pose_length, args.pose_dims+3+4).float().cuda()
|
210 |
+
mask_val[:, :args.pre_frames, :] = 0.0
|
211 |
+
if i == 0:
|
212 |
+
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :]
|
213 |
+
else:
|
214 |
+
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :]
|
215 |
+
# print(latent_all_tmp.shape, latent_last.shape)
|
216 |
+
latent_all_tmp[:, :args.pre_frames, :] = latent_last[:, -args.pre_frames:, :]
|
217 |
+
|
218 |
+
net_out_val = model(
|
219 |
+
in_audio = in_audio_tmp,
|
220 |
+
in_word=None, #in_word_tmp,
|
221 |
+
mask=mask_val,
|
222 |
+
in_motion = latent_all_tmp,
|
223 |
+
in_id = in_id_tmp,
|
224 |
+
use_attentions=True,)
|
225 |
+
|
226 |
+
if args.cu != 0:
|
227 |
+
rec_index_upper = log_softmax(net_out_val["cls_upper"]).reshape(-1, args.vae_codebook_size)
|
228 |
+
_, rec_index_upper = torch.max(rec_index_upper.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
|
229 |
+
#rec_upper = vq_model_upper.decode(rec_index_upper)
|
230 |
+
else:
|
231 |
+
_, rec_index_upper, _, _ = vq_model_upper.quantizer(net_out_val["rec_upper"])
|
232 |
+
#rec_upper = vq_model_upper.decoder(rec_index_upper)
|
233 |
+
if args.cl != 0:
|
234 |
+
rec_index_lower = log_softmax(net_out_val["cls_lower"]).reshape(-1, args.vae_codebook_size)
|
235 |
+
_, rec_index_lower = torch.max(rec_index_lower.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
|
236 |
+
#rec_lower = vq_model_lower.decode(rec_index_lower)
|
237 |
+
else:
|
238 |
+
_, rec_index_lower, _, _ = vq_model_lower.quantizer(net_out_val["rec_lower"])
|
239 |
+
#rec_lower = vq_model_lower.decoder(rec_index_lower)
|
240 |
+
if args.ch != 0:
|
241 |
+
rec_index_hands = log_softmax(net_out_val["cls_hands"]).reshape(-1, args.vae_codebook_size)
|
242 |
+
_, rec_index_hands = torch.max(rec_index_hands.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
|
243 |
+
#rec_hands = vq_model_hands.decode(rec_index_hands)
|
244 |
+
else:
|
245 |
+
_, rec_index_hands, _, _ = vq_model_hands.quantizer(net_out_val["rec_hands"])
|
246 |
+
#rec_hands = vq_model_hands.decoder(rec_index_hands)
|
247 |
+
if args.cf != 0:
|
248 |
+
rec_index_face = log_softmax(net_out_val["cls_face"]).reshape(-1, args.vae_codebook_size)
|
249 |
+
_, rec_index_face = torch.max(rec_index_face.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
|
250 |
+
#rec_face = vq_model_face.decoder(rec_index_face)
|
251 |
+
else:
|
252 |
+
_, rec_index_face, _, _ = vq_model_face.quantizer(net_out_val["rec_face"])
|
253 |
+
#rec_face = vq_model_face.decoder(rec_index_face)
|
254 |
+
|
255 |
+
if i == 0:
|
256 |
+
rec_index_all_face.append(rec_index_face)
|
257 |
+
rec_index_all_upper.append(rec_index_upper)
|
258 |
+
rec_index_all_lower.append(rec_index_lower)
|
259 |
+
rec_index_all_hands.append(rec_index_hands)
|
260 |
+
else:
|
261 |
+
rec_index_all_face.append(rec_index_face[:, args.pre_frames:])
|
262 |
+
rec_index_all_upper.append(rec_index_upper[:, args.pre_frames:])
|
263 |
+
rec_index_all_lower.append(rec_index_lower[:, args.pre_frames:])
|
264 |
+
rec_index_all_hands.append(rec_index_hands[:, args.pre_frames:])
|
265 |
+
|
266 |
+
if args.cu != 0:
|
267 |
+
rec_upper_last = vq_model_upper.decode(rec_index_upper)
|
268 |
+
else:
|
269 |
+
rec_upper_last = vq_model_upper.decoder(rec_index_upper)
|
270 |
+
if args.cl != 0:
|
271 |
+
rec_lower_last = vq_model_lower.decode(rec_index_lower)
|
272 |
+
else:
|
273 |
+
rec_lower_last = vq_model_lower.decoder(rec_index_lower)
|
274 |
+
if args.ch != 0:
|
275 |
+
rec_hands_last = vq_model_hands.decode(rec_index_hands)
|
276 |
+
else:
|
277 |
+
rec_hands_last = vq_model_hands.decoder(rec_index_hands)
|
278 |
+
# if args.cf != 0:
|
279 |
+
# rec_face_last = vq_model_face.decode(rec_index_face)
|
280 |
+
# else:
|
281 |
+
# rec_face_last = vq_model_face.decoder(rec_index_face)
|
282 |
+
|
283 |
+
rec_pose_legs = rec_lower_last[:, :, :54]
|
284 |
+
bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1]
|
285 |
+
rec_pose_upper = rec_upper_last.reshape(bs, n, 13, 6)
|
286 |
+
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
|
287 |
+
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
|
288 |
+
rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n)
|
289 |
+
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
|
290 |
+
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
|
291 |
+
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
|
292 |
+
rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n)
|
293 |
+
rec_pose_hands = rec_hands_last.reshape(bs, n, 30, 6)
|
294 |
+
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
|
295 |
+
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
|
296 |
+
rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n)
|
297 |
+
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
|
298 |
+
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, j, 3))
|
299 |
+
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
|
300 |
+
rec_trans_v_s = rec_lower_last[:, :, 54:57]
|
301 |
+
rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1])
|
302 |
+
rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3])
|
303 |
+
rec_y_trans = rec_trans_v_s[:,:,1:2]
|
304 |
+
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
305 |
+
latent_last = torch.cat([rec_pose, rec_trans, rec_lower_last[:, :, 57:61]], dim=-1)
|
306 |
+
|
307 |
+
rec_index_face = torch.cat(rec_index_all_face, dim=1)
|
308 |
+
rec_index_upper = torch.cat(rec_index_all_upper, dim=1)
|
309 |
+
rec_index_lower = torch.cat(rec_index_all_lower, dim=1)
|
310 |
+
rec_index_hands = torch.cat(rec_index_all_hands, dim=1)
|
311 |
+
if args.cu != 0:
|
312 |
+
rec_upper = vq_model_upper.decode(rec_index_upper)
|
313 |
+
else:
|
314 |
+
rec_upper = vq_model_upper.decoder(rec_index_upper)
|
315 |
+
if args.cl != 0:
|
316 |
+
rec_lower = vq_model_lower.decode(rec_index_lower)
|
317 |
+
else:
|
318 |
+
rec_lower = vq_model_lower.decoder(rec_index_lower)
|
319 |
+
if args.ch != 0:
|
320 |
+
rec_hands = vq_model_hands.decode(rec_index_hands)
|
321 |
+
else:
|
322 |
+
rec_hands = vq_model_hands.decoder(rec_index_hands)
|
323 |
+
if args.cf != 0:
|
324 |
+
rec_face = vq_model_face.decode(rec_index_face)
|
325 |
+
else:
|
326 |
+
rec_face = vq_model_face.decoder(rec_index_face)
|
327 |
+
|
328 |
+
rec_exps = rec_face[:, :, 6:]
|
329 |
+
rec_pose_jaw = rec_face[:, :, :6]
|
330 |
+
rec_pose_legs = rec_lower[:, :, :54]
|
331 |
+
bs, n = rec_pose_jaw.shape[0], rec_pose_jaw.shape[1]
|
332 |
+
rec_pose_upper = rec_upper.reshape(bs, n, 13, 6)
|
333 |
+
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
|
334 |
+
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
|
335 |
+
rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n)
|
336 |
+
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
|
337 |
+
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
|
338 |
+
rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6)
|
339 |
+
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
|
340 |
+
rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n)
|
341 |
+
rec_pose_hands = rec_hands.reshape(bs, n, 30, 6)
|
342 |
+
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
|
343 |
+
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
|
344 |
+
rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n)
|
345 |
+
rec_pose_jaw = rec_pose_jaw.reshape(bs*n, 6)
|
346 |
+
rec_pose_jaw = rc.rotation_6d_to_matrix(rec_pose_jaw)
|
347 |
+
rec_pose_jaw = rc.matrix_to_axis_angle(rec_pose_jaw).reshape(bs*n, 1*3)
|
348 |
+
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
|
349 |
+
rec_pose[:, 66:69] = rec_pose_jaw
|
350 |
+
|
351 |
+
to_global = rec_lower
|
352 |
+
to_global[:, :, 54:57] = 0.0
|
353 |
+
to_global[:, :, :54] = rec_lower2global
|
354 |
+
rec_global = global_motion(to_global)
|
355 |
+
|
356 |
+
rec_trans_v_s = rec_global["rec_pose"][:, :, 54:57]
|
357 |
+
rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1])
|
358 |
+
rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3])
|
359 |
+
rec_y_trans = rec_trans_v_s[:,:,1:2]
|
360 |
+
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
|
361 |
+
tar_pose = tar_pose[:, :n, :]
|
362 |
+
tar_exps = tar_exps[:, :n, :]
|
363 |
+
tar_trans = tar_trans[:, :n, :]
|
364 |
+
tar_beta = tar_beta[:, :n, :]
|
365 |
+
|
366 |
+
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3))
|
367 |
+
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
|
368 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3))
|
369 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
370 |
+
|
371 |
+
net_out = {
|
372 |
+
'rec_pose': rec_pose,
|
373 |
+
'rec_trans': rec_trans,
|
374 |
+
'tar_pose': tar_pose,
|
375 |
+
'tar_exps': tar_exps,
|
376 |
+
'tar_beta': tar_beta,
|
377 |
+
'tar_trans': tar_trans,
|
378 |
+
'rec_exps': rec_exps,
|
379 |
+
}
|
380 |
+
|
381 |
+
|
382 |
+
tar_pose = net_out['tar_pose']
|
383 |
+
rec_pose = net_out['rec_pose']
|
384 |
+
tar_exps = net_out['tar_exps']
|
385 |
+
tar_beta = net_out['tar_beta']
|
386 |
+
rec_trans = net_out['rec_trans']
|
387 |
+
tar_trans = net_out['tar_trans']
|
388 |
+
rec_exps = net_out['rec_exps']
|
389 |
+
# print(rec_pose.shape, tar_pose.shape)
|
390 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints
|
391 |
+
# interpolate to 30fps
|
392 |
+
if (30/args.pose_fps) != 1:
|
393 |
+
assert 30%args.pose_fps == 0
|
394 |
+
n *= int(30/args.pose_fps)
|
395 |
+
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1)
|
396 |
+
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1)
|
397 |
+
|
398 |
+
# print(rec_pose.shape, tar_pose.shape)
|
399 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
|
400 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
401 |
+
|
402 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
|
403 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
404 |
+
|
405 |
+
return tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j
|
406 |
+
|
407 |
+
|
408 |
+
class BaseTrainer(object):
|
409 |
+
def __init__(self, args, sp, ap, tp):
|
410 |
+
hf_dir = "hf"
|
411 |
+
if not os.path.exists(args.out_path + "custom/" + hf_dir + "/"):
|
412 |
+
os.makedirs(args.out_path + "custom/" + hf_dir + "/")
|
413 |
+
sf.write(args.out_path + "custom/" + hf_dir + "/tmp.wav", ap[1][:ap[0]*8], ap[0])
|
414 |
+
self.audio_path = args.out_path + "custom/" + hf_dir + "/tmp.wav"
|
415 |
+
audio, ssr = librosa.load(self.audio_path)
|
416 |
+
ap = (ssr, audio)
|
417 |
+
self.args = args
|
418 |
+
self.rank = 0 # dist.get_rank()
|
419 |
+
|
420 |
+
#self.checkpoint_path = args.out_path + "custom/" + args.name + args.notes + "/" #wandb.run.dir #args.cache_path+args.out_path+"/"+args.name
|
421 |
+
self.checkpoint_path = args.out_path + "custom/" + hf_dir + "/"
|
422 |
+
if self.rank == 0:
|
423 |
+
self.test_data = __import__(f"dataloaders.{args.dataset}", fromlist=["something"]).CustomDataset(args, "test", smplx_path=sp, audio_path=ap, text_path=tp)
|
424 |
+
self.test_loader = torch.utils.data.DataLoader(
|
425 |
+
self.test_data,
|
426 |
+
batch_size=1,
|
427 |
+
shuffle=False,
|
428 |
+
num_workers=args.loader_workers,
|
429 |
+
drop_last=False,
|
430 |
+
)
|
431 |
+
logger.info(f"Init test dataloader success")
|
432 |
+
model_module = __import__(f"models.{args.model}", fromlist=["something"])
|
433 |
+
|
434 |
+
if args.ddp:
|
435 |
+
self.model = getattr(model_module, args.g_name)(args).to(self.rank)
|
436 |
+
process_group = torch.distributed.new_group()
|
437 |
+
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model, process_group)
|
438 |
+
self.model = DDP(self.model, device_ids=[self.rank], output_device=self.rank,
|
439 |
+
broadcast_buffers=False, find_unused_parameters=False)
|
440 |
+
else:
|
441 |
+
self.model = torch.nn.DataParallel(getattr(model_module, args.g_name)(args), args.gpus).cpu()
|
442 |
+
|
443 |
+
if self.rank == 0:
|
444 |
+
logger.info(self.model)
|
445 |
+
logger.info(f"init {args.g_name} success")
|
446 |
+
|
447 |
+
self.smplx = smplx.create(
|
448 |
+
self.args.data_path_1+"smplx_models/",
|
449 |
+
model_type='smplx',
|
450 |
+
gender='NEUTRAL_2020',
|
451 |
+
use_face_contour=False,
|
452 |
+
num_betas=300,
|
453 |
+
num_expression_coeffs=100,
|
454 |
+
ext='npz',
|
455 |
+
