Spaces:
Paused
Paused
File size: 13,625 Bytes
f9e4a6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import math
import random
import torch
from basicsr.utils.registry import ARCH_REGISTRY
from torch import nn
from torch.nn import functional as F
from .stylegan2_clean_arch import StyleGAN2GeneratorClean
class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean):
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
num_mlp (int): Layer number of MLP style layers. Default: 8.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
narrow (float): The narrow ratio for channels. Default: 1.
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
"""
def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1, sft_half=False):
super(StyleGAN2GeneratorCSFT, self).__init__(
out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
narrow=narrow)
self.sft_half = sft_half
def forward(self,
styles,
conditions,
input_is_latent=False,
noise=None,
randomize_noise=True,
truncation=1,
truncation_latent=None,
inject_index=None,
return_latents=False):
"""Forward function for StyleGAN2GeneratorCSFT.
Args:
styles (list[Tensor]): Sample codes of styles.
conditions (list[Tensor]): SFT conditions to generators.
input_is_latent (bool): Whether input is latent style. Default: False.
noise (Tensor | None): Input noise or None. Default: None.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
truncation (float): The truncation ratio. Default: 1.
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
inject_index (int | None): The injection index for mixing noise. Default: None.
return_latents (bool): Whether to return style latents. Default: False.
"""
# style codes -> latents with Style MLP layer
if not input_is_latent:
styles = [self.style_mlp(s) for s in styles]
# noises
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers # for each style conv layer
else: # use the stored noise
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
# style truncation
if truncation < 1:
style_truncation = []
for style in styles:
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
styles = style_truncation
# get style latents with injection
if len(styles) == 1:
inject_index = self.num_latent
if styles[0].ndim < 3:
# repeat latent code for all the layers
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: # used for encoder with different latent code for each layer
latent = styles[0]
elif len(styles) == 2: # mixing noises
if inject_index is None:
inject_index = random.randint(1, self.num_latent - 1)
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
latent = torch.cat([latent1, latent2], 1)
# main generation
out = self.constant_input(latent.shape[0])
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
noise[2::2], self.to_rgbs):
out = conv1(out, latent[:, i], noise=noise1)
# the conditions may have fewer levels
if i < len(conditions):
# SFT part to combine the conditions
if self.sft_half: # only apply SFT to half of the channels
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
out_sft = out_sft * conditions[i - 1] + conditions[i]
out = torch.cat([out_same, out_sft], dim=1)
else: # apply SFT to all the channels
out = out * conditions[i - 1] + conditions[i]
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
i += 2
image = skip
if return_latents:
return image, latent
else:
return image, None
class ResBlock(nn.Module):
"""Residual block with bilinear upsampling/downsampling.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
"""
def __init__(self, in_channels, out_channels, mode='down'):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
if mode == 'down':
self.scale_factor = 0.5
elif mode == 'up':
self.scale_factor = 2
def forward(self, x):
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
# upsample/downsample
out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
# skip
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
skip = self.skip(x)
out = out + skip
return out
@ARCH_REGISTRY.register()
class GFPGANv1Clean(nn.Module):
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
fix_decoder (bool): Whether to fix the decoder. Default: True.
num_mlp (int): Layer number of MLP style layers. Default: 8.
input_is_latent (bool): Whether input is latent style. Default: False.
different_w (bool): Whether to use different latent w for different layers. Default: False.
narrow (float): The narrow ratio for channels. Default: 1.
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
"""
def __init__(
self,
out_size,
num_style_feat=512,
channel_multiplier=1,
decoder_load_path=None,
fix_decoder=True,
# for stylegan decoder
num_mlp=8,
input_is_latent=False,
different_w=False,
narrow=1,
sft_half=False):
super(GFPGANv1Clean, self).__init__()
self.input_is_latent = input_is_latent
self.different_w = different_w
self.num_style_feat = num_style_feat
unet_narrow = narrow * 0.5 # by default, use a half of input channels
channels = {
'4': int(512 * unet_narrow),
'8': int(512 * unet_narrow),
'16': int(512 * unet_narrow),
'32': int(512 * unet_narrow),
'64': int(256 * channel_multiplier * unet_narrow),
'128': int(128 * channel_multiplier * unet_narrow),
'256': int(64 * channel_multiplier * unet_narrow),
'512': int(32 * channel_multiplier * unet_narrow),
'1024': int(16 * channel_multiplier * unet_narrow)
}
self.log_size = int(math.log(out_size, 2))
first_out_size = 2**(int(math.log(out_size, 2)))
self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1)
# downsample
in_channels = channels[f'{first_out_size}']
self.conv_body_down = nn.ModuleList()
for i in range(self.log_size, 2, -1):
out_channels = channels[f'{2**(i - 1)}']
self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down'))
in_channels = out_channels
self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1)
# upsample
in_channels = channels['4']
self.conv_body_up = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f'{2**i}']
self.conv_body_up.append(ResBlock(in_channels, out_channels, mode='up'))
in_channels = out_channels
# to RGB
self.toRGB = nn.ModuleList()
for i in range(3, self.log_size + 1):
self.toRGB.append(nn.Conv2d(channels[f'{2**i}'], 3, 1))
if different_w:
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
else:
linear_out_channel = num_style_feat
self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel)
# the decoder: stylegan2 generator with SFT modulations
self.stylegan_decoder = StyleGAN2GeneratorCSFT(
out_size=out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
narrow=narrow,
sft_half=sft_half)
# load pre-trained stylegan2 model if necessary
if decoder_load_path:
self.stylegan_decoder.load_state_dict(
torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
# fix decoder without updating params
if fix_decoder:
for _, param in self.stylegan_decoder.named_parameters():
param.requires_grad = False
# for SFT modulations (scale and shift)
self.condition_scale = nn.ModuleList()
self.condition_shift = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f'{2**i}']
if sft_half:
sft_out_channels = out_channels
else:
sft_out_channels = out_channels * 2
self.condition_scale.append(
nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
self.condition_shift.append(
nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
"""Forward function for GFPGANv1Clean.
Args:
x (Tensor): Input images.
return_latents (bool): Whether to return style latents. Default: False.
return_rgb (bool): Whether return intermediate rgb images. Default: True.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
"""
conditions = []
unet_skips = []
out_rgbs = []
# encoder
feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
for i in range(self.log_size - 2):
feat = self.conv_body_down[i](feat)
unet_skips.insert(0, feat)
feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
# style code
style_code = self.final_linear(feat.view(feat.size(0), -1))
if self.different_w:
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
# decode
for i in range(self.log_size - 2):
# add unet skip
feat = feat + unet_skips[i]
# ResUpLayer
feat = self.conv_body_up[i](feat)
# generate scale and shift for SFT layers
scale = self.condition_scale[i](feat)
conditions.append(scale.clone())
shift = self.condition_shift[i](feat)
conditions.append(shift.clone())
# generate rgb images
if return_rgb:
out_rgbs.append(self.toRGB[i](feat))
# decoder
image, _ = self.stylegan_decoder([style_code],
conditions,
return_latents=return_latents,
input_is_latent=self.input_is_latent,
randomize_noise=randomize_noise)
return image, out_rgbs
|