goldpulpy commited on
Commit
f9e4a6c
1 Parent(s): e9a9ae5

Upload model and app

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +126 -0
  2. checkpoints/30_net_gen.pth +3 -0
  3. checkpoints/BFM.zip +3 -0
  4. checkpoints/BFM/.gitkeep +0 -0
  5. checkpoints/BFM/01_MorphableModel.mat +3 -0
  6. checkpoints/BFM/BFM_exp_idx.mat +3 -0
  7. checkpoints/BFM/BFM_front_idx.mat +3 -0
  8. checkpoints/BFM/BFM_model_front.mat +3 -0
  9. checkpoints/BFM/Exp_Pca.bin +3 -0
  10. checkpoints/BFM/facemodel_info.mat +3 -0
  11. checkpoints/BFM/select_vertex_id.mat +3 -0
  12. checkpoints/BFM/similarity_Lm3D_all.mat +3 -0
  13. checkpoints/BFM/std_exp.txt +1 -0
  14. checkpoints/DNet.pt +3 -0
  15. checkpoints/ENet.pth +3 -0
  16. checkpoints/GFPGANv1.3.pth +3 -0
  17. checkpoints/GPEN-BFR-512.pth +3 -0
  18. checkpoints/LNet.pth +3 -0
  19. checkpoints/ParseNet-latest.pth +3 -0
  20. checkpoints/RetinaFace-R50.pth +3 -0
  21. checkpoints/expression.mat +3 -0
  22. checkpoints/face3d_pretrain_epoch_20.pth +3 -0
  23. checkpoints/shape_predictor_68_face_landmarks.dat +3 -0
  24. inference.py +345 -0
  25. models/DNet.py +118 -0
  26. models/ENet.py +139 -0
  27. models/LNet.py +139 -0
  28. models/__init__.py +36 -0
  29. models/base_blocks.py +554 -0
  30. models/ffc.py +233 -0
  31. models/transformer.py +119 -0
  32. requirements.txt +21 -0
  33. third_part/GFPGAN/LICENSE +351 -0
  34. third_part/GFPGAN/gfpgan/__init__.py +8 -0
  35. third_part/GFPGAN/gfpgan/archs/__init__.py +10 -0
  36. third_part/GFPGAN/gfpgan/archs/arcface_arch.py +245 -0
  37. third_part/GFPGAN/gfpgan/archs/gfpgan_bilinear_arch.py +312 -0
  38. third_part/GFPGAN/gfpgan/archs/gfpganv1_arch.py +439 -0
  39. third_part/GFPGAN/gfpgan/archs/gfpganv1_clean_arch.py +324 -0
  40. third_part/GFPGAN/gfpgan/archs/stylegan2_bilinear_arch.py +613 -0
  41. third_part/GFPGAN/gfpgan/archs/stylegan2_clean_arch.py +368 -0
  42. third_part/GFPGAN/gfpgan/data/__init__.py +10 -0
  43. third_part/GFPGAN/gfpgan/data/ffhq_degradation_dataset.py +230 -0
  44. third_part/GFPGAN/gfpgan/models/__init__.py +10 -0
  45. third_part/GFPGAN/gfpgan/models/gfpgan_model.py +580 -0
  46. third_part/GFPGAN/gfpgan/train.py +11 -0
  47. third_part/GFPGAN/gfpgan/utils.py +143 -0
  48. third_part/GFPGAN/gfpgan/version.py +5 -0
  49. third_part/GFPGAN/gfpgan/weights/README.md +3 -0
  50. third_part/GFPGAN/options/train_gfpgan_v1.yml +216 -0
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import subprocess
3
+ import os
4
+ os.environ['MPLCONFIGDIR'] = os.getcwd() + "/configs/"
5
+ import gradio
6
+ import gradio as gr
7
+ import shutil
8
+
9
+ current_dir = os.path.dirname(os.path.abspath(__file__))
10
+
11
+
12
+ def convert(segment_length, video, audio, progress=gradio.Progress()):
13
+ if segment_length is None:
14
+ segment_length=0
15
+ print(video, audio)
16
+
17
+ if segment_length != 0:
18
+ video_segments = cut_video_segments(video, segment_length)
19
+ audio_segments = cut_audio_segments(audio, segment_length)
20
+ else:
21
+ video_path = os.path.join('temp/video', os.path.basename(video))
22
+ shutil.move(video, video_path)
23
+ video_segments = [video_path]
24
+ audio_path = os.path.join('temp/audio', os.path.basename(audio))
25
+ shutil.move(audio, audio_path)
26
+ audio_segments = [audio_path]
27
+
28
+ processed_segments = []
29
+ for i, (video_seg, audio_seg) in progress.tqdm(enumerate(zip(video_segments, audio_segments))):
30
+ processed_output = process_segment(video_seg, audio_seg, i)
31
+ processed_segments.append(processed_output)
32
+
33
+ output_file = f"results/output_{random.randint(0,1000)}.mp4"
34
+ concatenate_videos(processed_segments, output_file)
35
+
36
+ # Remove temporary files
37
+ cleanup_temp_files(video_segments + audio_segments)
38
+
39
+ # Return the concatenated video file
40
+ return output_file
41
+
42
+
43
+ def cleanup_temp_files(file_list):
44
+ for file_path in file_list:
45
+ if os.path.isfile(file_path):
46
+ os.remove(file_path)
47
+
48
+
49
+ def cut_video_segments(video_file, segment_length):
50
+ temp_directory = 'temp/audio'
51
+ shutil.rmtree(temp_directory, ignore_errors=True)
52
+ shutil.os.makedirs(temp_directory, exist_ok=True)