use_pca=False,
|
456 |
+
)
|
457 |
+
|
458 |
+
self.args = args
|
459 |
+
self.joints = self.test_data.joints
|
460 |
+
self.ori_joint_list = joints_list[self.args.ori_joints]
|
461 |
+
self.tar_joint_list_face = joints_list["beat_smplx_face"]
|
462 |
+
self.tar_joint_list_upper = joints_list["beat_smplx_upper"]
|
463 |
+
self.tar_joint_list_hands = joints_list["beat_smplx_hands"]
|
464 |
+
self.tar_joint_list_lower = joints_list["beat_smplx_lower"]
|
465 |
+
|
466 |
+
self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
467 |
+
self.joints = 55
|
468 |
+
for joint_name in self.tar_joint_list_face:
|
469 |
+
self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
470 |
+
self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
471 |
+
for joint_name in self.tar_joint_list_upper:
|
472 |
+
self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
473 |
+
self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
474 |
+
for joint_name in self.tar_joint_list_hands:
|
475 |
+
self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
476 |
+
self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
477 |
+
for joint_name in self.tar_joint_list_lower:
|
478 |
+
self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
479 |
+
|
480 |
+
self.tracker = other_tools_hf.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False,False,False])
|
481 |
+
|
482 |
+
vq_model_module = __import__(f"models.motion_representation", fromlist=["something"])
|
483 |
+
self.args.vae_layer = 2
|
484 |
+
self.args.vae_length = 256
|
485 |
+
self.args.vae_test_dim = 106
|
486 |
+
self.vq_model_face = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
|
487 |
+
# print(self.vq_model_face)
|
488 |
+
# other_tools_hf.load_checkpoints(self.vq_model_face, self.args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name)
|
489 |
+
self.args.vae_test_dim = 78
|
490 |
+
self.vq_model_upper = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
|
491 |
+
# other_tools_hf.load_checkpoints(self.vq_model_upper, self.args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name)
|
492 |
+
self.args.vae_test_dim = 180
|
493 |
+
self.vq_model_hands = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
|
494 |
+
# other_tools_hf.load_checkpoints(self.vq_model_hands, self.args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name)
|
495 |
+
self.args.vae_test_dim = 61
|
496 |
+
self.args.vae_layer = 4
|
497 |
+
self.vq_model_lower = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
|
498 |
+
# other_tools_hf.load_checkpoints(self.vq_model_lower, self.args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name)
|
499 |
+
self.args.vae_test_dim = 61
|
500 |
+
self.args.vae_layer = 4
|
501 |
+
self.global_motion = getattr(vq_model_module, "VAEConvZero")(self.args).cpu()
|
502 |
+
# other_tools_hf.load_checkpoints(self.global_motion, self.args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name)
|
503 |
+
self.args.vae_test_dim = 330
|
504 |
+
self.args.vae_layer = 4
|
505 |
+
self.args.vae_length = 240
|
506 |
+
|
507 |
+
# self.cls_loss = nn.NLLLoss().to(self.rank)
|
508 |
+
# self.reclatent_loss = nn.MSELoss().to(self.rank)
|
509 |
+
# self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank)
|
510 |
+
# self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank)
|
511 |
+
self.log_softmax = nn.LogSoftmax(dim=2)
|
512 |
+
|
513 |
+
|
514 |
+
def inverse_selection(self, filtered_t, selection_array, n):
|
515 |
+
original_shape_t = np.zeros((n, selection_array.size))
|
516 |
+
selected_indices = np.where(selection_array == 1)[0]
|
517 |
+
for i in range(n):
|
518 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
519 |
+
return original_shape_t
|
520 |
+
|
521 |
+
def inverse_selection_tensor(self, filtered_t, selection_array, n):
|
522 |
+
selection_array = torch.from_numpy(selection_array).cuda()
|
523 |
+
original_shape_t = torch.zeros((n, 165)).cuda()
|
524 |
+
selected_indices = torch.where(selection_array == 1)[0]
|
525 |
+
for i in range(n):
|
526 |
+
original_shape_t[i, selected_indices] = filtered_t[i]
|
527 |
+
return original_shape_t
|
528 |
+
|
529 |
+
|
530 |
+
def test_demo(self, epoch):
|
531 |
+
'''
|
532 |
+
input audio and text, output motion
|
533 |
+
do not calculate loss and metric
|
534 |
+
save video
|
535 |
+
'''
|
536 |
+
results_save_path = self.checkpoint_path + f"/{epoch}/"
|
537 |
+
if os.path.exists(results_save_path):
|
538 |
+
import shutil
|
539 |
+
shutil.rmtree(results_save_path)
|
540 |
+
os.makedirs(results_save_path)
|
541 |
+
start_time = time.time()
|
542 |
+
total_length = 0
|
543 |
+
test_seq_list = self.test_data.selected_file
|
544 |
+
align = 0
|
545 |
+
latent_out = []
|
546 |
+
latent_ori = []
|
547 |
+
l2_all = 0
|
548 |
+
lvel = 0
|
549 |
+
for its, batch_data in enumerate(self.test_loader):
|
550 |
+
tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j = test_demo_gpu(
|
551 |
+
self.model, self.vq_model_face, self.vq_model_upper, self.vq_model_hands, self.vq_model_lower, self.global_motion, self.smplx,
|
552 |
+
batch_data,
|
553 |
+
self.args,
|
554 |
+
self.joints, self.joint_mask_upper, self.joint_mask_lower, self.joint_mask_hands,
|
555 |
+
self.log_softmax,
|
556 |
+
)
|
557 |
+
|
558 |
+
tar_pose_np = tar_pose.detach().cpu().numpy()
|
559 |
+
rec_pose_np = rec_pose.detach().cpu().numpy()
|
560 |
+
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
|
561 |
+
rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100)
|
562 |
+
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
|
563 |
+
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
|
564 |
+
#'''
|
565 |
+
# its = 0
|
566 |
+
gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True)
|
567 |
+
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
568 |
+
betas=gt_npz["betas"],
|
569 |
+
poses=tar_pose_np,
|
570 |
+
expressions=tar_exp_np,
|
571 |
+
trans=tar_trans_np,
|
572 |
+
model='smplx2020',
|
573 |
+
gender='neutral',
|
574 |
+
mocap_frame_rate = 30,
|
575 |
+
)
|
576 |
+
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
577 |
+
betas=gt_npz["betas"],
|
578 |
+
poses=rec_pose_np,
|
579 |
+
expressions=rec_exp_np,
|
580 |
+
trans=rec_trans_np,
|
581 |
+
model='smplx2020',
|
582 |
+
gender='neutral',
|
583 |
+
mocap_frame_rate = 30,
|
584 |
+
)
|
585 |
+
|
586 |
+
total_length += n
|
587 |
+
render_vid_path = other_tools_hf.render_one_sequence_no_gt(
|
588 |
+
results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
589 |
+
# results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
590 |
+
results_save_path,
|
591 |
+
self.audio_path,
|
592 |
+
self.args.data_path_1+"smplx_models/",
|
593 |
+
use_matplotlib = False,
|
594 |
+
args = self.args,
|
595 |
+
)
|
596 |
+
result = gr.Video(value=render_vid_path, visible=True)
|
597 |
+
end_time = time.time() - start_time
|
598 |
+
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
|
599 |
+
return result
|
600 |
+
|
601 |
+
|
602 |
+
@logger.catch
|
603 |
+
def emage(audio_path):
|
604 |
+
smplx_path = None
|
605 |
+
text_path = None
|
606 |
+
rank = 0
|
607 |
+
world_size = 1
|
608 |
+
args = config.parse_args()
|
609 |
+
#os.environ['TRANSFORMERS_CACHE'] = args.data_path_1 + "hub/"
|
610 |
+
if not sys.warnoptions:
|
611 |
+
warnings.simplefilter("ignore")
|
612 |
+
# dist.init_process_group(backend="gloo", rank=rank, world_size=world_size)
|
613 |
+
|
614 |
+
#logger_tools.set_args_and_logger(args, rank)
|
615 |
+
other_tools_hf.set_random_seed(args)
|
616 |
+
other_tools_hf.print_exp_info(args)
|
617 |
+
|
618 |
+
# return one intance of trainer
|
619 |
+
trainer = BaseTrainer(args, sp = smplx_path, ap = audio_path, tp = text_path)
|
620 |
+
result = trainer.test_demo(999)
|
621 |
+
return result
|
622 |
+
|
623 |
+
examples = [
|
624 |
+
["./EMAGE/test_sequences/wave16k/2_scott_0_1_1.wav"],
|
625 |
+
["./EMAGE/test_sequences/wave16k/2_scott_0_2_2.wav"],
|
626 |
+
["./EMAGE/test_sequences/wave16k/2_scott_0_3_3.wav"],
|
627 |
+
]
|
628 |
+
|
629 |
+
demo = gr.Interface(
|
630 |
+
emage, # function
|
631 |
+
inputs=[
|
632 |
+
# gr.File(label="Please upload SMPL-X file with npz format here.", file_types=["npz", "NPZ"]),
|
633 |
+
gr.Audio(),
|
634 |
+
# gr.File(label="Please upload textgrid format file here.", file_types=["TextGrid", "Textgrid", "textgrid"])
|
635 |
+
], # input type
|
636 |
+
outputs=gr.Video(format="mp4", visible=True),
|
637 |
+
title='\
|
638 |
+
<div align="center">\
|
639 |
+
EMAGE: Towards Unified Holistic Co-Speech Gesture Generation via Expressive Masked Audio Gesture Modeling <br/>\
|
640 |
+
CVPR 2024 <br/>\
|
641 |
+
</div>',
|
642 |
+
description='\
|
643 |
+
<div align="center">\
|
644 |
+
Haiyang Liu1*, Zihao Zhu2*, Giorgio Becherini3, Yichen Peng4, Mingyang Su5,<br/>\
|
645 |
+
You Zhou, Xuefei Zhe, Naoya Iwamoto, Bo Zheng, Michael J. Black3 <br/>\
|
646 |
+
(*Equal Contribution) <br/>\
|
647 |
+
1The University of Tokyo, 2Keio University, 4Japan Advanced Institute of Science and Technology, <br/>\
|
648 |
+
3Max Planck Institute for Intelligent Systems, 5Tsinghua University <br/>\
|
649 |
+
</div>\
|
650 |
+
',
|
651 |
+
article="\
|
652 |
+
Due to the limited resources in this space, we process the first 8s of your uploaded audio. <br/>\
|
653 |
+
Try to develop this space locally for longer motion generation, e.g., 60s. <br/>\
|
654 |
+
Relevant links: [Project Page (https://pantomatrix.github.io/EMAGE/)\
|
655 |
+
",
|
656 |
+
examples=examples,
|
657 |
+
)
|
658 |
+
|
659 |
+
|
660 |
+
if __name__ == "__main__":
|
661 |
+
os.environ["MASTER_ADDR"]='127.0.0.1'
|
662 |
+
os.environ["MASTER_PORT"]='8675'
|
663 |
+
#os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
|
664 |
+
demo.launch(share=True)
|
camn_trainer.py
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import train
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import csv
|
5 |
+
import sys
|
6 |
+
import warnings
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
import time
|
10 |
+
import pprint
|
11 |
+
import pickle
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from torch.utils.tensorboard import SummaryWriter
|
17 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
18 |
+
from loguru import logger
|
19 |
+
import smplx
|
20 |
+
import librosa
|
21 |
+
|
22 |
+
from utils import config, logger_tools, other_tools, metric
|
23 |
+
from utils import rotation_conversions as rc
|
24 |
+
from dataloaders import data_tools
|
25 |
+
from optimizers.optim_factory import create_optimizer
|
26 |
+
from optimizers.scheduler_factory import create_scheduler
|
27 |
+
from optimizers.loss_factory import get_loss_func
|
28 |
+
from scipy.spatial.transform import Rotation
|
29 |
+
|
30 |
+
|
31 |
+
class CustomTrainer(train.BaseTrainer):
|
32 |
+
def __init__(self, args):
|
33 |
+
super().__init__(args)
|
34 |
+
self.joints = self.train_data.joints
|
35 |
+
self.tracker = other_tools.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'div_reg', "kl"], [False,True,True, False, False, False, False, False, False, False, False, False, False])
|
36 |
+
if not self.args.rot6d: #"rot6d" not in args.pose_rep:
|
37 |
+
logger.error(f"this script is for rot6d, your pose rep. is {args.pose_rep}")
|
38 |
+
self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank)
|
39 |
+
self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank)
|
40 |
+
|
41 |
+
def _load_data(self, dict_data):
|
42 |
+
tar_pose = dict_data["pose"].to(self.rank)
|
43 |
+
tar_trans = dict_data["trans"].to(self.rank)
|
44 |
+
tar_exps = dict_data["facial"].to(self.rank)
|
45 |
+
tar_beta = dict_data["beta"].to(self.rank)
|
46 |
+
tar_id = dict_data["id"].to(self.rank).long()
|
47 |
+
tar_word = dict_data["word"].to(self.rank)
|
48 |
+
in_audio = dict_data["audio"].to(self.rank)
|
49 |
+
in_emo = dict_data["emo"].to(self.rank)
|
50 |
+
#in_sem = dict_data["sem"].to(self.rank)
|
51 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
|
52 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
|
53 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
54 |
+
in_pre_pose_cat = torch.cat([tar_pose[:, 0:self.args.pre_frames], tar_trans[:, :self.args.pre_frames]], dim=2).to(self.rank)
|
55 |
+
|
56 |
+
