File size: 4,446 Bytes
2d47d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
'''
Tools for Manipulating and Converting 3D Rotations

By Omid Alemi
Created: June 12, 2017

Adapted from that matlab file...
'''

import math
import numpy as np

def deg2rad(x):
    return x/180*math.pi


def rad2deg(x):
    return x/math.pi*180

class Rotation():
    def __init__(self,rot, param_type, rotation_order, **params):
        self.rotmat = []
        self.rotation_order = rotation_order
        if param_type == 'euler':
            self._from_euler(rot[0],rot[1],rot[2], params)
        elif param_type == 'expmap':
            self._from_expmap(rot[0], rot[1], rot[2], params)

    def _from_euler(self, alpha, beta, gamma, params):
        '''Expecting degress'''

        if params['from_deg']==True:
            alpha = deg2rad(alpha)
            beta = deg2rad(beta)
            gamma = deg2rad(gamma)
        
        ca = math.cos(alpha)
        cb = math.cos(beta)
        cg = math.cos(gamma)
        sa = math.sin(alpha)
        sb = math.sin(beta)
        sg = math.sin(gamma)        

        Rx = np.asarray([[1, 0, 0], 
              [0, ca, sa], 
              [0, -sa, ca]
              ])

        Ry = np.asarray([[cb, 0, -sb], 
              [0, 1, 0],
              [sb, 0, cb]])

        Rz = np.asarray([[cg, sg, 0],
              [-sg, cg, 0],
              [0, 0, 1]])

        self.rotmat = np.eye(3)

        ############################ inner product rotation matrix in order defined at BVH file #########################
        for axis in self.rotation_order :
            if axis == 'X' :
                self.rotmat = np.matmul(Rx, self.rotmat)
            elif axis == 'Y':
                self.rotmat = np.matmul(Ry, self.rotmat)
            else :
                self.rotmat = np.matmul(Rz, self.rotmat)
        ################################################################################################################
   
    def _from_expmap(self, alpha, beta, gamma, params):
        if (alpha == 0 and beta == 0 and gamma == 0):
            self.rotmat = np.eye(3)
            return

        #TODO: Check exp map params

        theta = np.linalg.norm([alpha, beta, gamma])

        expmap = [alpha, beta, gamma] / theta

        x = expmap[0]
        y = expmap[1]
        z = expmap[2]

        s = math.sin(theta/2)
        c = math.cos(theta/2)

        self.rotmat = np.asarray([
            [2*(x**2-1)*s**2+1,  2*x*y*s**2-2*z*c*s,  2*x*z*s**2+2*y*c*s],
            [2*x*y*s**2+2*z*c*s,  2*(y**2-1)*s**2+1,  2*y*z*s**2-2*x*c*s],
            [2*x*z*s**2-2*y*c*s, 2*y*z*s**2+2*x*c*s , 2*(z**2-1)*s**2+1]
        ])
        


    def get_euler_axis(self):
        R = self.rotmat
        theta = math.acos((self.rotmat.trace() - 1) / 2)
        axis = np.asarray([R[2,1] - R[1,2], R[0,2] - R[2,0], R[1,0] - R[0,1]])
        axis = axis/(2*math.sin(theta))
        return theta, axis

    def to_expmap(self):
        theta, axis = self.get_euler_axis()
        rot_arr = theta * axis
        if np.isnan(rot_arr).any():
            rot_arr = [0, 0, 0]
        return rot_arr
    
    def to_euler(self, use_deg=False):
        eulers = np.zeros((2, 3))

        if np.absolute(np.absolute(self.rotmat[2, 0]) - 1) < 1e-12:
            #GIMBAL LOCK!
            print('Gimbal')
            if np.absolute(self.rotmat[2, 0]) - 1 < 1e-12:
                eulers[:,0] = math.atan2(-self.rotmat[0,1], -self.rotmat[0,2])
                eulers[:,1] = -math.pi/2
            else:
                eulers[:,0] = math.atan2(self.rotmat[0,1], -elf.rotmat[0,2])
                eulers[:,1] = math.pi/2
            
            return eulers

        theta = - math.asin(self.rotmat[2,0])
        theta2 = math.pi - theta

        # psi1, psi2
        eulers[0,0] = math.atan2(self.rotmat[2,1]/math.cos(theta), self.rotmat[2,2]/math.cos(theta))
        eulers[1,0] = math.atan2(self.rotmat[2,1]/math.cos(theta2), self.rotmat[2,2]/math.cos(theta2))

        # theta1, theta2
        eulers[0,1] = theta
        eulers[1,1] = theta2

        # phi1, phi2
        eulers[0,2] = math.atan2(self.rotmat[1,0]/math.cos(theta), self.rotmat[0,0]/math.cos(theta))
        eulers[1,2] = math.atan2(self.rotmat[1,0]/math.cos(theta2), self.rotmat[0,0]/math.cos(theta2))

        if use_deg:
            eulers = rad2deg(eulers)

        return eulers
    
    def to_quat(self):
        #TODO
        pass
    
    def __str__(self):
        return "Rotation Matrix: \n " + self.rotmat.__str__()