53
+ segment_template = f"{temp_directory}/{random.randint(0,1000)}_%03d.mp4"
54
+ command = ["ffmpeg", "-i", video_file, "-c", "copy", "-f",
55
+ "segment", "-segment_time", str(segment_length), segment_template]
56
+ subprocess.run(command, check=True)
57
+
58
+ video_segments = [segment_template %
59
+ i for i in range(len(os.listdir(temp_directory)))]
60
+ return video_segments
61
+
62
+
63
+ def cut_audio_segments(audio_file, segment_length):
64
+ temp_directory = 'temp/video'
65
+ shutil.rmtree(temp_directory, ignore_errors=True)
66
+ shutil.os.makedirs(temp_directory, exist_ok=True)
67
+ segment_template = f"{temp_directory}/{random.randint(0,1000)}_%03d.mp3"
68
+ command = ["ffmpeg", "-i", audio_file, "-f", "segment",
69
+ "-segment_time", str(segment_length), segment_template]
70
+ subprocess.run(command, check=True)
71
+
72
+ audio_segments = [segment_template %
73
+ i for i in range(len(os.listdir(temp_directory)))]
74
+ return audio_segments
75
+
76
+
77
+ def process_segment(video_seg, audio_seg, i):
78
+ output_file = f"results/{random.randint(10,100000)}_{i}.mp4"
79
+ command = ["python", "inference.py", "--face", video_seg,
80
+ "--audio", audio_seg, "--outfile", output_file]
81
+ subprocess.run(command, check=True)
82
+
83
+ return output_file
84
+
85
+
86
+ def concatenate_videos(video_segments, output_file):
87
+ with open("segments.txt", "w") as file:
88
+ for segment in video_segments:
89
+ file.write(f"file '{segment}'\n")
90
+ command = ["ffmpeg", "-f", "concat", "-i",
91
+ "segments.txt", "-c", "copy", output_file]
92
+ subprocess.run(command, check=True)
93
+
94
+
95
+ with gradio.Blocks(
96
+ title="Audio-based Lip Synchronization",
97
+ theme=gr.themes.Base(
98
+ primary_hue=gr.themes.colors.green,
99
+ font=["Source Sans Pro", "Arial", "sans-serif"],
100
+ font_mono=['JetBrains mono', "Consolas", 'Courier New']
101
+ ),
102
+ ) as demo:
103
+ with gradio.Row():
104
+ gradio.Markdown("# Audio-based Lip Synchronization")
105
+ with gradio.Row():
106
+ with gradio.Column():
107
+ with gradio.Row():
108
+ seg = gradio.Number(
109
+ label="segment length (Second), 0 for no segmentation")
110
+ with gradio.Row():
111
+ with gradio.Column():
112
+ v = gradio.Video(label='SOurce Face')
113
+
114
+ with gradio.Column():
115
+ a = gradio.Audio(
116
+ type='filepath', label='Target Audio')
117
+
118
+ with gradio.Row():
119
+ btn = gradio.Button(value="Synthesize",variant="primary")
120
+
121
+ with gradio.Column():
122
+ o = gradio.Video(label="Output Video")
123
+
124
+ btn.click(fn=convert, inputs=[seg, v, a], outputs=[o])
125
+
126
+ demo.queue().launch()
checkpoints/30_net_gen.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4db83e1727128e2c5de27bc80d2929586535e04a709af45016a63e7cf7c46b0c
3
+ size 33877439
checkpoints/BFM.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:369eb3177ca5491fe04c2a9aba2d33a39642681f57796fbc611dab36f9a10656
3
+ size 404749663
checkpoints/BFM/.gitkeep ADDED
File without changes
checkpoints/BFM/01_MorphableModel.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b1f0742db356a3b1568a8365a06f5b0fe0ab687ac1c3068c803666cbd4d8e2
3
+ size 240875364
checkpoints/BFM/BFM_exp_idx.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62752a2cab3eea148569fb07e367e03535b4ee04aa71ea1a9aed36486d26c612
3
+ size 91931
checkpoints/BFM/BFM_front_idx.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d285dd018563113496127df9c364800183172adb4d3e802f726085dab66b087
3
+ size 44880
checkpoints/BFM/BFM_model_front.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae3ff544aba3246c5f2c117f2be76fa44a7b76145326aae0bbfbfb564d4f82af
3
+ size 127170280
checkpoints/BFM/Exp_Pca.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7f31380e6cbdaf2aeec698db220bac4f221946e4d551d88c092d47ec49b1726
3
+ size 51086404
checkpoints/BFM/facemodel_info.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:529398f76619ae7e22f43c25dd60a2473bcc2bcc8c894fd9c613c68624ce1c04
3
+ size 738861
checkpoints/BFM/select_vertex_id.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6877a7d634330f25bf1e81bc062b6507ee53ea183838e471fa21b613048fa36b
3
+ size 62299