in_pre_pose = tar_pose.new_zeros((bs, n, j*6+1+3)).to(self.rank)
|
57 |
+
in_pre_pose[:, 0:self.args.pre_frames, :-1] = in_pre_pose_cat[:, 0:self.args.pre_frames]
|
58 |
+
in_pre_pose[:, 0:self.args.pre_frames, -1] = 1
|
59 |
+
return {
|
60 |
+
"tar_pose": tar_pose,
|
61 |
+
"in_audio": in_audio,
|
62 |
+
"in_motion": in_pre_pose,
|
63 |
+
"tar_trans": tar_trans,
|
64 |
+
"tar_exps": tar_exps,
|
65 |
+
"tar_beta": tar_beta,
|
66 |
+
"tar_word": tar_word,
|
67 |
+
'tar_id': tar_id,
|
68 |
+
'in_emo': in_emo,
|
69 |
+
#'in_sem': in_sem,
|
70 |
+
}
|
71 |
+
|
72 |
+
def _d_training(self, loaded_data):
|
73 |
+
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints
|
74 |
+
net_out = self.model(in_audio = loaded_data['in_audio'], pre_seq = loaded_data["in_motion"], in_text=loaded_data["tar_word"], in_id=loaded_data["tar_id"], in_emo=loaded_data["in_emo"], in_facial = loaded_data["tar_exps"])
|
75 |
+
rec_pose = net_out["rec_pose"][:, :, :j*6]
|
76 |
+
# rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
|
77 |
+
|
78 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
79 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)
|
80 |
+
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
|
81 |
+
tar_pose = rc.rotation_6d_to_matrix(loaded_data["tar_pose"].reshape(bs, n, j, 6))
|
82 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
83 |
+
out_d_fake = self.d_model(rec_pose)
|
84 |
+
out_d_real = self.d_model(tar_pose)
|
85 |
+
|
86 |
+
d_loss_adv = torch.sum(-torch.mean(torch.log(out_d_real + 1e-8) + torch.log(1 - out_d_fake + 1e-8)))
|
87 |
+
self.tracker.update_meter("dis", "train", d_loss_adv.item())
|
88 |
+
return d_loss_adv
|
89 |
+
|
90 |
+
def _g_training(self, loaded_data, use_adv, mode="train"):
|
91 |
+
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints
|
92 |
+
net_out = self.model(in_audio = loaded_data['in_audio'], pre_seq = loaded_data["in_motion"], in_text=loaded_data["tar_word"], in_id=loaded_data["tar_id"], in_emo=loaded_data["in_emo"], in_facial = loaded_data["tar_exps"])
|
93 |
+
rec_pose = net_out["rec_pose"][:, :, :j*6]
|
94 |
+
rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
|
95 |
+
# print(rec_pose.shape, bs, n, j, loaded_data['in_audio'].shape, loaded_data["in_motion"].shape)
|
96 |
+
rec_pose = rec_pose.reshape(bs, n, j, 6)
|
97 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose)
|
98 |
+
tar_pose = rc.rotation_6d_to_matrix(loaded_data["tar_pose"].reshape(bs, n, j, 6))
|
99 |
+
|
100 |
+
rec_loss = self.rec_loss(tar_pose, rec_pose)
|
101 |
+
rec_loss *= self.args.rec_weight
|
102 |
+
self.tracker.update_meter("rec", mode, rec_loss.item())
|
103 |
+
# rec_loss_vel = self.vel_loss(rec_pose[:, 1:] - rec_pose[:, :-1], tar_pose[:, 1:] - tar_pose[:, :-1])
|
104 |
+
# self.tracker.update_meter("vel", mode, rec_loss_vel.item())
|
105 |
+
# rec_loss_acc = self.vel_loss(rec_pose[:, 2:] - 2*rec_pose[:, 1:-1] + rec_pose[:, :-2], tar_pose[:, 2:] - 2*tar_pose[:, 1:-1] + tar_pose[:, :-2])
|
106 |
+
# self.tracker.update_meter("acc", mode, rec_loss_acc.item())
|
107 |
+
|
108 |
+
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
|
109 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
110 |
+
if self.args.pose_dims < 330 and mode != "train":
|
111 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs, n, j, 6))
|
112 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs, n, j*3)
|
113 |
+
rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
|
114 |
+
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, 55, 3))
|
115 |
+
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, 55*6)
|
116 |
+
|
117 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
|
118 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs, n, j*3)
|
119 |
+
tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
|
120 |
+
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
|
121 |
+
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, 55*6)
|
122 |
+
if use_adv and mode == 'train':
|
123 |
+
out_d_fake = self.d_model(rec_pose)
|
124 |
+
d_loss_adv = -torch.mean(torch.log(out_d_fake + 1e-8))
|
125 |
+
self.tracker.update_meter("gen", mode, d_loss_adv.item())
|
126 |
+
else:
|
127 |
+
d_loss_adv = 0
|
128 |
+
|
129 |
+
if self.args.train_trans:
|
130 |
+
trans_loss = self.vel_loss(rec_trans, loaded_data["tar_trans"])
|
131 |
+
trans_loss *= self.args.rec_weight
|
132 |
+
self.tracker.update_meter("trans", mode, trans_loss.item())
|
133 |
+
else:
|
134 |
+
trans_loss = 0
|
135 |
+
# trans_loss_vel = self.vel_loss(rec_trans[:, 1:] - rec_trans[:, :-1], loaded_data["tar_trans"][:, 1:] - loaded_data["tar_trans"][:, :-1])
|
136 |
+
# self.tracker.update_meter("transv", mode, trans_loss_vel.item())
|
137 |
+
# trans_loss_acc = self.vel_loss(rec_trans[:, 2:] - 2*rec_trans[:, 1:-1] + rec_trans[:, :-2], loaded_data["tar_trans"][:, 2:] - 2*loaded_data["tar_trans"][:, 1:-1] + loaded_data["tar_trans"][:, :-2])
|
138 |
+
# self.tracker.update_meter("transa", mode, trans_loss_acc.item())
|
139 |
+
|
140 |
+
if mode == 'train':
|
141 |
+
return d_loss_adv + rec_loss + trans_loss # + rec_loss_vel + rec_loss_acc + trans_loss_vel + trans_loss_acc
|
142 |
+
elif mode == 'val':
|
143 |
+
return {
|
144 |
+
'rec_pose': rec_pose,
|
145 |
+
'rec_trans': rec_trans,
|
146 |
+
'tar_pose': tar_pose,
|
147 |
+
}
|
148 |
+
else:
|
149 |
+
return {
|
150 |
+
'rec_pose': rec_pose,
|
151 |
+
'rec_trans': rec_trans,
|
152 |
+
'tar_pose': tar_pose,
|
153 |
+
'tar_exps': loaded_data["tar_exps"],
|
154 |
+
'tar_beta': loaded_data["tar_beta"],
|
155 |
+
'tar_trans': loaded_data["tar_trans"],
|
156 |
+
}
|
157 |
+
|
158 |
+
def train(self, epoch):
|
159 |
+
use_adv = bool(epoch>=self.args.no_adv_epoch)
|
160 |
+
self.model.train()
|
161 |
+
self.d_model.train()
|
162 |
+
self.tracker.reset()
|
163 |
+
t_start = time.time()
|
164 |
+
for its, batch_data in enumerate(self.train_loader):
|
165 |
+
loaded_data = self._load_data(batch_data)
|
166 |
+
t_data = time.time() - t_start
|
167 |
+
|
168 |
+
if use_adv:
|
169 |
+
d_loss_final = 0
|
170 |
+
self.opt_d.zero_grad()
|
171 |
+
d_loss_adv = self._d_training(loaded_data)
|
172 |
+
d_loss_final += d_loss_adv
|
173 |
+
d_loss_final.backward()
|
174 |
+
self.opt_d.step()
|
175 |
+
|
176 |
+
self.opt.zero_grad()
|
177 |
+
g_loss_final = 0
|
178 |
+
g_loss_final += self._g_training(loaded_data, use_adv, 'train')
|
179 |
+
g_loss_final.backward()
|
180 |
+
self.opt.step()
|
181 |
+
|
182 |
+
mem_cost = torch.cuda.memory_cached() / 1E9
|
183 |
+
lr_g = self.opt.param_groups[0]['lr']
|
184 |
+
lr_d = self.opt_d.param_groups[0]['lr']
|
185 |
+
t_train = time.time() - t_start - t_data
|
186 |
+
t_start = time.time()
|
187 |
+
if its % self.args.log_period == 0:
|
188 |
+
self.train_recording(epoch, its, t_data, t_train, mem_cost, lr_g, lr_d=lr_d)
|
189 |
+
if self.args.debug:
|
190 |
+
if its == 1: break
|
191 |
+
self.opt_s.step(epoch)
|
192 |
+
self.opt_d_s.step(epoch)
|
193 |
+
|
194 |
+
|
195 |
+
def val(self, epoch):
|
196 |
+
self.model.eval()
|
197 |
+
self.d_model.eval()
|
198 |
+
with torch.no_grad():
|
199 |
+
for its, batch_data in enumerate(self.train_loader):
|
200 |
+
loaded_data = self._load_data(batch_data)
|
201 |
+
net_out = self._g_training(loaded_data, False, 'val')
|
202 |
+
tar_pose = net_out['tar_pose']
|
203 |
+
rec_pose = net_out['rec_pose']
|
204 |
+
n = tar_pose.shape[1]
|
205 |
+
if (30/self.args.pose_fps) != 1:
|
206 |
+
assert 30%self.args.pose_fps == 0
|
207 |
+
n *= int(30/self.args.pose_fps)
|
208 |
+
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
|
209 |
+
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
|
210 |
+
n = tar_pose.shape[1]
|
211 |
+
remain = n%self.args.vae_test_len
|
212 |
+
tar_pose = tar_pose[:, :n-remain, :]
|
213 |
+
rec_pose = rec_pose[:, :n-remain, :]
|
214 |
+
latent_out = self.eval_copy.map2latent(rec_pose).reshape(-1, self.args.vae_length).cpu().numpy()
|
215 |
+
latent_ori = self.eval_copy.map2latent(tar_pose).reshape(-1, self.args.vae_length).cpu().numpy()
|
216 |
+
if its == 0:
|
217 |
+
latent_out_motion_all = latent_out
|
218 |
+
latent_ori_all = latent_ori
|
219 |
+
else:
|
220 |
+
latent_out_motion_all = np.concatenate([latent_out_motion_all, latent_out], axis=0)
|
221 |
+
latent_ori_all = np.concatenate([latent_ori_all, latent_ori], axis=0)
|
222 |
+
if self.args.debug:
|
223 |
+
if its == 1: break
|
224 |
+
fid_motion = data_tools.FIDCalculator.frechet_distance(latent_out_motion_all, latent_ori_all)
|
225 |
+
self.tracker.update_meter("fid", "val", fid_motion)
|
226 |
+
self.val_recording(epoch)
|
227 |
+
|
228 |
+
def test(self, epoch):
|
229 |
+
results_save_path = self.checkpoint_path + f"/{epoch}/"
|
230 |
+
if os.path.exists(results_save_path):
|
231 |
+
return 0
|
232 |
+
os.makedirs(results_save_path)
|
233 |
+
start_time = time.time()
|
234 |
+
total_length = 0
|
235 |
+
test_seq_list = self.test_data.selected_file
|
236 |
+
align = 0
|
237 |
+
latent_out = []
|
238 |
+
latent_ori = []
|
239 |
+
self.model.eval()
|
240 |
+
self.smplx.eval()
|
241 |
+
self.eval_copy.eval()
|
242 |
+
with torch.no_grad():
|
243 |
+
for its, batch_data in enumerate(self.test_loader):
|
244 |
+
loaded_data = self._load_data(batch_data)
|
245 |
+
net_out = self._g_training(loaded_data, False, 'test')
|
246 |
+
tar_pose = net_out['tar_pose']
|
247 |
+
rec_pose = net_out['rec_pose']
|
248 |
+
tar_exps = net_out['tar_exps']
|
249 |
+
tar_beta = net_out['tar_beta']
|
250 |
+
rec_trans = net_out['rec_trans']
|
251 |
+
tar_trans = net_out['tar_trans']
|
252 |
+
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], 55
|
253 |
+
if (30/self.args.pose_fps) != 1:
|
254 |
+
assert 30%self.args.pose_fps == 0
|
255 |
+
n *= int(30/self.args.pose_fps)
|
256 |
+
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
|
257 |
+
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
|
258 |
+
tar_beta = torch.nn.functional.interpolate(tar_beta.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
|
259 |
+
tar_exps = torch.nn.functional.interpolate(tar_exps.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
|
260 |
+
tar_trans = torch.nn.functional.interpolate(tar_trans.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
|
261 |
+
rec_trans = torch.nn.functional.interpolate(rec_trans.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
|
262 |
+
|
263 |
+
# print(rec_pose.shape, tar_pose.shape)
|
264 |
+
# rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
|
265 |
+
# rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
|
266 |
+
# tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
|
267 |
+
# tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
|
268 |
+
remain = n%self.args.vae_test_len
|
269 |
+
latent_out.append(self.eval_copy.map2latent(rec_pose[:, :n-remain]).reshape(-1, self.args.vae_length).detach().cpu().numpy()) # bs * n/8 * 240
|
270 |
+
latent_ori.append(self.eval_copy.map2latent(tar_pose[:, :n-remain]).reshape(-1, self.args.vae_length).detach().cpu().numpy())
|
271 |
+
|
272 |
+
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
|
273 |
+
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
|
274 |
+
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
|
275 |
+
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
|
276 |
+
|
277 |
+
vertices_rec = self.smplx(
|
278 |
+
betas=tar_beta.reshape(bs*n, 300),
|
279 |
+
transl=rec_trans.reshape(bs*n, 3)-rec_trans.reshape(bs*n, 3),
|
280 |
+
expression=tar_exps.reshape(bs*n, 100)-tar_exps.reshape(bs*n, 100),
|
281 |
+
jaw_pose=rec_pose[:, 66:69],
|
282 |
+
global_orient=rec_pose[:,:3],
|
283 |
+
body_pose=rec_pose[:,3:21*3+3],
|
284 |
+
left_hand_pose=rec_pose[:,25*3:40*3],
|
285 |
+
right_hand_pose=rec_pose[:,40*3:55*3],
|
286 |
+
return_joints=True,
|
287 |
+
leye_pose=rec_pose[:, 69:72],
|
288 |
+
reye_pose=rec_pose[:, 72:75],
|
289 |
+
)
|
290 |
+
# vertices_tar = self.smplx(
|
291 |
+
# betas=tar_beta.reshape(bs*n, 300),
|
292 |
+
# transl=rec_trans.reshape(bs*n, 3)-rec_trans.reshape(bs*n, 3),
|
293 |
+
# expression=tar_exps.reshape(bs*n, 100)-tar_exps.reshape(bs*n, 100),
|
294 |
+
# jaw_pose=tar_pose[:, 66:69],
|
295 |
+
# global_orient=tar_pose[:,:3],
|
296 |
+
# body_pose=tar_pose[:,3:21*3+3],
|
