Spaces:
Runtime error
Runtime error
title: Anime Colorization | |
emoji: 😻 | |
colorFrom: indigo | |
colorTo: pink | |
sdk: gradio | |
sdk_version: 3.0.5 | |
app_file: app.py | |
pinned: false | |
license: mit | |
# Pixel Guide Diffusion For Anime Colorization | |
![avatar](docs/imgs/sample.png) | |
Use denoising diffusion probabilistic model to do the anime colorization task. | |
v1 test result is in branch [v1_result](https://github.com/HighCWu/pixel-guide-diffusion-for-anime-colorization/tree/v1_result). | |
The dataset is not clean enough and the sketch as the guide is generated using sketch2keras, so the generalization is not good. | |
In the future, I may try to use only anime portraits as the target images, and look for some more diverse sketch models. | |
# Introduction and Usage | |
Pixel Guide Denoising Diffusion Probabilistic Models ( One Channel Guide Version ) | |
This repo is modified from [improved-diffusion](https://github.com/openai/improved-diffusion). | |
Use [danbooru-sketch-pair-128x](https://www.kaggle.com/wuhecong/danbooru-sketch-pair-128x) as the dataset. Maybe you should move folders in the dataset first to make guide-target pair dataset. | |
Modify `train_danbooru*.sh`, `test_danbooru*.sh` to meet your needs. | |
The model is divided into a 32px part and a super-divided part, which can be cascaded during testing to get the final result. But there is no cascade during training. | |
QQ Group: 1044867291 | |
Discord: https://discord.gg/YwWcAS47qb | |
# Original README | |
# improved-diffusion | |
This is the codebase for [Improved Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2102.09672). | |
# Usage | |
This section of the README walks through how to train and sample from a model. | |
## Installation | |
Clone this repository and navigate to it in your terminal. Then run: | |
``` | |
pip install -e . | |
``` | |
This should install the ~~`improved_diffusion`~~ `pixel_guide_diffusion` python package that the scripts depend on. | |
## Preparing Data | |
The training code reads images from a directory of image files. In the [datasets](datasets) folder, we have provided instructions/scripts for preparing these directories for ImageNet, LSUN bedrooms, and CIFAR-10. | |
For creating your own dataset, simply dump all of your images into a directory with ".jpg", ".jpeg", or ".png" extensions. If you wish to train a class-conditional model, name the files like "mylabel1_XXX.jpg", "mylabel2_YYY.jpg", etc., so that the data loader knows that "mylabel1" and "mylabel2" are the labels. Subdirectories will automatically be enumerated as well, so the images can be organized into a recursive structure (although the directory names will be ignored, and the underscore prefixes are used as names). | |
The images will automatically be scaled and center-cropped by the data-loading pipeline. Simply pass `--data_dir path/to/images` to the training script, and it will take care of the rest. | |
## Training | |
To train your model, you should first decide some hyperparameters. We will split up our hyperparameters into three groups: model architecture, diffusion process, and training flags. Here are some reasonable defaults for a baseline: | |
``` | |
MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3" | |
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule linear" | |
TRAIN_FLAGS="--lr 1e-4 --batch_size 128" | |
``` | |
Here are some changes we experiment with, and how to set them in the flags: | |
* **Learned sigmas:** add `--learn_sigma True` to `MODEL_FLAGS` | |
* **Cosine schedule:** change `--noise_schedule linear` to `--noise_schedule cosine` | |
* **Reweighted VLB:** add `--use_kl True` to `DIFFUSION_FLAGS` and add `--schedule_sampler loss-second-moment` to `TRAIN_FLAGS`. | |
* **Class-conditional:** add `--class_cond True` to `MODEL_FLAGS`. | |
Once you have setup your hyper-parameters, you can run an experiment like so: | |
``` | |
python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS | |
``` | |
You may also want to train in a distributed manner. In this case, run the same command with `mpiexec`: | |
``` | |
mpiexec -n $NUM_GPUS python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS | |
``` | |
When training in a distributed manner, you must manually divide the `--batch_size` argument by the number of ranks. In lieu of distributed training, you may use `--microbatch 16` (or `--microbatch 1` in extreme memory-limited cases) to reduce memory usage. | |
The logs and saved models will be written to a logging directory determined by the `OPENAI_LOGDIR` environment variable. If it is not set, then a temporary directory will be created in `/tmp`. | |
## Sampling | |
The above training script saves checkpoints to `.pt` files in the logging directory. These checkpoints will have names like `ema_0.9999_200000.pt` and `model200000.pt`. You will likely want to sample from the EMA models, since those produce much better samples. | |