checkpoints/BFM/similarity_Lm3D_all.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53b83ce6e35c50ddc3e97603650cef4970320c157e75c241c844f29c1dcba65a
3
+ size 994
checkpoints/BFM/std_exp.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 453980 257264 263068 211890 135873 184721 47055.6 72732 62787.4 106226 56708.5 51439.8 34887.1 44378.7 51813.4 31030.7 23354.9 23128.1 19400 21827.6 22767.7 22057.4 19894.3 16172.8 17142.7 10035.3 14727.5 12972.5 10763.8 8953.93 8682.62 8941.81 6342.3 5205.3 7065.65 6083.35 6678.88 4666.63 5082.89 5134.76 4908.16 3964.93 3739.95 3180.09 2470.45 1866.62 1624.71 2423.74 1668.53 1471.65 1194.52 782.102 815.044 835.782 834.937 744.496 575.146 633.76 705.685 753.409 620.306 673.326 766.189 619.866 559.93 357.264 396.472 556.849 455.048 460.592 400.735 326.702 279.428 291.535 326.584 305.664 287.816 283.642 276.19
checkpoints/DNet.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41220d2973c0ba2eab6e8f17ed00711aef5a0d76d19808f885dc0e3251df2e80
3
+ size 180424655
checkpoints/ENet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:967ee3ed857619cedd92b6407dc8a124cbfe763cc11cad58316fe21271a8928f
3
+ size 573261168
checkpoints/GFPGANv1.3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c953a88f2727c85c3d9ae72e2bd4846bbaf59fe6972ad94130e23e7017524a70
3
+ size 348632874
checkpoints/GPEN-BFR-512.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1002c41add95b0decad69604d80455576f7187dd99ca16bd611bcfd44c10b51
3
+ size 284085738
checkpoints/LNet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ae06fef0454c421b828cc53e8d4b9c92d990867a858ea7bb9661ab6cf6ab774
3
+ size 1534697728
checkpoints/ParseNet-latest.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2
3
+ size 85331193
checkpoints/RetinaFace-R50.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d
3
+ size 109497761
checkpoints/expression.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93e9d69eb46e866ed5cbb569ed2bdb3813254720fb0cb745d5b56181faf9aec5
3
+ size 1456
checkpoints/face3d_pretrain_epoch_20.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d17a6b23457b521801baae583cb6a58f7238fe6721fc3d65d76407460e9149b
3
+ size 288860037
checkpoints/shape_predictor_68_face_landmarks.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbdc2cb80eb9aa7a758672cbfdda32ba6300efe9b6e6c7a299ff7e736b11b92f
3
+ size 99693937
inference.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2, os, sys, subprocess, platform, torch
3
+ from tqdm import tqdm
4
+ from PIL import Image
5
+ from scipy.io import loadmat
6
+
7
+ sys.path.insert(0, 'third_part')
8
+ sys.path.insert(0, 'third_part/GPEN')
9
+ sys.path.insert(0, 'third_part/GFPGAN')
10
+
11
+ # 3dmm extraction
12
+ from third_part.face3d.util.preprocess import align_img
13
+ from third_part.face3d.util.load_mats import load_lm3d
14
+ from third_part.face3d.extract_kp_videos import KeypointExtractor
15
+ # face enhancement
16
+ from third_part.GPEN.gpen_face_enhancer import FaceEnhancement
17
+ from third_part.GFPGAN.gfpgan import GFPGANer
18
+ # expression control
19
+ from third_part.ganimation_replicate.model.ganimation import GANimationModel
20
+
21
+ from utils import audio
22
+ from utils.ffhq_preprocess import Croper
23
+ from utils.alignment_stit import crop_faces, calc_alignment_coefficients, paste_image
24
+ from utils.inference_utils import Laplacian_Pyramid_Blending_with_mask, face_detect, load_model, options, split_coeff, \
25
+ trans_image, transform_semantic, find_crop_norm_ratio, load_face3d_net, exp_aus_dict
26
+ import warnings
27
+ warnings.filterwarnings("ignore")
28
+
29
+ args = options()
30
+
31
+ def main():
32
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
33
+ print('[Info] Using {} for inference.'.format(device))
34
+ os.makedirs(os.path.join('temp', args.tmp_dir), exist_ok=True)
35
+
36
+ enhancer = FaceEnhancement(base_dir='checkpoints', size=512, model='GPEN-BFR-512', use_sr=False, \
37
+ sr_model='rrdb_realesrnet_psnr', channel_multiplier=2, narrow=1, device=device)
38
+ restorer = GFPGANer(model_path='checkpoints/GFPGANv1.3.pth', upscale=1, arch='clean', \
39
+ channel_multiplier=2, bg_upsampler=None)
40
+
41