297 |
+
# left_hand_pose=tar_pose[:,25*3:40*3],
|
298 |
+
# right_hand_pose=tar_pose[:,40*3:55*3],
|
299 |
+
# return_joints=True,
|
300 |
+
# leye_pose=tar_pose[:, 69:72],
|
301 |
+
# reye_pose=tar_pose[:, 72:75],
|
302 |
+
# )
|
303 |
+
joints_rec = vertices_rec["joints"].detach().cpu().numpy().reshape(1, n, 127*3)[0, :n, :55*3]
|
304 |
+
# joints_tar = vertices_tar["joints"].detach().cpu().numpy().reshape(1, n, 127*3)[0, :n, :55*3]
|
305 |
+
_ = self.l1_calculator.run(joints_rec)
|
306 |
+
if self.alignmenter is not None:
|
307 |
+
in_audio_eval, sr = librosa.load(self.args.data_path+"wave16k/"+test_seq_list.iloc[its]['id']+".wav")
|
308 |
+
in_audio_eval = librosa.resample(in_audio_eval, orig_sr=sr, target_sr=self.args.audio_sr)
|
309 |
+
a_offset = int(self.align_mask * (self.args.audio_sr / self.args.pose_fps))
|
310 |
+
onset_bt = self.alignmenter.load_audio(in_audio_eval[:int(self.args.audio_sr / self.args.pose_fps*n)], a_offset, len(in_audio_eval)-a_offset, True)
|
311 |
+
beat_vel = self.alignmenter.load_pose(joints_rec, self.align_mask, n-self.align_mask, 30, True)
|
312 |
+
# print(beat_vel)
|
313 |
+
align += (self.alignmenter.calculate_align(onset_bt, beat_vel, 30) * (n-2*self.align_mask))
|
314 |
+
|
315 |
+
tar_pose_axis_np = tar_pose.detach().cpu().numpy()
|
316 |
+
rec_pose_axis_np = rec_pose.detach().cpu().numpy()
|
317 |
+
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
|
318 |
+
rec_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100) - tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
|
319 |
+
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100) - tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
|
320 |
+
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
|
321 |
+
gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True)
|
322 |
+
if not self.args.train_trans:
|
323 |
+
tar_trans_np = tar_trans_np - tar_trans_np
|
324 |
+
rec_trans_np = rec_trans_np - rec_trans_np
|
325 |
+
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
|
326 |
+
betas=gt_npz["betas"],
|
327 |
+
poses=tar_pose_axis_np,
|
328 |
+
expressions=tar_exp_np,
|
329 |
+
trans=tar_trans_np,
|
330 |
+
model='smplx2020',
|
331 |
+
gender='neutral',
|
332 |
+
mocap_frame_rate = 30 ,
|
333 |
+
)
|
334 |
+
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
|
335 |
+
betas=gt_npz["betas"],
|
336 |
+
poses=rec_pose_axis_np,
|
337 |
+
expressions=rec_exp_np,
|
338 |
+
trans=rec_trans_np,
|
339 |
+
model='smplx2020',
|
340 |
+
gender='neutral',
|
341 |
+
mocap_frame_rate = 30,
|
342 |
+
)
|
343 |
+
total_length += n
|
344 |
+
|
345 |
+
latent_out_all = np.concatenate(latent_out, axis=0)
|
346 |
+
latent_ori_all = np.concatenate(latent_ori, axis=0)
|
347 |
+
fid = data_tools.FIDCalculator.frechet_distance(latent_out_all, latent_ori_all)
|
348 |
+
logger.info(f"fid score: {fid}")
|
349 |
+
self.test_recording("fid", fid, epoch)
|
350 |
+
|
351 |
+
align_avg = align/(total_length-2*len(self.test_loader)*self.align_mask)
|
352 |
+
logger.info(f"align score: {align_avg}")
|
353 |
+
self.test_recording("bc", align_avg, epoch)
|
354 |
+
|
355 |
+
l1div = self.l1_calculator.avg()
|
356 |
+
logger.info(f"l1div score: {l1div}")
|
357 |
+
self.test_recording("l1div", l1div, epoch)
|
358 |
+
|
359 |
+
# data_tools.result2target_vis(self.args.pose_version, results_save_path, results_save_path, self.test_demo, False)
|
360 |
+
end_time = time.time() - start_time
|
361 |
+
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
|
configs/.ipynb_checkpoints/emage_test_hf-checkpoint.yaml
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
root_path: ./
|
5 |
+
out_path: ./outputs/audio2pose/
|
6 |
+
project: s2g
|
7 |
+
data_path: ./EMAGE/test_sequences/
|
8 |
+
e_path: weights/AESKConv_240_100.bin
|
9 |
+
eval_model: motion_representation
|
10 |
+
e_name: VAESKConv
|
11 |
+
test_ckpt: ./EMAGE/emage_audio_175.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
vae_test_len: 32
|
14 |
+
vae_test_dim: 330
|
15 |
+
vae_test_stride: 20
|
16 |
+
vae_length: 240
|
17 |
+
vae_codebook_size: 256
|
18 |
+
vae_layer: 4
|
19 |
+
vae_grow: [1,1,2,1]
|
20 |
+
variational: False
|
21 |
+
|
22 |
+
# data config
|
23 |
+
training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
|
24 |
+
additional_data: False
|
25 |
+
cache_path: ./datasets/beat_cache/beat_smplx_en_emage_test/
|
26 |
+
dataset: beat_testonly_hf
|
27 |
+
new_cache: True
|
28 |
+
|
29 |
+
# motion config
|
30 |
+
ori_joints: beat_smplx_joints
|
31 |
+
tar_joints: beat_smplx_full
|
32 |
+
pose_rep: smplxflame_30
|
33 |
+
pose_norm: False
|
34 |
+
pose_fps: 30
|
35 |
+
rot6d: True
|
36 |
+
pre_frames: 4
|
37 |
+
pose_dims: 330
|
38 |
+
pose_length: 64
|
39 |
+
stride: 20
|
40 |
+
test_length: 64
|
41 |
+
motion_f: 256
|
42 |
+
m_pre_encoder: null
|
43 |
+
m_encoder: null
|
44 |
+
m_fix_pre: False
|
45 |
+
|
46 |
+
# audio config
|
47 |
+
audio_rep: wave16k
|
48 |
+
audio_sr: 16000
|
49 |
+
audio_fps: 16000
|
50 |
+
audio_norm: False
|
51 |
+
audio_f: 256
|
52 |
+
# a_pre_encoder: tcn_camn
|
53 |
+
# a_encoder: none
|
54 |
+
# a_fix_pre: False
|
55 |
+
|
56 |
+
# text config
|
57 |
+
# word_rep: textgrid
|
58 |
+
# word_index_num: 11195
|
59 |
+
# word_dims: 300
|
60 |
+
# freeze_wordembed: False
|
61 |
+
# word_f: 256
|
62 |
+
# t_pre_encoder: fasttext
|
63 |
+
# t_encoder: null
|
64 |
+
# t_fix_pre: False
|
65 |
+
|
66 |
+
# facial config
|
67 |
+
facial_rep: smplxflame_30
|
68 |
+
facial_dims: 100
|
69 |
+
facial_norm: False
|
70 |
+
facial_f: 0
|
71 |
+
f_pre_encoder: null
|
72 |
+
f_encoder: null
|
73 |
+
f_fix_pre: False
|
74 |
+
|
75 |
+
# speaker config
|
76 |
+
id_rep: onehot
|
77 |
+
speaker_f: 0
|
78 |
+
|
79 |
+
# model config
|
80 |
+
batch_size: 64
|
81 |
+
# warmup_epochs: 1
|
82 |
+
# warmup_lr: 1e-6
|
83 |
+
lr_base: 5e-4
|
84 |
+
model: emage_audio
|
85 |
+
g_name: MAGE_Transformer
|
86 |
+
trainer: emage
|
87 |
+
hidden_size: 768
|
88 |
+
n_layer: 1
|
89 |
+
|
90 |
+
rec_weight: 1
|
91 |
+
grad_norm: 0.99
|
92 |
+
epochs: 400
|
93 |
+
test_period: 20
|
94 |
+
ll: 3
|
95 |
+
lf: 3
|
96 |
+
lu: 3
|
97 |
+
lh: 3
|
98 |
+
cl: 1
|
99 |
+
cf: 0
|
100 |
+
cu: 1
|
101 |
+
ch: 1
|
configs/camn.yaml
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
root_path: ./
|
5 |
+
out_path: ./outputs/audio2pose/
|
6 |
+
project: s2g
|
7 |
+
data_path: ./BEAT2/beat_english_v2.0.0/
|
8 |
+
e_path: weights/AESKConv_240_100.bin
|
9 |
+
eval_model: motion_representation
|
10 |
+
e_name: VAESKConv
|
11 |
+
test_ckpt: ./EMAGE/camn.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
vae_test_len: 64
|
14 |
+
vae_test_dim: 330
|
15 |
+
vae_test_stride: 20
|
16 |
+
vae_length: 240
|
17 |
+
vae_codebook_size: 256
|
18 |
+
vae_layer: 4
|
19 |
+
vae_grow: [1,1,2,1]
|
20 |
+
variational: False
|
21 |
+
|
22 |
+
# data config
|
23 |
+
training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
|
24 |
+
additional_data: False
|
25 |
+
cache_path: datasets/beat_cache/beat_smplx_en_camn/
|
26 |
+
dataset: beat_sep
|
27 |
+
new_cache: False
|
28 |
+
|
29 |
+
# motion config
|
30 |
+
ori_joints: beat_smplx_joints
|
31 |
+
tar_joints: beat_smplx_full
|
32 |
+
pose_rep: smplxflame_30
|
33 |
+
pose_norm: False
|
34 |
+
pose_fps: 15
|
35 |
+
rot6d: True
|
36 |
+
pre_frames: 4
|
37 |
+
pose_dims: 330
|
38 |
+
pose_length: 32
|
39 |
+
stride: 10
|
40 |
+
test_length: 32
|
41 |
+
motion_f: 256
|
42 |
+
m_pre_encoder: null
|
43 |
+
m_encoder: null
|
44 |
+
m_fix_pre: False
|
45 |
+
|
46 |
+
# audio config
|
47 |
+
audio_rep: wave16k
|
48 |
+
audio_sr: 16000
|
49 |
+
audio_fps: 16000
|
50 |
+
audio_norm: False
|
51 |
+
audio_f: 128
|
52 |
+
# a_pre_encoder: tcn_camn
|
53 |
+
# a_encoder: none
|
54 |
+
# a_fix_pre: False
|
55 |
+
|
56 |
+
# text config
|
57 |
+
word_rep: textgrid
|
58 |
+
word_index_num: 11195
|
59 |
+
word_dims: 300
|
60 |
+
freeze_wordembed: False
|
61 |
+
word_f: 128
|
62 |
+
t_pre_encoder: fasttext
|
63 |
+
t_encoder: null
|
64 |
+
t_fix_pre: False
|
65 |
+
|
66 |
+
# facial config
|
67 |
+
facial_rep: smplxflame_30
|
68 |
+
facial_dims: 100
|
69 |
+
facial_norm: False
|
70 |
+
facial_f: 64
|
71 |
+
f_pre_encoder: null
|
72 |
+
f_encoder: null
|
73 |
+
f_fix_pre: False
|
74 |
+
|
75 |
+
# speaker config
|
76 |
+
id_rep: onehot
|
77 |
+
speaker_f: 16
|
78 |
+
emo_rep: emo
|
79 |
+
emotion_f: 8
|
80 |
+
# sem_rep: sem
|
81 |
+
|
82 |
+
|
83 |
+
# model config
|
84 |
+
batch_size: 128
|
85 |
+
# warmup_epochs: 1
|
86 |
+
# warmup_lr: 1e-6
|
87 |
+
lr_base: 3e-4
|
88 |
+
model: camn
|
89 |
+
g_name: CaMN
|
90 |
+
d_name: ConvDiscriminator
|
91 |
+
trainer: camn
|
92 |
+
hidden_size: 512
|
93 |
+
n_layer: 4
|
94 |
+
rec_weight: 500
|
95 |
+
no_adv_epoch: 999
|
96 |
+
# rec_pos_weight: 1
|
97 |
+
# rec_ver_weight: 0
|
98 |
+
# rec_fac_weight: 1
|
99 |
+
# grad_norm: 1
|
100 |
+
epochs: 100
|
101 |
+
test_period: 20
|
configs/cnn_vqvae_face_30.yaml
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
|
5 |
+
root_path: ./
|
6 |
+
out_path: ./outputs/audio2pose/
|
7 |
+
cache_path: datasets/beat_cache/beat_smplx_en_face/
|
8 |
+
project: mage_smplx
|
9 |
+
data_path: ./BEAT2/beat_english_v2.0.0/
|
10 |
+
e_path: weights/AESKConv_240_100.bin
|
11 |
+
test_ckpt: weights/multi.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
#torch_hub_path: datasets/hub/
|
14 |
+
additional_data: False
|
15 |
+
dataset: beat_sep
|
16 |
+
new_cache: False
|
17 |
+
ori_joints: beat_smplx_joints
|
18 |
+
tar_joints: beat_smplx_face
|
19 |
+
pose_rep: smplxflame_30
|
20 |
+
facial_rep: smplxflame_30
|
21 |
+
pose_norm: False
|
22 |
+
pose_fps: 30
|
23 |
+
|
24 |
+
|
25 |
+
vae_test_len: 64
|
26 |
+
vae_test_dim: 106
|
27 |
+
vae_test_stride: 20
|
28 |
+
vae_length: 256
|
29 |
+
vae_codebook_size: 256
|
30 |
+
vae_layer: 2
|
31 |
+
vae_grow: [1,1,2,1]
|
32 |
+
variational: False
|
33 |
+
|
34 |
+
pose_dims: 106
|
35 |
+
pose_length: 64
|
36 |
+
stride: 20
|
37 |
+
facial_dims: 100
|
38 |
+
word_index_num: 11195
|
39 |
+
word_dims: 300
|
40 |
+
batch_size: 64
|
41 |
+
lr_base: 3e-4
|
42 |
+
model: motion_representation
|
43 |
+
g_name: VQVAEConvZero
|
44 |
+
#eval_model: motion_autoencoder
|
45 |
+
#e_name: HalfEmbeddingNet
|
46 |
+
trainer: aeface
|
47 |
+
decay_epochs: 780
|
48 |
+
# audio_f: 256
|
49 |
+
# a_pre_encoder: tcn_camn
|
50 |
+
# a_encoder: lp
|
51 |
+
# a_fix_pre: False
|
52 |
+
|
53 |
+
# freeze_wordembed: False
|
54 |
+
# word_f: 128
|
55 |
+
# t_pre_encoder: fasttext
|
56 |
+
# t_encoder: lp
|
57 |
+
# t_fix_pre: False
|
58 |
+
|
59 |
+
# motion_f: 256
|
60 |
+
# m_pre_encoder: lp
|
61 |
+
# m_encoder: lp
|
62 |
+
# m_fix_pre: False
|
63 |
+
|
64 |
+
# facial_f: 128
|
65 |
+
# f_pre_encoder: lp
|
66 |
+
# f_encoder: lp
|
67 |
+
# f_fix_pre: False
|
68 |
+
|
69 |
+
#m_decoder: lstm
|
70 |
+
#decode_fusion: cat
|
71 |
+
#n_layer: 2
|
72 |
+
#hidden_size: 512
|
73 |
+
rec_weight: 1
|
74 |
+
rec_pos_weight: 1
|
75 |
+
rec_ver_weight: 1
|
76 |
+
# rec_fac_weight: 1
|
77 |
+
#ita_weight: 0
|
78 |
+
#iwa_weight: 0
|
79 |
+
#fusion_mode: sum
|
80 |
+
# grad_norm: 1
|
81 |
+
epochs: 800
|
82 |
+
test_period: 100
|
configs/cnn_vqvae_hands_30.yaml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
|
5 |
+
root_path: ./
|
6 |
+
out_path: ./outputs/audio2pose/
|
7 |
+
cache_path: datasets/beat_cache/beat_smplx_en_hands/
|
8 |
+
project: mage_smplx
|
9 |
+
data_path: ./BEAT2/beat_english_v2.0.0/
|
10 |
+
e_path: weights/AESKConv_240_100.bin
|
11 |
+
test_ckpt: weights/multi.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
#torch_hub_path: datasets/hub/
|
14 |
+
additional_data: False
|
15 |
+
dataset: beat_sep
|
16 |
+
new_cache: False
|
17 |
+
ori_joints: beat_smplx_joints
|
18 |
+
tar_joints: beat_smplx_hands
|
19 |
+
pose_rep: smplxflame_30
|
20 |
+
pose_norm: False
|
21 |
+
pose_fps: 30
|
22 |
+
|
23 |
+
|
24 |
+
vae_test_len: 64
|
25 |
+
vae_test_dim: 180
|
26 |
+
vae_test_stride: 20
|
27 |
+
vae_length: 256
|
28 |
+
vae_codebook_size: 256
|
29 |
+
vae_layer: 2
|
30 |
+
vae_grow: [1,1,2,1]
|
31 |
+
variational: False
|
32 |
+
|
33 |
+
pose_dims: 180
|
34 |
+
pose_length: 64
|
35 |
+
stride: 20
|
36 |
+
facial_dims: 100
|
37 |
+
word_index_num: 11195
|
38 |
+
word_dims: 300
|
39 |
+
batch_size: 64
|
40 |