Once you have a path to your model, you can generate a large batch of samples like so: | |
``` | |
python scripts/image_sample.py --model_path /path/to/model.pt $MODEL_FLAGS $DIFFUSION_FLAGS | |
``` | |
Again, this will save results to a logging directory. Samples are saved as a large `npz` file, where `arr_0` in the file is a large batch of samples. | |
Just like for training, you can run `image_sample.py` through MPI to use multiple GPUs and machines. | |
You can change the number of sampling steps using the `--timestep_respacing` argument. For example, `--timestep_respacing 250` uses 250 steps to sample. Passing `--timestep_respacing ddim250` is similar, but uses the uniform stride from the [DDIM paper](https://arxiv.org/abs/2010.02502) rather than our stride. | |
To sample using [DDIM](https://arxiv.org/abs/2010.02502), pass `--use_ddim True`. | |
## Models and Hyperparameters | |
This section includes model checkpoints and run flags for the main models in the paper. | |
Note that the batch sizes are specified for single-GPU training, even though most of these runs will not naturally fit on a single GPU. To address this, either set `--microbatch` to a small value (e.g. 4) to train on one GPU, or run with MPI and divide `--batch_size` by the number of GPUs. | |
Unconditional ImageNet-64 with our `L_hybrid` objective and cosine noise schedule [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/imagenet64_uncond_100M_1500K.pt)]: | |
```bash | |
MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3 --learn_sigma True" | |
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine" | |
TRAIN_FLAGS="--lr 1e-4 --batch_size 128" | |
``` | |
Unconditional CIFAR-10 with our `L_hybrid` objective and cosine noise schedule [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/cifar10_uncond_50M_500K.pt)]: | |
```bash | |
MODEL_FLAGS="--image_size 32 --num_channels 128 --num_res_blocks 3 --learn_sigma True --dropout 0.3" | |
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine" | |
TRAIN_FLAGS="--lr 1e-4 --batch_size 128" | |
``` | |
Class-conditional ImageNet-64 model (270M parameters, trained for 250K iterations) [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/imagenet64_cond_270M_250K.pt)]: | |
```bash | |
MODEL_FLAGS="--image_size 64 --num_channels 192 --num_res_blocks 3 --learn_sigma True --class_cond True" | |
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine --rescale_learned_sigmas False --rescale_timesteps False" | |
TRAIN_FLAGS="--lr 3e-4 --batch_size 2048" | |
``` | |
Upsampling 256x256 model (280M parameters, trained for 500K iterations) [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/upsample_cond_500K.pt)]: | |
```bash | |
MODEL_FLAGS="--num_channels 192 --num_res_blocks 2 --learn_sigma True --class_cond True" | |
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule linear --rescale_learned_sigmas False --rescale_timesteps False" | |
TRAIN_FLAGS="--lr 3e-4 --batch_size 256" | |
``` | |
LSUN bedroom model (lr=1e-4) [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/lsun_uncond_100M_1200K_bs128.pt)]: | |
```bash | |
MODEL_FLAGS="--image_size 256 --num_channels 128 --num_res_blocks 2 --num_heads 1 --learn_sigma True --use_scale_shift_norm False --attention_resolutions 16" | |
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear --rescale_learned_sigmas False --rescale_timesteps False" | |
TRAIN_FLAGS="--lr 1e-4 --batch_size 128" | |
``` | |
LSUN bedroom model (lr=2e-5) [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/lsun_uncond_100M_2400K_bs64.pt)]: | |
```bash | |
MODEL_FLAGS="--image_size 256 --num_channels 128 --num_res_blocks 2 --num_heads 1 --learn_sigma True --use_scale_shift_norm False --attention_resolutions 16" | |
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear --rescale_learned_sigmas False --rescale_timesteps False --use_scale_shift_norm False" | |
TRAIN_FLAGS="--lr 2e-5 --batch_size 128" | |
``` | |
Unconditional ImageNet-64 with the `L_vlb` objective and cosine noise schedule [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/imagenet64_uncond_vlb_100M_1500K.pt)]: | |
```bash | |
MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3 --learn_sigma True" | |
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine" | |
TRAIN_FLAGS="--lr 1e-4 --batch_size 128 --schedule_sampler loss-second-moment" | |
``` | |
Unconditional CIFAR-10 with the `L_vlb` objective and cosine noise schedule [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/cifar10_uncond_vlb_50M_500K.pt)]: | |
```bash | |
MODEL_FLAGS="--image_size 32 --num_channels 128 --num_res_blocks 3 --learn_sigma True --dropout 0.3" | |
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine" | |
TRAIN_FLAGS="--lr 1e-4 --batch_size 128 --schedule_sampler loss-second-moment" | |
``` | |