+ base_name = args.face.split('/')[-1]
42
+ if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
43
+ args.static = True
44
+ if not os.path.isfile(args.face):
45
+ raise ValueError('--face argument must be a valid path to video/image file')
46
+ elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
47
+ full_frames = [cv2.imread(args.face)]
48
+ fps = args.fps
49
+ else:
50
+ video_stream = cv2.VideoCapture(args.face)
51
+ fps = video_stream.get(cv2.CAP_PROP_FPS)
52
+
53
+ full_frames = []
54
+ while True:
55
+ still_reading, frame = video_stream.read()
56
+ if not still_reading:
57
+ video_stream.release()
58
+ break
59
+ y1, y2, x1, x2 = args.crop
60
+ if x2 == -1: x2 = frame.shape[1]
61
+ if y2 == -1: y2 = frame.shape[0]
62
+ frame = frame[y1:y2, x1:x2]
63
+ full_frames.append(frame)
64
+
65
+ print ("[Step 0] Number of frames available for inference: "+str(len(full_frames)))
66
+ # face detection & cropping, cropping the first frame as the style of FFHQ
67
+ croper = Croper('checkpoints/shape_predictor_68_face_landmarks.dat')
68
+ full_frames_RGB = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames]
69
+ full_frames_RGB, crop, quad = croper.crop(full_frames_RGB, xsize=512)
70
+
71
+ clx, cly, crx, cry = crop
72
+ lx, ly, rx, ry = quad
73
+ lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
74
+ oy1, oy2, ox1, ox2 = cly+ly, min(cly+ry, full_frames[0].shape[0]), clx+lx, min(clx+rx, full_frames[0].shape[1])
75
+ # original_size = (ox2 - ox1, oy2 - oy1)
76
+ frames_pil = [Image.fromarray(cv2.resize(frame,(256,256))) for frame in full_frames_RGB]
77
+
78
+ # get the landmark according to the detected face.
79
+ if not os.path.isfile('temp/'+base_name+'_landmarks.txt') or args.re_preprocess:
80
+ print('[Step 1] Landmarks Extraction in Video.')
81
+ kp_extractor = KeypointExtractor()
82
+ lm = kp_extractor.extract_keypoint(frames_pil, './temp/'+base_name+'_landmarks.txt')
83
+ else:
84
+ print('[Step 1] Using saved landmarks.')
85
+ lm = np.loadtxt('temp/'+base_name+'_landmarks.txt').astype(np.float32)
86
+ lm = lm.reshape([len(full_frames), -1, 2])
87
+
88
+ if not os.path.isfile('temp/'+base_name+'_coeffs.npy') or args.exp_img is not None or args.re_preprocess:
89
+ net_recon = load_face3d_net(args.face3d_net_path, device)
90
+ lm3d_std = load_lm3d('checkpoints/BFM')
91
+
92
+ video_coeffs = []
93
+ for idx in tqdm(range(len(frames_pil)), desc="[Step 2] 3DMM Extraction In Video:"):
94
+ frame = frames_pil[idx]
95
+ W, H = frame.size
96
+ lm_idx = lm[idx].reshape([-1, 2])
97
+ if np.mean(lm_idx) == -1:
98
+ lm_idx = (lm3d_std[:, :2]+1) / 2.
99
+ lm_idx = np.concatenate([lm_idx[:, :1] * W, lm_idx[:, 1:2] * H], 1)
100
+ else:
101
+ lm_idx[:, -1] = H - 1 - lm_idx[:, -1]
102
+
103
+ trans_params, im_idx, lm_idx, _ = align_img(frame, lm_idx, lm3d_std)
104
+ trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32)
105
+ im_idx_tensor = torch.tensor(np.array(im_idx)/255., dtype=torch.float32).permute(2, 0, 1).to(device).unsqueeze(0)
106
+ with torch.no_grad():
107
+ coeffs = split_coeff(net_recon(im_idx_tensor))
108
+
109
+ pred_coeff = {key:coeffs[key].cpu().numpy() for key in coeffs}
110
+ pred_coeff = np.concatenate([pred_coeff['id'], pred_coeff['exp'], pred_coeff['tex'], pred_coeff['angle'],\
111
+ pred_coeff['gamma'], pred_coeff['trans'], trans_params[None]], 1)
112
+ video_coeffs.append(pred_coeff)
113
+ semantic_npy = np.array(video_coeffs)[:,0]
114
+ np.save('temp/'+base_name+'_coeffs.npy', semantic_npy)
115
+ else:
116
+ print('[Step 2] Using saved coeffs.')
117
+ semantic_npy = np.load('temp/'+base_name+'_coeffs.npy').astype(np.float32)
118
+
119
+ # generate the 3dmm coeff from a single image
120
+ if args.exp_img is not None and ('.png' in args.exp_img or '.jpg' in args.exp_img):
121
+ print('extract the exp from',args.exp_img)
122
+ exp_pil = Image.open(args.exp_img).convert('RGB')
123
+ lm3d_std = load_lm3d('third_part/face3d/BFM')
124
+
125
+ W, H = exp_pil.size
126
+ kp_extractor = KeypointExtractor()
127
+ lm_exp = kp_extractor.extract_keypoint([exp_pil], 'temp/'+base_name+'_temp.txt')[0]
128
+ if np.mean(lm_exp) == -1:
129
+ lm_exp = (lm3d_std[:, :2] + 1) / 2.