+
lr_base: 3e-4
|
41 |
+
model: motion_representation
|
42 |
+
g_name: VQVAEConvZero
|
43 |
+
#eval_model: motion_autoencoder
|
44 |
+
#e_name: HalfEmbeddingNet
|
45 |
+
trainer: ae
|
46 |
+
decay_epochs: 780
|
47 |
+
# audio_f: 256
|
48 |
+
# a_pre_encoder: tcn_camn
|
49 |
+
# a_encoder: lp
|
50 |
+
# a_fix_pre: False
|
51 |
+
|
52 |
+
# freeze_wordembed: False
|
53 |
+
# word_f: 128
|
54 |
+
# t_pre_encoder: fasttext
|
55 |
+
# t_encoder: lp
|
56 |
+
# t_fix_pre: False
|
57 |
+
|
58 |
+
# motion_f: 256
|
59 |
+
# m_pre_encoder: lp
|
60 |
+
# m_encoder: lp
|
61 |
+
# m_fix_pre: False
|
62 |
+
|
63 |
+
# facial_f: 128
|
64 |
+
# f_pre_encoder: lp
|
65 |
+
# f_encoder: lp
|
66 |
+
# f_fix_pre: False
|
67 |
+
|
68 |
+
#m_decoder: lstm
|
69 |
+
#decode_fusion: cat
|
70 |
+
#n_layer: 2
|
71 |
+
#hidden_size: 512
|
72 |
+
rec_weight: 1
|
73 |
+
rec_pos_weight: 1
|
74 |
+
rec_ver_weight: 1
|
75 |
+
# rec_fac_weight: 1
|
76 |
+
#ita_weight: 0
|
77 |
+
#iwa_weight: 0
|
78 |
+
#fusion_mode: sum
|
79 |
+
# grad_norm: 1
|
80 |
+
epochs: 800
|
81 |
+
test_period: 100
|
configs/cnn_vqvae_lower_30.yaml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
|
5 |
+
root_path: ./
|
6 |
+
out_path: ./outputs/audio2pose/
|
7 |
+
cache_path: datasets/beat_cache/beat_smplx_en_lower/
|
8 |
+
project: mage_smplx
|
9 |
+
data_path: ./BEAT2/beat_english_v2.0.0/
|
10 |
+
e_path: weights/AESKConv_240_100.bin
|
11 |
+
test_ckpt: weights/multi.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
#torch_hub_path: datasets/hub/
|
14 |
+
additional_data: False
|
15 |
+
dataset: beat_sep_lower
|
16 |
+
new_cache: False
|
17 |
+
ori_joints: beat_smplx_joints
|
18 |
+
tar_joints: beat_smplx_lower
|
19 |
+
pose_rep: smplxflame_30
|
20 |
+
pose_norm: False
|
21 |
+
pose_fps: 30
|
22 |
+
|
23 |
+
|
24 |
+
vae_test_len: 64
|
25 |
+
vae_test_dim: 61
|
26 |
+
vae_test_stride: 20
|
27 |
+
vae_length: 256
|
28 |
+
vae_codebook_size: 256
|
29 |
+
vae_layer: 4
|
30 |
+
vae_grow: [1,1,2,1]
|
31 |
+
variational: False
|
32 |
+
|
33 |
+
pose_dims: 61
|
34 |
+
pose_length: 64
|
35 |
+
stride: 20
|
36 |
+
facial_dims: 100
|
37 |
+
word_index_num: 11195
|
38 |
+
word_dims: 300
|
39 |
+
batch_size: 64
|
40 |
+
lr_base: 3e-4
|
41 |
+
model: motion_representation
|
42 |
+
g_name: VAEConvZero
|
43 |
+
#eval_model: motion_autoencoder
|
44 |
+
#e_name: HalfEmbeddingNet
|
45 |
+
trainer: aelower
|
46 |
+
decay_epochs: 780
|
47 |
+
# audio_f: 256
|
48 |
+
# a_pre_encoder: tcn_camn
|
49 |
+
# a_encoder: lp
|
50 |
+
# a_fix_pre: False
|
51 |
+
|
52 |
+
# freeze_wordembed: False
|
53 |
+
# word_f: 128
|
54 |
+
# t_pre_encoder: fasttext
|
55 |
+
# t_encoder: lp
|
56 |
+
# t_fix_pre: False
|
57 |
+
|
58 |
+
# motion_f: 256
|
59 |
+
# m_pre_encoder: lp
|
60 |
+
# m_encoder: lp
|
61 |
+
# m_fix_pre: False
|
62 |
+
|
63 |
+
# facial_f: 128
|
64 |
+
# f_pre_encoder: lp
|
65 |
+
# f_encoder: lp
|
66 |
+
# f_fix_pre: False
|
67 |
+
|
68 |
+
#m_decoder: lstm
|
69 |
+
#decode_fusion: cat
|
70 |
+
#n_layer: 2
|
71 |
+
#hidden_size: 512
|
72 |
+
rec_weight: 1
|
73 |
+
rec_pos_weight: 1
|
74 |
+
rec_ver_weight: 1
|
75 |
+
# rec_fac_weight: 1
|
76 |
+
#ita_weight: 0
|
77 |
+
#iwa_weight: 0
|
78 |
+
#fusion_mode: sum
|
79 |
+
# grad_norm: 1
|
80 |
+
epochs: 800
|
81 |
+
test_period: 100
|
configs/cnn_vqvae_lower_foot_30.yaml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
training_speakers: [2]
|
5 |
+
root_path: ./
|
6 |
+
out_path: ./outputs/audio2pose/
|
7 |
+
cache_path: datasets/beat_cache/beat_smplx_en_lower/
|
8 |
+
project: mage_smplx
|
9 |
+
data_path: ./BEAT2/beat_english_v2.0.0/
|
10 |
+
e_path: weights/AESKConv_240_100.bin
|
11 |
+
test_ckpt: weights/multi.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
#torch_hub_path: datasets/hub/
|
14 |
+
additional_data: False
|
15 |
+
dataset: beat_sep_lower
|
16 |
+
new_cache: False
|
17 |
+
ori_joints: beat_smplx_joints
|
18 |
+
tar_joints: beat_smplx_lower
|
19 |
+
pose_rep: smplxflame_30
|
20 |
+
pose_norm: False
|
21 |
+
pose_fps: 30
|
22 |
+
|
23 |
+
|
24 |
+
vae_test_len: 64
|
25 |
+
vae_test_dim: 61
|
26 |
+
vae_test_stride: 20
|
27 |
+
vae_length: 256
|
28 |
+
vae_codebook_size: 256
|
29 |
+
vae_layer: 4
|
30 |
+
vae_grow: [1,1,2,1]
|
31 |
+
variational: False
|
32 |
+
|
33 |
+
pose_dims: 61
|
34 |
+
pose_length: 64
|
35 |
+
stride: 20
|
36 |
+
facial_dims: 100
|
37 |
+
word_index_num: 11195
|
38 |
+
word_dims: 300
|
39 |
+
batch_size: 64
|
40 |
+
lr_base: 3e-4
|
41 |
+
model: motion_representation
|
42 |
+
g_name: VQVAEConvZero
|
43 |
+
#eval_model: motion_autoencoder
|
44 |
+
#e_name: HalfEmbeddingNet
|
45 |
+
trainer: aelowerfoot
|
46 |
+
decay_epochs: 780
|
47 |
+
# audio_f: 256
|
48 |
+
# a_pre_encoder: tcn_camn
|
49 |
+
# a_encoder: lp
|
50 |
+
# a_fix_pre: False
|
51 |
+
|
52 |
+
# freeze_wordembed: False
|
53 |
+
# word_f: 128
|
54 |
+
# t_pre_encoder: fasttext
|
55 |
+
# t_encoder: lp
|
56 |
+
# t_fix_pre: False
|
57 |
+
|
58 |
+
# motion_f: 256
|
59 |
+
# m_pre_encoder: lp
|
60 |
+
# m_encoder: lp
|
61 |
+
# m_fix_pre: False
|
62 |
+
|
63 |
+
# facial_f: 128
|
64 |
+
# f_pre_encoder: lp
|
65 |
+
# f_encoder: lp
|
66 |
+
# f_fix_pre: False
|
67 |
+
|
68 |
+
#m_decoder: lstm
|
69 |
+
#decode_fusion: cat
|
70 |
+
#n_layer: 2
|
71 |
+
#hidden_size: 512
|
72 |
+
rec_weight: 1
|
73 |
+
rec_pos_weight: 1
|
74 |
+
rec_ver_weight: 1
|
75 |
+
# rec_fac_weight: 1
|
76 |
+
#ita_weight: 0
|
77 |
+
#iwa_weight: 0
|
78 |
+
#fusion_mode: sum
|
79 |
+
# grad_norm: 1
|
80 |
+
epochs: 800
|
81 |
+
test_period: 100
|
configs/cnn_vqvae_upper_30.yaml
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
training_speakers: [2]
|
5 |
+
root_path: ./
|
6 |
+
out_path: ./outputs/audio2pose/
|
7 |
+
cache_path: datasets/beat_cache/beat_smplx_en_upper/
|
8 |
+
project: mage_smplx
|
9 |
+
data_path: ./BEAT2/beat_english_v2.0.0/
|
10 |
+
e_path: weights/AESKConv_240_100.bin
|
11 |
+
test_ckpt: weights/multi.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
#torch_hub_path: datasets/hub/
|
14 |
+
additional_data: False
|
15 |
+
dataset: beat_sep
|
16 |
+
new_cache: False
|
17 |
+
ori_joints: beat_smplx_joints
|
18 |
+
tar_joints: beat_smplx_upper
|
19 |
+
pose_rep: smplxflame_30
|
20 |
+
pose_norm: False
|
21 |
+
pose_fps: 30
|
22 |
+
|
23 |
+
|
24 |
+
vae_test_len: 64
|
25 |
+
vae_test_dim: 78
|
26 |
+
vae_test_stride: 20
|
27 |
+
vae_length: 256
|
28 |
+
vae_codebook_size: 256
|
29 |
+
vae_layer: 2
|
30 |
+
vae_grow: [1,1,2,1]
|
31 |
+
variational: False
|
32 |
+
|
33 |
+
pose_dims: 78
|
34 |
+
pose_length: 64
|
35 |
+
stride: 20
|
36 |
+
facial_dims: 100
|
37 |
+
word_index_num: 11195
|
38 |
+
word_dims: 300
|
39 |
+
batch_size: 64
|
40 |
+
lr_base: 3e-4
|
41 |
+
decay_epochs: 9999
|
42 |
+
model: motion_representation
|
43 |
+
g_name: VQVAEConvZero
|
44 |
+
#eval_model: motion_autoencoder
|
45 |
+
#e_name: HalfEmbeddingNet
|
46 |
+
trainer: ae
|
47 |
+
|
48 |
+
# audio_f: 256
|
49 |
+
# a_pre_encoder: tcn_camn
|
50 |
+
# a_encoder: lp
|
51 |
+
# a_fix_pre: False
|
52 |
+
|
53 |
+
# freeze_wordembed: False
|
54 |
+
# word_f: 128
|
55 |
+
# t_pre_encoder: fasttext
|
56 |
+
# t_encoder: lp
|
57 |
+
# t_fix_pre: False
|
58 |
+
|
59 |
+
# motion_f: 256
|
60 |
+
# m_pre_encoder: lp
|
61 |
+
# m_encoder: lp
|
62 |
+
# m_fix_pre: False
|
63 |
+
|
64 |
+
# facial_f: 128
|
65 |
+
# f_pre_encoder: lp
|
66 |
+
# f_encoder: lp
|
67 |
+
# f_fix_pre: False
|
68 |
+
|
69 |
+
#m_decoder: lstm
|
70 |
+
#decode_fusion: cat
|
71 |
+
#n_layer: 2
|
72 |
+
#hidden_size: 512
|
73 |
+
rec_weight: 1
|
74 |
+
rec_pos_weight: 1
|
75 |
+
rec_ver_weight: 1
|
76 |
+
# rec_fac_weight: 1
|
77 |
+
#ita_weight: 0
|
78 |
+
#iwa_weight: 0
|
79 |
+
#fusion_mode: sum
|
80 |
+
# grad_norm: 1
|
81 |
+
epochs: 500
|
82 |
+
test_period: 100
|
configs/emage.yaml
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
root_path: ./
|
5 |
+
out_path: ./outputs/audio2pose/
|
6 |
+
project: s2g
|
7 |
+
data_path: ./BEAT2/beat_english_v2.0.0/
|
8 |
+
e_path: weights/AESKConv_240_100.bin
|
9 |
+
eval_model: motion_representation
|
10 |
+
e_name: VAESKConv
|
11 |
+
test_ckpt: ./EMAGE/emage_240.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
vae_test_len: 32
|
14 |
+
vae_test_dim: 330
|
15 |
+
vae_test_stride: 20
|
16 |
+
vae_length: 240
|
17 |
+
vae_codebook_size: 256
|
18 |
+
vae_layer: 4
|
19 |
+
vae_grow: [1,1,2,1]
|
20 |
+
variational: False
|
21 |
+
|
22 |
+
# data config
|
23 |
+
training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
|
24 |
+
additional_data: False
|
25 |
+
cache_path: datasets/beat_cache/beat_smplx_en_emage/
|
26 |
+
dataset: beat_sep_lower
|
27 |
+
new_cache: False
|
28 |
+
|
29 |
+
# motion config
|
30 |
+
ori_joints: beat_smplx_joints
|
31 |
+
tar_joints: beat_smplx_full
|
32 |
+
pose_rep: smplxflame_30
|
33 |
+
pose_norm: False
|
34 |
+
pose_fps: 30
|
35 |
+
rot6d: True
|
36 |
+
pre_frames: 4
|
37 |
+
pose_dims: 330
|
38 |
+
pose_length: 64
|
39 |
+
stride: 20
|
40 |
+
test_length: 64
|
41 |
+
motion_f: 256
|
42 |
+
m_pre_encoder: null
|
43 |
+
m_encoder: null
|
44 |
+
m_fix_pre: False
|
45 |
+
|
46 |
+
# audio config
|
47 |
+
audio_rep: onset+amplitude
|
48 |
+
audio_sr: 16000
|
49 |
+
audio_fps: 16000
|
50 |
+
audio_norm: False
|
51 |
+
audio_f: 256
|
52 |
+
# a_pre_encoder: tcn_camn
|
53 |
+
# a_encoder: none
|
54 |
+
# a_fix_pre: False
|
55 |
+
|
56 |
+
# text config
|
57 |
+
word_rep: textgrid
|
58 |
+
word_index_num: 11195
|
59 |
+
word_dims: 300
|
60 |
+
freeze_wordembed: False
|
61 |
+
word_f: 256
|
62 |
+
t_pre_encoder: fasttext
|
63 |
+
t_encoder: null
|
64 |
+
t_fix_pre: False
|
65 |
+
|
66 |
+
# facial config
|
67 |
+
facial_rep: smplxflame_30
|
68 |
+
facial_dims: 100
|
69 |
+
facial_norm: False
|
70 |
+
facial_f: 0
|
71 |
+
f_pre_encoder: null
|
72 |
+
f_encoder: null
|
73 |
+
f_fix_pre: False
|
74 |
+
|
75 |
+
# speaker config
|
76 |
+
id_rep: onehot
|
77 |
+
speaker_f: 0
|
78 |
+
|
79 |
+
# model config
|
80 |
+
batch_size: 64
|
81 |
+
# warmup_epochs: 1
|
82 |
+
# warmup_lr: 1e-6
|
83 |
+
lr_base: 5e-4
|
84 |
+
model: emage
|
85 |
+
g_name: MAGE_Transformer
|
86 |
+
trainer: emage
|
87 |
+
hidden_size: 768
|
88 |
+
n_layer: 1
|
89 |
+
|
90 |
+
rec_weight: 1
|
91 |
+
grad_norm: 0.99
|
92 |
+
epochs: 400
|
93 |
+
test_period: 20
|
94 |
+
ll: 3
|
95 |
+
lf: 3
|
96 |
+
lu: 3
|
97 |
+
lh: 3
|
98 |
+
cl: 1
|
99 |
+
cf: 0
|
100 |
+
cu: 1
|
101 |
+
ch: 1
|
configs/emage_test.yaml
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
root_path: ./
|
5 |
+
out_path: ./outputs/audio2pose/
|
6 |
+
project: s2g
|
7 |
+
data_path: ./EMAGE/test_sequences/
|
8 |
+
e_path: weights/AESKConv_240_100.bin
|
9 |
+
eval_model: motion_representation
|
10 |
+
e_name: VAESKConv
|
11 |
+
test_ckpt: ./EMAGE/emage_240.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
vae_test_len: 32
|
14 |
+
vae_test_dim: 330
|
15 |
+
vae_test_stride: 20
|
16 |
+
vae_length: 240
|
17 |
+
vae_codebook_size: 256
|
18 |
+
vae_layer: 4
|
19 |
+
vae_grow: [1,1,2,1]
|
20 |
+
variational: False
|
21 |
+
|
22 |
+
# data config
|
23 |
+
training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
|
24 |
+
additional_data: False
|
25 |
+
cache_path: ./datasets/beat_cache/beat_smplx_en_emage_test/
|
26 |
+
dataset: beat_testonly
|
27 |
+
new_cache: True
|
28 |
+
|
29 |
+
# motion config
|
30 |
+
ori_joints: beat_smplx_joints
|
31 |
+
tar_joints: beat_smplx_full
|
32 |
+
pose_rep: smplxflame_30
|
33 |
+
pose_norm: False
|
34 |
+
pose_fps: 30
|
35 |
+
rot6d: True
|
36 |
+
pre_frames: 4
|
37 |
+
pose_dims: 330
|
38 |
+
pose_length: 64
|
39 |
+
stride: 20
|
40 |
+
test_length: 64
|
41 |
+
motion_f: 256
|
42 |
+
m_pre_encoder: null
|
43 |
+
m_encoder: null
|
44 |
+
m_fix_pre: False
|
45 |
+
|
46 |
+
# audio config
|
47 |
+
audio_rep: onset+amplitude
|
48 |
+
audio_sr: 16000
|
49 |
+
audio_fps: 16000
|
50 |
+
audio_norm: False
|
51 |
+
audio_f: 256
|
52 |
+
# a_pre_encoder: tcn_camn
|
53 |
+
# a_encoder: none
|
54 |
+
# a_fix_pre: False
|
55 |
+
|
56 |
+
# text config
|
57 |
+
word_rep: textgrid
|
58 |
+
word_index_num: 11195
|
59 |
+
word_dims: 300
|
60 |
+
freeze_wordembed: False
|
61 |
+
word_f: 256
|
62 |
+
t_pre_encoder: fasttext
|
63 |
+
t_encoder: null
|
64 |
+
t_fix_pre: False
|
65 |
+
|
66 |
+
