Spaces:
Sleeping
Sleeping
File size: 3,510 Bytes
2d47d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
# Copyright (c) HuaWei, Inc. and its affiliates.
# liu.haiyang@huawei.com
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
class GeodesicLoss(nn.Module):
def __init__(self):
super(GeodesicLoss, self).__init__()
def compute_geodesic_distance(self, m1, m2):
""" Compute the geodesic distance between two rotation matrices.
Args:
m1, m2: Two rotation matrices with the shape (batch x 3 x 3).
Returns:
The minimal angular difference between two rotation matrices in radian form [0, pi].
"""
m1 = m1.reshape(-1, 3, 3)
m2 = m2.reshape(-1, 3, 3)
batch = m1.shape[0]
m = torch.bmm(m1, m2.transpose(1, 2)) # batch*3*3
cos = (m[:, 0, 0] + m[:, 1, 1] + m[:, 2, 2] - 1) / 2
cos = torch.clamp(cos, min=-1 + 1E-6, max=1-1E-6)
theta = torch.acos(cos)
return theta
def __call__(self, m1, m2, reduction='mean'):
loss = self.compute_geodesic_distance(m1, m2)
if reduction == 'mean':
return loss.mean()
elif reduction == 'none':
return loss
else:
raise RuntimeError(f'unsupported reduction: {reduction}')
class BCE_Loss(nn.Module):
def __init__(self, args=None):
super(BCE_Loss, self).__init__()
def forward(self, fake_outputs, real_target):
final_loss = F.cross_entropy(fake_outputs, real_target, reduce="mean")
return final_loss
class weight_Loss(nn.Module):
def __init__(self, args=None):
super(weight_Loss, self).__init__()
def forward(self, weight_f):
weight_loss_div = torch.mean(weight_f[:, :, 0]*weight_f[:, :, 1])
weight_loss_gap = torch.mean(-torch.log(torch.max(weight_f[:, :, 0], dim=1)[0] - torch.min(weight_f[:, :, 0], dim=1)[0]))
return weight_loss_div, weight_loss_gap
class HuberLoss(nn.Module):
def __init__(self, beta=0.1, reduction="mean"):
super(HuberLoss, self).__init__()
self.beta = beta
self.reduction = reduction
def forward(self, outputs, targets):
final_loss = F.smooth_l1_loss(outputs / self.beta, targets / self.beta, reduction=self.reduction) * self.beta
return final_loss
class KLDLoss(nn.Module):
def __init__(self, beta=0.1):
super(KLDLoss, self).__init__()
self.beta = beta
def forward(self, outputs, targets):
final_loss = F.smooth_l1_loss((outputs / self.beta, targets / self.beta) * self.beta)
return final_loss
class REGLoss(nn.Module):
def __init__(self, beta=0.1):
super(REGLoss, self).__init__()
self.beta = beta
def forward(self, outputs, targets):
final_loss = F.smooth_l1_loss((outputs / self.beta, targets / self.beta) * self.beta)
return final_loss
class L2Loss(nn.Module):
def __init__(self):
super(L2Loss, self).__init__()
def forward(self, outputs, targets):
final_loss = F.l2_loss(outputs, targets)
return final_loss
LOSS_FUNC_LUT = {
"bce_loss": BCE_Loss,
"l2_loss": L2Loss,
"huber_loss": HuberLoss,
"kl_loss": KLDLoss,
"id_loss": REGLoss,
"GeodesicLoss": GeodesicLoss,
"weight_Loss": weight_Loss,
}
def get_loss_func(loss_name, **kwargs):
loss_func_class = LOSS_FUNC_LUT.get(loss_name)
loss_func = loss_func_class(**kwargs)
return loss_func
|