130
+ lm_exp = np.concatenate(
131
+ [lm_exp[:, :1] * W, lm_exp[:, 1:2] * H], 1)
132
+ else:
133
+ lm_exp[:, -1] = H - 1 - lm_exp[:, -1]
134
+
135
+ trans_params, im_exp, lm_exp, _ = align_img(exp_pil, lm_exp, lm3d_std)
136
+ trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32)
137
+ im_exp_tensor = torch.tensor(np.array(im_exp)/255., dtype=torch.float32).permute(2, 0, 1).to(device).unsqueeze(0)
138
+ with torch.no_grad():
139
+ expression = split_coeff(net_recon(im_exp_tensor))['exp'][0]
140
+ del net_recon
141
+ elif args.exp_img == 'smile':
142
+ expression = torch.tensor(loadmat('checkpoints/expression.mat')['expression_mouth'])[0]
143
+ else:
144
+ print('using expression center')
145
+ expression = torch.tensor(loadmat('checkpoints/expression.mat')['expression_center'])[0]
146
+
147
+ # load DNet, model(LNet and ENet)
148
+ D_Net, model = load_model(args, device)
149
+
150
+ if not os.path.isfile('temp/'+base_name+'_stablized.npy') or args.re_preprocess:
151
+ imgs = []
152
+ for idx in tqdm(range(len(frames_pil)), desc="[Step 3] Stablize the expression In Video:"):
153
+ if args.one_shot:
154
+ source_img = trans_image(frames_pil[0]).unsqueeze(0).to(device)
155
+ semantic_source_numpy = semantic_npy[0:1]
156
+ else:
157
+ source_img = trans_image(frames_pil[idx]).unsqueeze(0).to(device)
158
+ semantic_source_numpy = semantic_npy[idx:idx+1]
159
+ ratio = find_crop_norm_ratio(semantic_source_numpy, semantic_npy)
160
+ coeff = transform_semantic(semantic_npy, idx, ratio).unsqueeze(0).to(device)
161
+
162
+ # hacking the new expression
163
+ coeff[:, :64, :] = expression[None, :64, None].to(device)
164
+ with torch.no_grad():
165
+ output = D_Net(source_img, coeff)
166
+ img_stablized = np.uint8((output['fake_image'].squeeze(0).permute(1,2,0).cpu().clamp_(-1, 1).numpy() + 1 )/2. * 255)
167
+ imgs.append(cv2.cvtColor(img_stablized,cv2.COLOR_RGB2BGR))
168
+ np.save('temp/'+base_name+'_stablized.npy',imgs)
169
+ del D_Net
170
+ else:
171
+ print('[Step 3] Using saved stablized video.')
172
+ imgs = np.load('temp/'+base_name+'_stablized.npy')
173
+ torch.cuda.empty_cache()
174
+
175
+ if not args.audio.endswith('.wav'):
176
+ command = 'ffmpeg -loglevel error -y -i {} -strict -2 {}'.format(args.audio, 'temp/{}/temp.wav'.format(args.tmp_dir))
177
+ subprocess.call(command, shell=True)
178
+ args.audio = 'temp/{}/temp.wav'.format(args.tmp_dir)
179
+ wav = audio.load_wav(args.audio, 16000)
180
+ mel = audio.melspectrogram(wav)
181
+ if np.isnan(mel.reshape(-1)).sum() > 0:
182
+ raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
183
+
184
+ mel_step_size, mel_idx_multiplier, i, mel_chunks = 16, 80./fps, 0, []
185
+ while True:
186
+ start_idx = int(i * mel_idx_multiplier)
187
+ if start_idx + mel_step_size > len(mel[0]):
188
+ mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
189
+ break
190
+ mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
191
+ i += 1
192
+
193
+ print("[Step 4] Load audio; Length of mel chunks: {}".format(len(mel_chunks)))
194
+ imgs = imgs[:len(mel_chunks)]
195
+ full_frames = full_frames[:len(mel_chunks)]
196
+ lm = lm[:len(mel_chunks)]
197
+
198
+ imgs_enhanced = []
199
+ for idx in tqdm(range(len(imgs)), desc='[Step 5] Reference Enhancement'):
200
+ img = imgs[idx]
201
+ pred, _, _ = enhancer.process(img, img, face_enhance=True, possion_blending=False)
202
+ imgs_enhanced.append(pred)
203
+ gen = datagen(imgs_enhanced.copy(), mel_chunks, full_frames, None, (oy1,oy2,ox1,ox2))
204
+
205
+ frame_h, frame_w = full_frames[0].shape[:-1]
206
+ out = cv2.VideoWriter('temp/{}/result.mp4'.format(args.tmp_dir), cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_w, frame_h))
207
+
208
+ if args.up_face != 'original':
209
+ instance = GANimationModel()
210
+ instance.initialize()
211
+ instance.setup()
212
+
213
+ kp_extractor = KeypointExtractor()
214
+ for i, (img_batch, mel_batch, frames, coords, img_original, f_frames) in enumerate(tqdm(gen, desc='[Step 6] Lip Synthesis:', total=int(np.ceil(float(len(mel_chunks)) / args.LNet_batch_size)))):
215
+ img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
216
+ mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
217
+ img_original = torch.FloatTensor(np.transpose(img_original, (0, 3, 1, 2))).to(device)/255. # BGR -> RGB
218
+
219
+ with torch.no_grad():
220
+ incomplete, reference = torch.split(img_batch, 3, dim=1)
221
+ pred, low_res = model(mel_batch, img_batch, reference)
222
+ pred = torch.clamp(pred, 0, 1)
223
+
224
+ if args.up_face in ['sad', 'angry', 'surprise']:
225
+ tar_aus = exp_aus_dict[args.up_face]
226
+ else:
227
+ pass
228
+
229
+ if args.up_face == 'original':
230
+ cur_gen_faces = img_original
231
+ else:
232