# facial config
|
67 |
+
facial_rep: smplxflame_30
|
68 |
+
facial_dims: 100
|
69 |
+
facial_norm: False
|
70 |
+
facial_f: 0
|
71 |
+
f_pre_encoder: null
|
72 |
+
f_encoder: null
|
73 |
+
f_fix_pre: False
|
74 |
+
|
75 |
+
# speaker config
|
76 |
+
id_rep: onehot
|
77 |
+
speaker_f: 0
|
78 |
+
|
79 |
+
# model config
|
80 |
+
batch_size: 64
|
81 |
+
# warmup_epochs: 1
|
82 |
+
# warmup_lr: 1e-6
|
83 |
+
lr_base: 5e-4
|
84 |
+
model: emage
|
85 |
+
g_name: MAGE_Transformer
|
86 |
+
trainer: emage
|
87 |
+
hidden_size: 768
|
88 |
+
n_layer: 1
|
89 |
+
|
90 |
+
rec_weight: 1
|
91 |
+
grad_norm: 0.99
|
92 |
+
epochs: 400
|
93 |
+
test_period: 20
|
94 |
+
ll: 3
|
95 |
+
lf: 3
|
96 |
+
lu: 3
|
97 |
+
lh: 3
|
98 |
+
cl: 1
|
99 |
+
cf: 0
|
100 |
+
cu: 1
|
101 |
+
ch: 1
|
configs/emage_test_colab.yaml
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
root_path: ./
|
5 |
+
out_path: ./outputs/audio2pose/
|
6 |
+
project: s2g
|
7 |
+
data_path: ./EMAGE/test_sequences/
|
8 |
+
e_path: weights/AESKConv_240_100.bin
|
9 |
+
eval_model: motion_representation
|
10 |
+
e_name: VAESKConv
|
11 |
+
test_ckpt: ./EMAGE/emage_240.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
vae_test_len: 32
|
14 |
+
vae_test_dim: 330
|
15 |
+
vae_test_stride: 20
|
16 |
+
vae_length: 240
|
17 |
+
vae_codebook_size: 256
|
18 |
+
vae_layer: 4
|
19 |
+
vae_grow: [1,1,2,1]
|
20 |
+
variational: False
|
21 |
+
|
22 |
+
# data config
|
23 |
+
training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
|
24 |
+
additional_data: False
|
25 |
+
cache_path: ./datasets/beat_cache/beat_smplx_en_emage_test/
|
26 |
+
dataset: beat_testonly_colab
|
27 |
+
new_cache: True
|
28 |
+
|
29 |
+
# motion config
|
30 |
+
ori_joints: beat_smplx_joints
|
31 |
+
tar_joints: beat_smplx_full
|
32 |
+
pose_rep: smplxflame_30
|
33 |
+
pose_norm: False
|
34 |
+
pose_fps: 30
|
35 |
+
rot6d: True
|
36 |
+
pre_frames: 4
|
37 |
+
pose_dims: 330
|
38 |
+
pose_length: 64
|
39 |
+
stride: 20
|
40 |
+
test_length: 64
|
41 |
+
motion_f: 256
|
42 |
+
m_pre_encoder: null
|
43 |
+
m_encoder: null
|
44 |
+
m_fix_pre: False
|
45 |
+
|
46 |
+
# audio config
|
47 |
+
audio_rep: onset+amplitude
|
48 |
+
audio_sr: 16000
|
49 |
+
audio_fps: 16000
|
50 |
+
audio_norm: False
|
51 |
+
audio_f: 256
|
52 |
+
# a_pre_encoder: tcn_camn
|
53 |
+
# a_encoder: none
|
54 |
+
# a_fix_pre: False
|
55 |
+
|
56 |
+
# text config
|
57 |
+
word_rep: textgrid
|
58 |
+
word_index_num: 11195
|
59 |
+
word_dims: 300
|
60 |
+
freeze_wordembed: False
|
61 |
+
word_f: 256
|
62 |
+
t_pre_encoder: fasttext
|
63 |
+
t_encoder: null
|
64 |
+
t_fix_pre: False
|
65 |
+
|
66 |
+
# facial config
|
67 |
+
facial_rep: smplxflame_30
|
68 |
+
facial_dims: 100
|
69 |
+
facial_norm: False
|
70 |
+
facial_f: 0
|
71 |
+
f_pre_encoder: null
|
72 |
+
f_encoder: null
|
73 |
+
f_fix_pre: False
|
74 |
+
|
75 |
+
# speaker config
|
76 |
+
id_rep: onehot
|
77 |
+
speaker_f: 0
|
78 |
+
|
79 |
+
# model config
|
80 |
+
batch_size: 64
|
81 |
+
# warmup_epochs: 1
|
82 |
+
# warmup_lr: 1e-6
|
83 |
+
lr_base: 5e-4
|
84 |
+
model: emage
|
85 |
+
g_name: MAGE_Transformer
|
86 |
+
trainer: emage
|
87 |
+
hidden_size: 768
|
88 |
+
n_layer: 1
|
89 |
+
|
90 |
+
rec_weight: 1
|
91 |
+
grad_norm: 0.99
|
92 |
+
epochs: 400
|
93 |
+
test_period: 20
|
94 |
+
ll: 3
|
95 |
+
lf: 3
|
96 |
+
lu: 3
|
97 |
+
lh: 3
|
98 |
+
cl: 1
|
99 |
+
cf: 0
|
100 |
+
cu: 1
|
101 |
+
ch: 1
|
configs/emage_test_hf.yaml
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
root_path: ./
|
5 |
+
out_path: ./outputs/audio2pose/
|
6 |
+
project: s2g
|
7 |
+
data_path: ./EMAGE/test_sequences/
|
8 |
+
e_path: weights/AESKConv_240_100.bin
|
9 |
+
eval_model: motion_representation
|
10 |
+
e_name: VAESKConv
|
11 |
+
test_ckpt: ./EMAGE/emage_audio_175.bin
|
12 |
+
data_path_1: ./EMAGE/
|
13 |
+
vae_test_len: 32
|
14 |
+
vae_test_dim: 330
|
15 |
+
vae_test_stride: 20
|
16 |
+
vae_length: 240
|
17 |
+
vae_codebook_size: 256
|
18 |
+
vae_layer: 4
|
19 |
+
vae_grow: [1,1,2,1]
|
20 |
+
variational: False
|
21 |
+
|
22 |
+
# data config
|
23 |
+
training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
|
24 |
+
additional_data: False
|
25 |
+
cache_path: ./datasets/beat_cache/beat_smplx_en_emage_test/
|
26 |
+
dataset: beat_testonly_hf
|
27 |
+
new_cache: True
|
28 |
+
|
29 |
+
# motion config
|
30 |
+
ori_joints: beat_smplx_joints
|
31 |
+
tar_joints: beat_smplx_full
|
32 |
+
pose_rep: smplxflame_30
|
33 |
+
pose_norm: False
|
34 |
+
pose_fps: 30
|
35 |
+
rot6d: True
|
36 |
+
pre_frames: 4
|
37 |
+
pose_dims: 330
|
38 |
+
pose_length: 64
|
39 |
+
stride: 20
|
40 |
+
test_length: 64
|
41 |
+
motion_f: 256
|
42 |
+
m_pre_encoder: null
|
43 |
+
m_encoder: null
|
44 |
+
m_fix_pre: False
|
45 |
+
|
46 |
+
# audio config
|
47 |
+
audio_rep: wave16k
|
48 |
+
audio_sr: 16000
|
49 |
+
audio_fps: 16000
|
50 |
+
audio_norm: False
|
51 |
+
audio_f: 256
|
52 |
+
# a_pre_encoder: tcn_camn
|
53 |
+
# a_encoder: none
|
54 |
+
# a_fix_pre: False
|
55 |
+
|
56 |
+
# text config
|
57 |
+
# word_rep: textgrid
|
58 |
+
# word_index_num: 11195
|
59 |
+
# word_dims: 300
|
60 |
+
# freeze_wordembed: False
|
61 |
+
# word_f: 256
|
62 |
+
# t_pre_encoder: fasttext
|
63 |
+
# t_encoder: null
|
64 |
+
# t_fix_pre: False
|
65 |
+
|
66 |
+
# facial config
|
67 |
+
facial_rep: smplxflame_30
|
68 |
+
facial_dims: 100
|
69 |
+
facial_norm: False
|
70 |
+
facial_f: 0
|
71 |
+
f_pre_encoder: null
|
72 |
+
f_encoder: null
|
73 |
+
f_fix_pre: False
|
74 |
+
|
75 |
+
# speaker config
|
76 |
+
id_rep: onehot
|
77 |
+
speaker_f: 0
|
78 |
+
|
79 |
+
# model config
|
80 |
+
batch_size: 64
|
81 |
+
# warmup_epochs: 1
|
82 |
+
# warmup_lr: 1e-6
|
83 |
+
lr_base: 5e-4
|
84 |
+
model: emage_audio
|
85 |
+
g_name: MAGE_Transformer
|
86 |
+
trainer: emage
|
87 |
+
hidden_size: 768
|
88 |
+
n_layer: 1
|
89 |
+
|
90 |
+
rec_weight: 1
|
91 |
+
grad_norm: 0.99
|
92 |
+
epochs: 400
|
93 |
+
test_period: 20
|
94 |
+
ll: 3
|
95 |
+
lf: 3
|
96 |
+
lu: 3
|
97 |
+
lh: 3
|
98 |
+
cl: 1
|
99 |
+
cf: 0
|
100 |
+
cu: 1
|
101 |
+
ch: 1
|
configs/skcnn_ae.yaml
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_train: True
|
2 |
+
ddp: False
|
3 |
+
stat: ts
|
4 |
+
training_speakers: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
|
5 |
+
root_path: /home/s24273/
|
6 |
+
out_path: /home/s24273/outputs/audio2pose/
|
7 |
+
cache_path: datasets/beat_cache/beat_smplx_en/
|
8 |
+
project: mage_smplx
|
9 |
+
data_path: /home/s24273/datasets/beat_v2.0.0/beat_english_v2.0.0/
|
10 |
+
e_path: weights/AESKConv_240_100.bin
|
11 |
+
test_ckpt: weights/multi.bin
|
12 |
+
data_path_1: /home/s24273/datasets/hub/
|
13 |
+
#torch_hub_path: datasets/hub/
|
14 |
+
additional_data: False
|
15 |
+
dataset: beat_smplx2020
|
16 |
+
new_cache: False
|
17 |
+
ori_joints: beat_smplx_joints
|
18 |
+
tar_joints: beat_smplx_full
|
19 |
+
pose_rep: smplxflame_30
|
20 |
+
pose_norm: False
|
21 |
+
pose_fps: 30
|
22 |
+
|
23 |
+
|
24 |
+
vae_test_len: 64
|
25 |
+
vae_test_dim: 330
|
26 |
+
vae_test_stride: 20
|
27 |
+
vae_length: 240
|
28 |
+
vae_layer: 2
|
29 |
+
vae_grow: [1,2]
|
30 |
+
variational: False
|
31 |
+
|
32 |
+
pose_dims: 330
|
33 |
+
pose_length: 64
|
34 |
+
stride: 20
|
35 |
+
facial_dims: 100
|
36 |
+
word_index_num: 11195
|
37 |
+
word_dims: 300
|
38 |
+
batch_size: 32
|
39 |
+
lr_base: 1e-4
|
40 |
+
model: motion_representation
|
41 |
+
g_name: VAESKConv
|
42 |
+
#eval_model: motion_autoencoder
|
43 |
+
#e_name: HalfEmbeddingNet
|
44 |
+
trainer: ae
|
45 |
+
decay_epochs: 950
|
46 |
+
# audio_f: 256
|
47 |
+
# a_pre_encoder: tcn_camn
|
48 |
+
# a_encoder: lp
|
49 |
+
# a_fix_pre: False
|
50 |
+
|
51 |
+
# freeze_wordembed: False
|
52 |
+
# word_f: 128
|
53 |
+
# t_pre_encoder: fasttext
|
54 |
+
# t_encoder: lp
|
55 |
+
# t_fix_pre: False
|
56 |
+
|
57 |
+
# motion_f: 256
|
58 |
+
# m_pre_encoder: lp
|
59 |
+
# m_encoder: lp
|
60 |
+
# m_fix_pre: False
|
61 |
+
|
62 |
+
# facial_f: 128
|
63 |
+
# f_pre_encoder: lp
|
64 |
+
# f_encoder: lp
|
65 |
+
# f_fix_pre: False
|
66 |
+
|
67 |
+
#m_decoder: lstm
|
68 |
+
#decode_fusion: cat
|
69 |
+
#n_layer: 2
|
70 |
+
#hidden_size: 512
|
71 |
+
rec_weight: 1
|
72 |
+
rec_pos_weight: 10
|
73 |
+
rec_ver_weight: 0
|
74 |
+
# rec_fac_weight: 1
|
75 |
+
#ita_weight: 0
|
76 |
+
#iwa_weight: 0
|
77 |
+
#fusion_mode: sum
|
78 |
+
# grad_norm: 1
|
79 |
+
epochs: 1000
|
80 |
+
test_period: 100
|
dataloaders/.ipynb_checkpoints/beat_testonly_hf-checkpoint.py
ADDED
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import math
|
4 |
+
import shutil
|
5 |
+
import numpy as np
|
6 |
+
import lmdb as lmdb
|
7 |
+
import textgrid as tg
|
8 |
+
import pandas as pd
|
9 |
+
import torch
|
10 |
+
import glob
|
11 |
+
import json
|
12 |
+
from termcolor import colored
|
13 |
+
from loguru import logger
|
14 |
+
from collections import defaultdict
|
15 |
+
from torch.utils.data import Dataset
|
16 |
+
import torch.distributed as dist
|
17 |
+
import pyarrow
|
18 |
+
import librosa
|
19 |
+
import smplx
|
20 |
+
|
21 |
+
from .build_vocab import Vocab
|
22 |
+
from .utils.audio_features import Wav2Vec2Model
|
23 |
+
from .data_tools import joints_list
|
24 |
+
from .utils import rotation_conversions as rc
|
25 |
+
from .utils import other_tools_hf
|
26 |
+
|
27 |
+
class CustomDataset(Dataset):
|
28 |
+
def __init__(self, args, loader_type, smplx_path=None, audio_path=None, text_path=None, augmentation=None, kwargs=None, build_cache=True):
|
29 |
+
self.args = args
|
30 |
+
self.loader_type = loader_type
|
31 |
+
self.smplx_path = "./EMAGE/test_sequences/smplxflame_30/2_scott_0_1_1.npz"
|
32 |
+
self.audio_path = audio_path
|
33 |
+
self.text_path = "./EMAGE/test_sequences/textgrid/2_scott_0_1_1.TextGrid"
|
34 |
+
self.rank = 0 # dist.get_rank()
|
35 |
+
self.ori_stride = self.args.stride
|
36 |
+
self.ori_length = self.args.pose_length
|
37 |
+
self.alignment = [0,0] # for trinity
|
38 |
+
|
39 |
+
self.ori_joint_list = joints_list[self.args.ori_joints]
|
40 |
+
self.tar_joint_list = joints_list[self.args.tar_joints]
|
41 |
+
if 'smplx' in self.args.pose_rep:
|
42 |
+
self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
|
43 |
+
self.joints = len(list(self.tar_joint_list.keys()))
|
44 |
+
for joint_name in self.tar_joint_list:
|
45 |
+
self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
46 |
+
else:
|
47 |
+
self.joints = len(list(self.ori_joint_list.keys()))+1
|
48 |
+
self.joint_mask = np.zeros(self.joints*3)
|
49 |
+
for joint_name in self.tar_joint_list:
|
50 |
+
if joint_name == "Hips":
|
51 |
+
self.joint_mask[3:6] = 1
|
52 |
+
else:
|
53 |
+
self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
|
54 |
+
# select trainable joints
|
55 |
+
self.smplx = smplx.create(
|
56 |
+
self.args.data_path_1+"smplx_models/",
|
57 |
+
model_type='smplx',
|
58 |
+
gender='NEUTRAL_2020',
|
59 |
+
use_face_contour=False,
|
60 |
+
num_betas=300,
|
61 |
+
num_expression_coeffs=100,
|
62 |
+
ext='npz',
|
63 |
+
use_pca=False,
|
64 |
+
).eval()
|
65 |
+
|
66 |
+
split_rule = pd.read_csv(args.data_path+"test.csv")
|
67 |
+
self.selected_file = split_rule
|
68 |
+
self.data_dir = args.data_path
|
69 |
+
|
70 |
+
if loader_type == "test":
|
71 |
+
self.args.multi_length_training = [1.0]
|
72 |
+
self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
|
73 |
+
self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
|
74 |
+
if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr:
|
75 |
+
self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
|
76 |
+
|
77 |
+
if args.word_rep is not None:
|
78 |
+
with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
|
79 |
+
self.lang_model = pickle.load(f)
|
80 |
+
|
81 |
+
preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache"
|
82 |
+
if build_cache and self.rank == 0:
|
83 |
+
self.build_cache(preloaded_dir)
|
84 |
+
self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
|
85 |
+
with self.lmdb_env.begin() as txn:
|
86 |
+
self.n_samples = txn.stat()["entries"]
|
87 |
+
|
88 |
+
|
89 |
+
def build_cache(self, preloaded_dir):
|
90 |
+
logger.info(f"Audio bit rate: {self.args.audio_fps}")
|
91 |
+
logger.info("Reading data '{}'...".format(self.data_dir))
|
92 |
+
logger.info("Creating the dataset cache...")