+ test_batch = {'src_img': torch.nn.functional.interpolate((img_original * 2 - 1), size=(128, 128), mode='bilinear'),
233
+ 'tar_aus': tar_aus.repeat(len(incomplete), 1)}
234
+ instance.feed_batch(test_batch)
235
+ instance.forward()
236
+ cur_gen_faces = torch.nn.functional.interpolate(instance.fake_img / 2. + 0.5, size=(384, 384), mode='bilinear')
237
+
238
+ if args.without_rl1 is not False:
239
+ incomplete, reference = torch.split(img_batch, 3, dim=1)
240
+ mask = torch.where(incomplete==0, torch.ones_like(incomplete), torch.zeros_like(incomplete))
241
+ pred = pred * mask + cur_gen_faces * (1 - mask)
242
+
243
+ pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
244
+
245
+ torch.cuda.empty_cache()
246
+ for p, f, xf, c in zip(pred, frames, f_frames, coords):
247
+ y1, y2, x1, x2 = c
248
+ p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
249
+
250
+ ff = xf.copy()
251
+ ff[y1:y2, x1:x2] = p
252
+
253
+ # month region enhancement by GFPGAN
254
+ cropped_faces, restored_faces, restored_img = restorer.enhance(
255
+ ff, has_aligned=False, only_center_face=True, paste_back=True)
256
+ # 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
257
+ mm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0]
258
+ mouse_mask = np.zeros_like(restored_img)
259
+ tmp_mask = enhancer.faceparser.process(restored_img[y1:y2, x1:x2], mm)[0]
260
+ mouse_mask[y1:y2, x1:x2]= cv2.resize(tmp_mask, (x2 - x1, y2 - y1))[:, :, np.newaxis] / 255.
261
+
262
+ height, width = ff.shape[:2]
263
+ restored_img, ff, full_mask = [cv2.resize(x, (512, 512)) for x in (restored_img, ff, np.float32(mouse_mask))]
264
+ img = Laplacian_Pyramid_Blending_with_mask(restored_img, ff, full_mask[:, :, 0], 10)
265
+ pp = np.uint8(cv2.resize(np.clip(img, 0 ,255), (width, height)))
266
+
267
+ pp, orig_faces, enhanced_faces = enhancer.process(pp, xf, bbox=c, face_enhance=False, possion_blending=True)
268
+ out.write(pp)
269
+ out.release()
270
+
271
+ if not os.path.isdir(os.path.dirname(args.outfile)):
272
+ os.makedirs(os.path.dirname(args.outfile), exist_ok=True)
273
+ command = 'ffmpeg -loglevel error -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, 'temp/{}/result.mp4'.format(args.tmp_dir), args.outfile)
274
+ subprocess.call(command, shell=platform.system() != 'Windows')
275
+ print('outfile:', args.outfile)
276
+
277
+
278
+ # frames:256x256, full_frames: original size
279
+ def datagen(frames, mels, full_frames, frames_pil, cox):
280
+ img_batch, mel_batch, frame_batch, coords_batch, ref_batch, full_frame_batch = [], [], [], [], [], []
281
+ base_name = args.face.split('/')[-1]
282
+ refs = []
283
+ image_size = 256
284
+
285
+ # original frames
286
+ kp_extractor = KeypointExtractor()
287
+ fr_pil = [Image.fromarray(frame) for frame in frames]
288
+ lms = kp_extractor.extract_keypoint(fr_pil, 'temp/'+base_name+'x12_landmarks.txt')
289
+ frames_pil = [ (lm, frame) for frame,lm in zip(fr_pil, lms)] # frames is the croped version of modified face
290
+ crops, orig_images, quads = crop_faces(image_size, frames_pil, scale=1.0, use_fa=True)
291
+ inverse_transforms = [calc_alignment_coefficients(quad + 0.5, [[0, 0], [0, image_size], [image_size, image_size], [image_size, 0]]) for quad in quads]
292
+ del kp_extractor.detector
293
+
294
+ oy1,oy2,ox1,ox2 = cox
295
+ face_det_results = face_detect(full_frames, args, jaw_correction=True)
296
+
297
+ for inverse_transform, crop, full_frame, face_det in zip(inverse_transforms, crops, full_frames, face_det_results):
298
+ imc_pil = paste_image(inverse_transform, crop, Image.fromarray(
299
+ cv2.resize(full_frame[int(oy1):int(oy2), int(ox1):int(ox2)], (256, 256))))
300
+
301
+ ff = full_frame.copy()
302
+ ff[int(oy1):int(oy2), int(ox1):int(ox2)] = cv2.resize(np.array(imc_pil.convert('RGB')), (ox2 - ox1, oy2 - oy1))
303
+ oface, coords = face_det
304
+ y1, y2, x1, x2 = coords
305
+ refs.append(ff[y1: y2, x1:x2])
306
+
307
+ for i, m in enumerate(mels):
308
+ idx = 0 if args.static else i % len(frames)
309
+ frame_to_save = frames[idx].copy()
310
+ face = refs[idx]
311
+ oface, coords = face_det_results[idx].copy()
312
+
313
+ face = cv2.resize(face, (args.img_size, args.img_size))
314
+ oface = cv2.resize(oface, (args.img_size, args.img_size))
315
+
316
+ img_batch.append(oface)
317
+ ref_batch.append(face)
318
+ mel_batch.append(m)
319
+ coords_batch.append(coords)
320
+ frame_batch.append(frame_to_save)
321
+ full_frame_batch.append(full_frames[idx].copy())
322
+
323
+ if len(img_batch) >= args.LNet_batch_size:
324
+ img_batch, mel_batch, ref_batch = np.asarray(img_batch), np.asarray(mel_batch), np.asarray(ref_batch)
325
+ img_masked = img_batch.copy()
326
+ img_original = img_batch.copy()
327
+ img_masked[:, args.img_size//2:] = 0
328
+ img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.
329
+ mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
330
+
331
+ yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
332
+ img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch, ref_batch = [], [], [], [], [], [], []
333
+
334
+ if len(img_batch) > 0:
335
+ img_batch, mel_batch, ref_batch = np.asarray(img_batch), np.asarray(mel_batch), np.asarray(ref_batch)
336
+ img_masked = img_batch.copy()
337
+ img_original = img_batch.copy()
338
+ img_masked[:, args.img_size//2:] = 0
339
+ img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.
340
+ mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
341
+ yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
342
+
343
+
344
+ if __name__ == '__main__':
345
+ main()
models/DNet.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TODO
2
+ import functools
3
+ import numpy as np
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+
9
+ from utils import flow_util
10
+ from models.base_blocks import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder
11
+
12
+ # DNet
13
+ class DNet(nn.Module):
14
+ def __init__(self):
15
+ super(DNet, self).__init__()
16
+ self.mapping_net = MappingNet()
17
+ self.warpping_net = WarpingNet()
18
+ self.editing_net = EditingNet()
19
+
20
+ def forward(self, input_image, driving_source, stage=None):
21
+ if stage == 'warp':
22
+ descriptor = self.mapping_net(driving_source)
23
+ output = self.warpping_net(input_image, descriptor)
24
+ else:
25
+ descriptor = self.mapping_net(driving_source)
26
+ output = self.warpping_net(input_image, descriptor)
27
+ output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor)
28
+ return output
29
+
30
+ class MappingNet(nn.Module):
31
+ def __init__(self, coeff_nc=73, descriptor_nc=256, layer=3):
32
+ super( MappingNet, self).__init__()
33
+
34
+ self.layer = layer
35
+ nonlinearity = nn.LeakyReLU(0.1)
36
+
37
+ self.first = nn.Sequential(
38
+ torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True))
39
+
40
+ for i in range(layer):
41
+ net = nn.Sequential(nonlinearity,
42
+ torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3))
43
+ setattr(self, 'encoder' + str(i), net)
44
+
45
+ self.pooling = nn.AdaptiveAvgPool1d(1)
46
+ self.output_nc = descriptor_nc
47
+
48
+ def forward(self, input_3dmm):
49
+ out = self.first(input_3dmm)
50
+ for i in range(self.layer):
51
+ model = getattr(self, 'encoder' + str(i))
52
+ out = model(out) + out[:,:,3:-3]
53
+ out = self.pooling(out)
54
+ return out
55
+
56
+ class WarpingNet(nn.Module):
57
+ def __init__(
58
+ self,
59
+ image_nc=3,
60
+ descriptor_nc=256,
61
+ base_nc=32,
62
+ max_nc=256,
63
+ encoder_layer=5,
64
+ decoder_layer=3,
65
+ use_spect=False
66
+ ):
67
+ super( WarpingNet, self).__init__()
68
+
69
+ nonlinearity = nn.LeakyReLU(0.1)
70
+ norm_layer = functools.partial(LayerNorm2d, affine=True)
71
+ kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect}
72
+
73
+ self.descriptor_nc = descriptor_nc
74
+ self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc,
75
+ max_nc, encoder_layer, decoder_layer, **kwargs)
76
+
77
+ self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc),
78
+ nonlinearity,
79
+ nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3))
80
+
81
+ self.pool = nn.AdaptiveAvgPool2d(1)
82
+
83
+ def forward(self, input_image, descriptor):
84
+ final_output={}
85
+ output = self.hourglass(input_image, descriptor)
86
+ final_output['flow_field'] = self.flow_out(output)
87
+
88
+ deformation = flow_util.convert_flow_to_deformation(final_output['flow_field'])
89
+ final_output['warp_image'] = flow_util.warp_image(input_image, deformation)
90
+ return final_output
91
+
92
+
93
+ class EditingNet(nn.Module):
94
+ def __init__(
95
+ self,
96
+ image_nc=3,
97
+ descriptor_nc=256,
98
+ layer=3,
99
+ base_nc=64,
100
+ max_nc=256,
101
+ num_res_blocks=2,
102
+ use_spect=False):
103
+ super(EditingNet, self).__init__()
104
+
105
+ nonlinearity = nn.LeakyReLU(0.1)
106
+ norm_layer = functools.partial(LayerNorm2d, affine=True)
107
+ kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
108