|
93 |
+
if self.args.new_cache:
|
94 |
+
if os.path.exists(preloaded_dir):
|
95 |
+
shutil.rmtree(preloaded_dir)
|
96 |
+
if os.path.exists(preloaded_dir):
|
97 |
+
logger.info("Found the cache {}".format(preloaded_dir))
|
98 |
+
elif self.loader_type == "test":
|
99 |
+
self.cache_generation(
|
100 |
+
preloaded_dir, True,
|
101 |
+
0, 0,
|
102 |
+
is_test=True)
|
103 |
+
else:
|
104 |
+
self.cache_generation(
|
105 |
+
preloaded_dir, self.args.disable_filtering,
|
106 |
+
self.args.clean_first_seconds, self.args.clean_final_seconds,
|
107 |
+
is_test=False)
|
108 |
+
|
109 |
+
|
110 |
+
def __len__(self):
|
111 |
+
return self.n_samples
|
112 |
+
|
113 |
+
|
114 |
+
def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False):
|
115 |
+
self.n_out_samples = 0
|
116 |
+
# create db for samples
|
117 |
+
if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
|
118 |
+
if len(self.args.training_speakers) == 1:
|
119 |
+
#dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50))# 50G
|
120 |
+
dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 0.5))# 500M
|
121 |
+
else:
|
122 |
+
dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 200))# 200G
|
123 |
+
n_filtered_out = defaultdict(int)
|
124 |
+
|
125 |
+
#for index, file_name in self.selected_file.iterrows():
|
126 |
+
#f_name = file_name["id"]
|
127 |
+
ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
|
128 |
+
pose_file = self.smplx_path#self.data_dir + self.args.pose_rep + "/" + f_name + ext
|
129 |
+
pose_each_file = []
|
130 |
+
trans_each_file = []
|
131 |
+
shape_each_file = []
|
132 |
+
audio_each_file = []
|
133 |
+
facial_each_file = []
|
134 |
+
word_each_file = []
|
135 |
+
emo_each_file = []
|
136 |
+
sem_each_file = []
|
137 |
+
vid_each_file = []
|
138 |
+
id_pose = "dummy 2nd"#f_name
|
139 |
+
|
140 |
+
logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue"))
|
141 |
+
if "smplx" in self.args.pose_rep:
|
142 |
+
pose_data = np.load(pose_file, allow_pickle=True)
|
143 |
+
assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
|
144 |
+
stride = int(30/self.args.pose_fps)
|
145 |
+
pose_each_file = pose_data["poses"][::stride]
|
146 |
+
trans_each_file = pose_data["trans"][::stride]
|
147 |
+
shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0)
|
148 |
+
|
149 |
+
assert self.args.pose_fps == 30, "should 30"
|
150 |
+
m_data = np.load(pose_file, allow_pickle=True)
|
151 |
+
betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
|
152 |
+
n, c = poses.shape[0], poses.shape[1]
|
153 |
+
betas = betas.reshape(1, 300)
|
154 |
+
betas = np.tile(betas, (n, 1))
|
155 |
+
betas = torch.from_numpy(betas).float()
|
156 |
+
poses = torch.from_numpy(poses.reshape(n, c)).float()
|
157 |
+
exps = torch.from_numpy(exps.reshape(n, 100)).float()
|
158 |
+
trans = torch.from_numpy(trans.reshape(n, 3)).float()
|
159 |
+
max_length = 128
|
160 |
+
s, r = n//max_length, n%max_length
|
161 |
+
#print(n, s, r)
|
162 |
+
all_tensor = []
|
163 |
+
for i in range(s):
|
164 |
+
with torch.no_grad():
|
165 |
+
joints = self.smplx(
|
166 |
+
betas=betas[i*max_length:(i+1)*max_length],
|
167 |
+
transl=trans[i*max_length:(i+1)*max_length],
|
168 |
+
expression=exps[i*max_length:(i+1)*max_length],
|
169 |
+
jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
|
170 |
+
global_orient=poses[i*max_length:(i+1)*max_length,:3],
|
171 |
+
body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
|
172 |
+
left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
|
173 |
+
right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
|
174 |
+
return_verts=True,
|
175 |
+
return_joints=True,
|
176 |
+
leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
|
177 |
+
reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
|
178 |
+
)['joints'][:, (7,8,10,11), :].reshape(max_length, 4, 3).cpu()
|
179 |
+
all_tensor.append(joints)
|
180 |
+
if r != 0:
|
181 |
+
with torch.no_grad():
|
182 |
+
joints = self.smplx(
|
183 |
+
betas=betas[s*max_length:s*max_length+r],
|
184 |
+
transl=trans[s*max_length:s*max_length+r],
|
185 |
+
expression=exps[s*max_length:s*max_length+r],
|
186 |
+
jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
|
187 |
+
global_orient=poses[s*max_length:s*max_length+r,:3],
|
188 |
+
body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
|
189 |
+
left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
|
190 |
+
right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
|
191 |
+
return_verts=True,
|
192 |
+
return_joints=True,
|
193 |
+
leye_pose=poses[s*max_length:s*max_length+r, 69:72],
|
194 |
+
reye_pose=poses[s*max_length:s*max_length+r, 72:75],
|
195 |
+
)['joints'][:, (7,8,10,11), :].reshape(r, 4, 3).cpu()
|
196 |
+
all_tensor.append(joints)
|
197 |
+
joints = torch.cat(all_tensor, axis=0) # all, 4, 3
|
198 |
+
# print(joints.shape)
|
199 |
+
feetv = torch.zeros(joints.shape[1], joints.shape[0])
|
200 |
+
joints = joints.permute(1, 0, 2)
|
201 |
+
#print(joints.shape, feetv.shape)
|
202 |
+
feetv[:, :-1] = (joints[:, 1:] - joints[:, :-1]).norm(dim=-1)
|
203 |
+
#print(feetv.shape)
|
204 |
+
contacts = (feetv < 0.01).numpy().astype(float)
|
205 |
+
# print(contacts.shape, contacts)
|
206 |
+
contacts = contacts.transpose(1, 0)
|
207 |
+
pose_each_file = pose_each_file * self.joint_mask
|
208 |
+
pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
|
209 |
+
pose_each_file = np.concatenate([pose_each_file, contacts], axis=1)
|
210 |
+
# print(pose_each_file.shape)
|
211 |
+
|
212 |
+
|
213 |
+
if self.args.facial_rep is not None:
|
214 |
+
logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
|
215 |
+
facial_each_file = pose_data["expressions"][::stride]
|
216 |
+
if self.args.facial_norm:
|
217 |
+
facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
|
218 |
+
|
219 |
+
else:
|
220 |
+
assert 120%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
|
221 |
+
stride = int(120/self.args.pose_fps)
|
222 |
+
with open(pose_file, "r") as pose_data:
|
223 |
+
for j, line in enumerate(pose_data.readlines()):
|
224 |
+
if j < 431: continue
|
225 |
+
if j%stride != 0:continue
|
226 |
+
data = np.fromstring(line, dtype=float, sep=" ")
|
227 |
+
rot_data = rc.euler_angles_to_matrix(torch.from_numpy(np.deg2rad(data)).reshape(-1, self.joints,3), "XYZ")
|
228 |
+
rot_data = rc.matrix_to_axis_angle(rot_data).reshape(-1, self.joints*3)
|
229 |
+
rot_data = rot_data.numpy() * self.joint_mask
|
230 |
+
|
231 |
+
pose_each_file.append(rot_data)
|
232 |
+
trans_each_file.append(data[:3])
|
233 |
+
|
234 |
+
pose_each_file = np.array(pose_each_file)
|
235 |
+
trans_each_file = np.array(trans_each_file)
|
236 |
+
shape_each_file = np.repeat(np.array(-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
|
237 |
+
if self.args.facial_rep is not None:
|
238 |
+
logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
|
239 |
+
facial_file = pose_file.replace(self.args.pose_rep, self.args.facial_rep).replace("bvh", "json")
|
240 |
+
assert 60%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
|
241 |
+
stride = int(60/self.args.pose_fps)
|
242 |
+
if not os.path.exists(facial_file):
|
243 |
+
logger.warning(f"# ---- file not found for Facial {id_pose}, skip all files with the same id ---- #")
|
244 |
+
#self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
|
245 |
+
#continue
|
246 |
+
with open(facial_file, 'r') as facial_data_file:
|
247 |
+
facial_data = json.load(facial_data_file)
|
248 |
+
for j, frame_data in enumerate(facial_data['frames']):
|
249 |
+
if j%stride != 0:continue
|
250 |
+
facial_each_file.append(frame_data['weights'])
|
251 |
+
facial_each_file = np.array(facial_each_file)
|
252 |
+
if self.args.facial_norm:
|
253 |
+
facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
|
254 |
+
|
255 |
+
if self.args.id_rep is not None:
|
256 |
+
int_value = 1
|
257 |
+
vid_each_file = np.repeat(np.array(int_value).reshape(1, 1), pose_each_file.shape[0], axis=0)
|
258 |
+
|
259 |
+
if self.args.audio_rep is not None:
|
260 |
+
logger.info(f"# ---- Building cache for Audio {id_pose} and Pose {id_pose} ---- #")
|
261 |
+
audio_file = self.audio_path[1]#pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav")
|
262 |
+
sr = self.audio_path[0]
|
263 |
+
print(sr)
|
264 |
+
#if not os.path.exists(audio_file):
|
265 |
+
# logger.warning(f"# ---- file not found for Audio {id_pose}, skip all files with the same id ---- #")
|
266 |
+
#self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
|
267 |
+
#continue
|
268 |
+
#audio_each_file, sr = librosa.load(audio_file)
|
269 |
+
audio_each_file = audio_file.astype(np.float32)
|
270 |
+
print(audio_each_file.shape)
|
271 |
+
audio_each_file = librosa.resample(audio_each_file, orig_sr=sr, target_sr=self.args.audio_sr)
|
272 |
+
print(audio_each_file.shape)
|
273 |
+
if self.args.audio_rep == "onset+amplitude":
|
274 |
+
from numpy.lib import stride_tricks
|
275 |
+
frame_length = 1024
|
276 |
+
# hop_length = 512
|
277 |
+
shape = (audio_each_file.shape[-1] - frame_length + 1, frame_length)
|
278 |
+
strides = (audio_each_file.strides[-1], audio_each_file.strides[-1])
|
279 |
+
rolling_view = stride_tricks.as_strided(audio_each_file, shape=shape, strides=strides)
|
280 |
+
amplitude_envelope = np.max(np.abs(rolling_view), axis=1)
|
281 |
+
# pad the last frame_length-1 samples
|
282 |
+
amplitude_envelope = np.pad(amplitude_envelope, (0, frame_length-1), mode='constant', constant_values=amplitude_envelope[-1])
|
283 |
+
audio_onset_f = librosa.onset.onset_detect(y=audio_each_file, sr=self.args.audio_sr, units='frames')
|
284 |
+
onset_array = np.zeros(len(audio_each_file), dtype=float)
|
285 |
+
onset_array[audio_onset_f] = 1.0
|
286 |
+
# print(amplitude_envelope.shape, audio_each_file.shape, onset_array.shape)
|
287 |
+
audio_each_file = np.concatenate([amplitude_envelope.reshape(-1, 1), onset_array.reshape(-1, 1)], axis=1)
|
288 |
+
elif self.args.audio_rep == "mfcc":
|
289 |
+
audio_each_file = librosa.feature.melspectrogram(y=audio_each_file, sr=self.args.audio_sr, n_mels=128, hop_length=int(self.args.audio_sr/self.args.audio_fps))
|
290 |
+
audio_each_file = audio_each_file.transpose(1, 0)
|
291 |
+
# print(audio_each_file.shape, pose_each_file.shape)
|
292 |
+
if self.args.audio_norm and self.args.audio_rep == "wave16k":
|
293 |
+
audio_each_file = (audio_each_file - self.mean_audio) / self.std_audio
|
294 |
+
|
295 |
+
time_offset = 0
|
296 |
+
if self.args.word_rep is not None:
|
297 |
+
logger.info(f"# ---- Building cache for Word {id_pose} and Pose {id_pose} ---- #")
|
298 |
+
word_file = self.text_path#f"{self.data_dir}{self.args.word_rep}/{id_pose}.TextGrid"
|
299 |
+
if not os.path.exists(word_file):
|
300 |
+
logger.warning(f"# ---- file not found for Word {id_pose}, skip all files with the same id ---- #")
|
301 |
+
#self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
|
302 |
+
#continue
|
303 |
+
tgrid = tg.TextGrid.fromFile(word_file)
|
304 |
+
if self.args.t_pre_encoder == "bert":
|
305 |
+
from transformers import AutoTokenizer, BertModel
|
306 |
+
tokenizer = AutoTokenizer.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True)
|
307 |
+
model = BertModel.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True).eval()
|
308 |
+
list_word = []
|
309 |
+
all_hidden = []
|
310 |
+
max_len = 400
|
311 |
+
last = 0
|
312 |
+
word_token_mapping = []
|
313 |
+
first = True
|
314 |
+
for i, word in enumerate(tgrid[0]):
|
315 |
+
last = i
|
316 |
+
if (i%max_len != 0) or (i==0):
|
317 |
+
if word.mark == "":
|
318 |
+
list_word.append(".")
|
319 |
+
else:
|
320 |
+
list_word.append(word.mark)
|
321 |
+
else:
|
322 |
+
max_counter = max_len
|
323 |
+
str_word = ' '.join(map(str, list_word))
|
324 |
+
if first:
|
325 |
+
global_len = 0
|
326 |
+
end = -1
|
327 |
+
offset_word = []
|
328 |
+
for k, wordvalue in enumerate(list_word):
|
329 |
+
start = end+1
|
330 |
+
end = start+len(wordvalue)
|
331 |
+
offset_word.append((start, end))
|
332 |
+
#print(offset_word)
|
333 |
+
token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
|
334 |
+
#print(token_scan)
|
335 |
+
for start, end in offset_word:
|
336 |
+
sub_mapping = []
|
337 |
+
for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
|
338 |
+
if int(start) <= int(start_t) and int(end_t) <= int(end):
|
339 |
+
#print(i+global_len)
|
340 |
+
sub_mapping.append(i+global_len)
|
341 |
+
word_token_mapping.append(sub_mapping)
|
342 |
+
#print(len(word_token_mapping))
|
343 |
+
global_len = word_token_mapping[-1][-1] + 1
|
344 |
+
list_word = []
|
345 |
+
if word.mark == "":
|
346 |
+
list_word.append(".")
|
347 |
+
else:
|
348 |
+
list_word.append(word.mark)
|
349 |
+
|
350 |
+
with torch.no_grad():
|
351 |
+
inputs = tokenizer(str_word, return_tensors="pt")
|
352 |
+
outputs = model(**inputs)
|
353 |
+
last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
|
354 |
+
all_hidden.append(last_hidden_states)
|
355 |
+
|
356 |
+
#list_word = list_word[:10]
|
357 |
+
if list_word == []:
|
358 |
+
pass
|
359 |
+
else:
|
360 |
+
if first:
|
361 |
+
global_len = 0
|
362 |
+
str_word = ' '.join(map(str, list_word))
|
363 |
+
end = -1
|
364 |
+
offset_word = []
|
365 |
+
for k, wordvalue in enumerate(list_word):
|
366 |
+
start = end+1
|
367 |
+
end = start+len(wordvalue)
|
368 |
+
offset_word.append((start, end))
|
369 |
+
#print(offset_word)
|
370 |
+
token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
|
371 |
+
#print(token_scan)
|
372 |
+
for start, end in offset_word:
|
373 |
+
sub_mapping = []
|
374 |
+
for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
|
375 |
+
if int(start) <= int(start_t) and int(end_t) <= int(end):
|
376 |
+
sub_mapping.append(i+global_len)
|
377 |
+
#print(sub_mapping)
|
378 |
+
word_token_mapping.append(sub_mapping)
|
379 |
+
#print(len(word_token_mapping))
|
380 |
+
with torch.no_grad():
|
381 |
+
inputs = tokenizer(str_word, return_tensors="pt")
|
382 |
+
outputs = model(**inputs)
|
383 |
+
last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
|
384 |
+
all_hidden.append(last_hidden_states)
|
385 |
+
last_hidden_states = np.concatenate(all_hidden, axis=0)
|
386 |
+
|
387 |
+
for i in range(pose_each_file.shape[0]):
|
388 |
+
found_flag = False
|
389 |
+
current_time = i/self.args.pose_fps + time_offset
|
390 |
+
j_last = 0
|
391 |
+
for j, word in enumerate(tgrid[0]):
|
392 |
+
word_n, word_s, word_e = word.mark, word.minTime, word.maxTime
|
393 |
+
if word_s<=current_time and current_time<=word_e:
|
394 |
+
if self.args.word_cache and self.args.t_pre_encoder == 'bert':
|
395 |
+
mapping_index = word_token_mapping[j]
|
396 |
+
#print(mapping_index, word_s, word_e)
|
397 |
+
s_t = np.linspace(word_s, word_e, len(mapping_index)+1)
|
398 |
+
#print(s_t)
|
399 |
+
for tt, t_sep in enumerate(s_t[1:]):
|
400 |
+
if current_time <= t_sep:
|
401 |
+
#if len(mapping_index) > 1: print(mapping_index[tt])
|
402 |
+
word_each_file.append(last_hidden_states[mapping_index[tt]])
|
403 |
+
break
|
404 |
+
else:
|
405 |
+
if word_n == " ":
|
406 |
+
word_each_file.append(self.lang_model.PAD_token)
|
407 |
+
else:
|
408 |
+
word_each_file.append(self.lang_model.get_word_index(word_n))
|
409 |
+
found_flag = True
|
410 |
+
j_last = j
|
411 |
+
break
|
412 |
+
else: continue
|
413 |
+
if not found_flag:
|
414 |
+
if self.args.word_cache and self.args.t_pre_encoder == 'bert':
|
415 |
+
word_each_file.append(last_hidden_states[j_last])
|
416 |
+
else:
|
417 |
+
word_each_file.append(self.lang_model.UNK_token)
|
418 |
+
word_each_file = np.array(word_each_file)
|
419 |
+
#print(word_each_file.shape)
|
420 |
+
|
421 |
+
if self.args.emo_rep is not None:
|
422 |
+
logger.info(f"# ---- Building cache for Emo {id_pose} and Pose {id_pose} ---- #")
|
423 |
+
rtype, start = int(id_pose.split('_')[3]), int(id_pose.split('_')[3])
|
424 |
+
if rtype == 0 or rtype == 2 or rtype == 4 or rtype == 6:
|
425 |
+
if start >= 1 and start <= 64:
|
426 |
+
score = 0
|
427 |
+
elif start >= 65 and start <= 72:
|
428 |
+
score = 1
|
429 |
+
elif start >= 73 and start <= 80:
|
430 |
+
score = 2
|
431 |
+
elif start >= 81 and start <= 86:
|
432 |
+
score = 3
|
433 |
+
elif start >= 87 and start <= 94:
|
434 |
+
score = 4
|
435 |
+
elif start >= 95 and start <= 102:
|
436 |
+
score = 5
|
437 |
+
elif start >= 103 and start <= 110:
|
438 |
+
score = 6
|
439 |
+
elif start >= 111 and start <= 118:
|
440 |
+
score = 7
|
441 |
+
else: pass
|
442 |
+
else:
|
443 |
+
# you may denote as unknown in the future
|
444 |
+
score = 0
|
445 |
+
emo_each_file = np.repeat(np.array(score).reshape(1, 1), pose_each_file.shape[0], axis=0)
|
446 |
+
#print(emo_each_file)
|
447 |
+
|
448 |
+
if self.args.sem_rep is not None:
|
449 |
+
logger.info(f"# ---- Building cache for Sem {id_pose} and Pose {id_pose} ---- #")
|
450 |
+
sem_file = f"{self.data_dir}{self.args.sem_rep}/{id_pose}.txt"
|
451 |
+
sem_all = pd.read_csv(sem_file,
|
452 |
+
sep='\t',
|
453 |
+
names=["name", "start_time", "end_time", "duration", "score", "keywords"])
|
454 |
+
# we adopt motion-level semantic score here.
|
455 |
+
for i in range(pose_each_file.shape[0]):
|
456 |
+
found_flag = False
|
457 |
+
for j, (start, end, score) in enumerate(zip(sem_all['start_time'],sem_all['end_time'], sem_all['score'])):
|
458 |
+
current_time = i/self.args.pose_fps + time_offset
|
459 |
+
if start<=current_time and current_time<=end:
|
460 |
+
sem_each_file.append(score)
|
461 |
+
found_flag=True
|
462 |
+
break
|
463 |
+
else: continue
|
464 |
+
if not found_flag: sem_each_file.append(0.)
|
465 |
+
sem_each_file = np.array(sem_each_file)
|
466 |
+
#print(sem_each_file)
|
467 |
+
|
468 |
+
filtered_result = self._sample_from_clip(
|
469 |
+
dst_lmdb_env,
|
470 |
+
audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
|
471 |
+
vid_each_file, emo_each_file, sem_each_file,
|
472 |
+
disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
|
473 |
+
)
|
474 |
+
for type in filtered_result.keys():
|
475 |
+
n_filtered_out[type] += filtered_result[type]
|
476 |
+
|
477 |
+
with dst_lmdb_env.begin() as txn:
|
478 |
+
logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
|
479 |
+
n_total_filtered = 0
|
480 |
+
for type, n_filtered in n_filtered_out.items():
|
481 |
+
logger.info("{}: {}".format(type, n_filtered))
|
482 |
+
n_total_filtered += n_filtered
|
483 |
+
logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
|
484 |
+
n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
|
485 |
+
dst_lmdb_env.sync()
|
486 |
+
dst_lmdb_env.close()
|
487 |
+
|
488 |
+
def _sample_from_clip(
|
489 |
+
self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
|
490 |
+
vid_each_file, emo_each_file, sem_each_file,
|
491 |
+
disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
|
492 |
+
):
|
493 |
+
"""
|
494 |
+
for data cleaning, we ignore the data for first and final n s
|
495 |
+
for test, we return all data
|
496 |
+
"""
|
497 |
+
# audio_start = int(self.alignment[0] * self.args.audio_fps)
|
498 |
+
# pose_start = int(self.alignment[1] * self.args.pose_fps)
|
499 |
+
#logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
|
500 |
+
# audio_each_file = audio_each_file[audio_start:]
|
501 |
+
# pose_each_file = pose_each_file[pose_start:]
|
502 |
+
# trans_each_file =
|
503 |
+
#logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
|
504 |
+
#print(pose_each_file.shape)
|
505 |
+
round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s
|
506 |
+
print(pose_each_file.shape[0])
|
507 |
+
#print(round_seconds_skeleton)
|
508 |
+
#if audio_each_file != []:
|
509 |
+
if self.args.audio_rep != "wave16k":
|
510 |
+
round_seconds_audio = len(audio_each_file) // self.args.audio_fps # assume 16,000,00 / 16,000 = 100 s
|
511 |
+
elif self.args.audio_rep == "mfcc":
|
512 |
+
round_seconds_audio = audio_each_file.shape[0] // self.args.audio_fps
|
513 |
+
else:
|
514 |
+
round_seconds_audio = audio_each_file.shape[0] // self.args.audio_sr
|
515 |
+
# if facial_each_file != []:
|
516 |
+
round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps
|
517 |
+
logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s")
|
518 |
+
round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
|
519 |
+
max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
|
520 |
+
if round_seconds_skeleton != max_round:
|
521 |
+
logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
|
522 |
+
# else:
|
523 |
+
# logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s")
|
524 |
+
# round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton)
|
525 |
+
# max_round = max(round_seconds_audio, round_seconds_skeleton)
|
526 |
+
# if round_seconds_skeleton != max_round:
|
527 |
+
# logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
|
528 |
+
|
529 |
+
clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
|
530 |
+
clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
|
531 |
+
clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
|
532 |
+
|
533 |
+
|
534 |
+
for ratio in self.args.multi_length_training:
|
535 |
+
if is_test:# stride = length for test
|
536 |
+
cut_length = clip_e_f_pose - clip_s_f_pose
|
537 |
+
self.args.stride = cut_length
|
538 |
+
self.max_length = cut_length
|
539 |
+
else:
|
540 |
+
self.args.stride = int(ratio*self.ori_stride)
|
541 |
+
cut_length = int(self.ori_length*ratio)
|
542 |
+
|
543 |
+
num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
|
544 |
+
logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
|
545 |
+
logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
|
546 |
+
|
547 |
+
# if audio_each_file != []:
|
548 |
+
audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps)
|
549 |
+
logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}")
|
550 |
+
|
551 |
+
n_filtered_out = defaultdict(int)
|
552 |
+
sample_pose_list = []
|
553 |
+
sample_audio_list = []
|
554 |
+
sample_facial_list = []
|
555 |
+
sample_shape_list = []
|
556 |
+
sample_word_list = []
|
557 |
+
sample_emo_list = []
|
558 |
+
sample_sem_list = []
|
559 |
+
sample_vid_list = []
|
560 |
+
sample_trans_list = []
|
561 |
+
|
562 |
+
for i in range(num_subdivision): # cut into around 2s chip, (self npose)
|
563 |
+
start_idx = clip_s_f_pose + i * self.args.stride
|
564 |
+
fin_idx = start_idx + cut_length
|
565 |
+
sample_pose = pose_each_file[start_idx:fin_idx]
|
566 |
+
|
567 |
+
sample_trans = trans_each_file[start_idx:fin_idx]
|
568 |
+
sample_shape = shape_each_file[start_idx:fin_idx]
|
569 |
+
# print(sample_pose.shape)
|
570 |
+
if self.args.audio_rep is not None:
|
571 |
+
audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps)
|
572 |
+
audio_end = audio_start + audio_short_length
|
573 |
+
sample_audio = audio_each_file[audio_start:audio_end]
|
574 |
+
else:
|
575 |
+
sample_audio = np.array([-1])
|
576 |
+
sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1])
|
577 |
+
sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1])
|
578 |
+
sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1])
|
579 |
+
sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1])
|
580 |
+
sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
|
581 |
+
|
582 |
+
if sample_pose.any() != None:
|
583 |
+
# filtering motion skeleton data
|
584 |
+
sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
|
585 |
+
is_correct_motion = True #(sample_pose != [])
|
586 |
+
if is_correct_motion or disable_filtering:
|
587 |
+
sample_pose_list.append(sample_pose)
|
588 |
+
sample_audio_list.append(sample_audio)
|
589 |
+
sample_facial_list.append(sample_facial)
|
590 |
+
sample_shape_list.append(sample_shape)
|
591 |
+
sample_word_list.append(sample_word)
|
592 |
+
sample_vid_list.append(sample_vid)
|
593 |
+
sample_emo_list.append(sample_emo)
|
594 |
+
sample_sem_list.append(sample_sem)
|
595 |
+
sample_trans_list.append(sample_trans)
|
596 |
+
else:
|
597 |
+
n_filtered_out[filtering_message] += 1
|
598 |
+
|
599 |
+
if len(sample_pose_list) > 0:
|
600 |
+
with dst_lmdb_env.begin(write=True) as txn:
|
601 |
+
for pose, audio, facial, shape, word, vid, emo, sem, trans in zip(
|
602 |
+
sample_pose_list,
|
603 |
+
sample_audio_list,
|
604 |
+
sample_facial_list,
|
605 |
+
sample_shape_list,
|
606 |
+
sample_word_list,
|
607 |
+
sample_vid_list,
|
608 |
+
sample_emo_list,
|
609 |
+
sample_sem_list,
|
610 |
+
sample_trans_list,):
|
611 |
+
k = "{:005}".format(self.n_out_samples).encode("ascii")
|
612 |
+
v = [pose, audio, facial, shape, word, emo, sem, vid, trans]
|
613 |
+
# v = pyarrow.serialize(v).to_buffer()
|
614 |
+
# txn.put(k, v)
|
615 |
+
# self.n_out_samples += 1
|
616 |
+
v = pickle.dumps(v)
|
617 |
+
txn.put(k, v)
|
618 |
+
self.n_out_samples += 1
|
619 |
+
return n_filtered_out
|
620 |
+
|
621 |
+
def __getitem__(self, idx):
|
622 |
+
with self.lmdb_env.begin(write=False) as txn:
|
623 |
+
key = "{:005}".format(idx).encode("ascii")
|
624 |
+
sample = txn.get(key)
|
625 |
+
# sample = pyarrow.deserialize(sample)
|
626 |
+
if sample is not None:
|
627 |
+
sample = pickle.loads(sample)
|
628 |
+
tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans = sample
|
629 |
+
#print(in_shape)
|
630 |
+
#vid = torch.from_numpy(vid).int()
|
631 |
+
emo = torch.from_numpy(emo).int()
|
632 |
+
sem = torch.from_numpy(sem).float()
|
633 |
+
in_audio = torch.from_numpy(in_audio).float()
|
634 |
+
in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int()
|
635 |
+
if self.loader_type == "test":
|
636 |
+
tar_pose = torch.from_numpy(tar_pose).float()
|
637 |
+
trans = torch.from_numpy(trans).float()
|
638 |
+
in_facial = torch.from_numpy(in_facial).float()
|
639 |
+
vid = torch.from_numpy(vid).float()
|
640 |
+
in_shape = torch.from_numpy(in_shape).float()
|
641 |
+
else:
|
642 |
+
in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
|
643 |
+
trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
|
644 |
+
vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
|
645 |
+
tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float()
|
646 |
+
in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float()
|
647 |
+
return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans}
|
648 |
+
|
649 |
+
|
650 |
+
class MotionPreprocessor:
|
651 |
+
def __init__(self, skeletons):
|
652 |
+
self.skeletons = skeletons
|
653 |
+
#self.mean_pose = mean_pose
|
654 |
+
self.filtering_message = "PASS"
|
655 |
+
|
656 |
+
def get(self):
|
657 |
+
assert (self.skeletons is not None)
|
658 |
+
|
659 |
+
# filtering
|
660 |
+
# if self.skeletons != []:
|
661 |
+
# if self.check_pose_diff():
|
662 |
+
# self.skeletons = []
|
663 |
+
# self.filtering_message = "pose"
|
664 |
+
# elif self.check_spine_angle():
|
665 |
+
# self.skeletons = []
|
666 |
+
# self.filtering_message = "spine angle"
|
667 |
+
# elif self.check_static_motion():
|
668 |
+
# self.skeletons = []
|
669 |
+
# self.filtering_message = "motion"
|
670 |
+
|
671 |
+
# if self.skeletons != []:
|
672 |
+
# self.skeletons = self.skeletons.tolist()
|
673 |
+
# for i, frame in enumerate(self.skeletons):
|
674 |
+
# assert not np.isnan(self.skeletons[i]).any() # missing joints
|
675 |
+
|
676 |
+
return self.skeletons, self.filtering_message
|
677 |
+
|
678 |
+
def check_static_motion(self, verbose=True):
|
679 |
+
def get_variance(skeleton, joint_idx):
|
680 |
+
wrist_pos = skeleton[:, joint_idx]
|
681 |
+
variance = np.sum(np.var(wrist_pos, axis=0))
|
682 |
+
return variance
|
683 |
+
|
684 |
+
left_arm_var = get_variance(self.skeletons, 6)
|
685 |
+
right_arm_var = get_variance(self.skeletons, 9)
|
686 |
+
|
687 |
+
th = 0.0014 # exclude 13110
|
688 |
+
# th = 0.002 # exclude 16905
|
689 |
+
if left_arm_var < th and right_arm_var < th:
|
690 |
+
if verbose:
|
691 |
+
print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
|
692 |
+
return True
|
693 |
+
else:
|
694 |
+
if verbose:
|
695 |
+
print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
|
696 |
+
return False
|
697 |
+
|
698 |
+
|
699 |
+
def check_pose_diff(self, verbose=False):
|
700 |
+
# diff = np.abs(self.skeletons - self.mean_pose) # 186*1
|
701 |
+
# diff = np.mean(diff)
|
702 |
+
|
703 |
+
# # th = 0.017
|
704 |
+
# th = 0.02 #0.02 # exclude 3594
|
705 |
+
# if diff < th:
|
706 |
+
# if verbose:
|
707 |
+
# print("skip - check_pose_diff {:.5f}".format(diff))
|
708 |
+
# return True
|
709 |
+
# # th = 3.5 #0.02 # exclude 3594
|
710 |
+
# # if 3.5 < diff < 5:
|
711 |
+
# # if verbose:
|
712 |
+
# # print("skip - check_pose_diff {:.5f}".format(diff))
|
713 |
+
# # return True
|
714 |
+
# else:
|
715 |
+
# if verbose:
|
716 |
+
# print("pass - check_pose_diff {:.5f}".format(diff))
|
717 |
+
return False
|
718 |
+
|
719 |
+
|
720 |
+
def check_spine_angle(self, verbose=True):
|
721 |
+
def angle_between(v1, v2):
|
722 |
+
v1_u = v1 / np.linalg.norm(v1)
|
723 |
+
v2_u = v2 / np.linalg.norm(v2)
|
724 |
+
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
|
725 |
+
|
726 |
+
angles = []
|
727 |
+
for i in range(self.skeletons.shape[0]):
|
728 |
+
spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
|
729 |
+
angle = angle_between(spine_vec, [0, -1, 0])
|
730 |
+
angles.append(angle)
|
731 |
+
|
732 |
+
if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495
|
733 |
+
# if np.rad2deg(max(angles)) > 20: # exclude 8270
|
734 |
+
if verbose:
|
735 |
+
print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
|
736 |
+
return True
|
737 |
+
else:
|
738 |
+
if verbose:
|
739 |
+
print("pass - check_spine_angle {:.5f}".format(max(angles)))
|
740 |
+
return False
|