+ self.descriptor_nc = descriptor_nc
109
+
110
+ # encoder part
111
+ self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs)
112
+ self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
113
+
114
+ def forward(self, input_image, warp_image, descriptor):
115
+ x = torch.cat([input_image, warp_image], 1)
116
+ x = self.encoder(x)
117
+ gen_image = self.decoder(x, descriptor)
118
+ return gen_image
models/ENet.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from models.base_blocks import ResBlock, StyleConv, ToRGB
6
+
7
+
8
+ class ENet(nn.Module):
9
+ def __init__(
10
+ self,
11
+ num_style_feat=512,
12
+ lnet=None,
13
+ concat=False
14
+ ):
15
+ super(ENet, self).__init__()
16
+
17
+ self.low_res = lnet
18
+ for param in self.low_res.parameters():
19
+ param.requires_grad = False
20
+
21
+ channel_multiplier, narrow = 2, 1
22
+ channels = {
23
+ '4': int(512 * narrow),
24
+ '8': int(512 * narrow),
25
+ '16': int(512 * narrow),
26
+ '32': int(512 * narrow),
27
+ '64': int(256 * channel_multiplier * narrow),
28
+ '128': int(128 * channel_multiplier * narrow),
29
+ '256': int(64 * channel_multiplier * narrow),
30
+ '512': int(32 * channel_multiplier * narrow),
31
+ '1024': int(16 * channel_multiplier * narrow)
32
+ }
33
+
34
+ self.log_size = 8
35
+ first_out_size = 128
36
+ self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1) # 256 -> 128
37
+
38
+ # downsample
39
+ in_channels = channels[f'{first_out_size}']
40
+ self.conv_body_down = nn.ModuleList()
41
+ for i in range(8, 2, -1):
42
+ out_channels = channels[f'{2**(i - 1)}']
43
+ self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down'))
44
+ in_channels = out_channels
45
+
46
+ self.num_style_feat = num_style_feat
47
+ linear_out_channel = num_style_feat
48
+ self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel)
49
+ self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1)
50
+
51
+ self.style_convs = nn.ModuleList()
52
+ self.to_rgbs = nn.ModuleList()
53
+ self.noises = nn.Module()
54
+
55
+ self.concat = concat
56
+ if concat:
57
+ in_channels = 3 + 32 # channels['64']
58
+ else:
59
+ in_channels = 3
60
+
61
+ for i in range(7, 9): # 128, 256
62
+ out_channels = channels[f'{2**i}'] #
63
+ self.style_convs.append(
64
+ StyleConv(
65
+ in_channels,
66
+ out_channels,
67
+ kernel_size=3,
68
+ num_style_feat=num_style_feat,
69
+ demodulate=True,
70
+ sample_mode='upsample'))
71
+ self.style_convs.append(
72
+ StyleConv(
73
+ out_channels,
74
+ out_channels,
75
+ kernel_size=3,
76
+ num_style_feat=num_style_feat,
77
+ demodulate=True,
78
+ sample_mode=None))
79
+ self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
80
+ in_channels = out_channels
81
+
82
+ def forward(self, audio_sequences, face_sequences, gt_sequences):
83
+ B = audio_sequences.size(0)
84
+ input_dim_size = len(face_sequences.size())
85
+ inp, ref = torch.split(face_sequences,3,dim=1)
86
+
87
+ if input_dim_size > 4:
88
+ audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
89
+ inp = torch.cat([inp[:, :, i] for i in range(inp.size(2))], dim=0)
90
+ ref = torch.cat([ref[:, :, i] for i in range(ref.size(2))], dim=0)
91
+ gt_sequences = torch.cat([gt_sequences[:, :, i] for i in range(gt_sequences.size(2))], dim=0)
92
+
93
+ # get the global style
94
+ feat = F.leaky_relu_(self.conv_body_first(F.interpolate(ref, size=(256,256), mode='bilinear')), negative_slope=0.2)
95
+ for i in range(self.log_size - 2):
96
+ feat = self.conv_body_down[i](feat)
97
+ feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
98
+
99
+ # style code
100
+ style_code = self.final_linear(feat.reshape(feat.size(0), -1))
101
+ style_code = style_code.reshape(style_code.size(0), -1, self.num_style_feat)
102
+
103
+ LNet_input = torch.cat([inp, gt_sequences], dim=1)
104
+ LNet_input = F.interpolate(LNet_input, size=(96,96), mode='bilinear')
105
+
106
+ if self.concat:
107
+ low_res_img, low_res_feat = self.low_res(audio_sequences, LNet_input)
108
+ low_res_img.detach()
109
+ low_res_feat.detach()
110
+ out = torch.cat([low_res_img, low_res_feat], dim=1)
111
+
112
+ else:
113
+ low_res_img = self.low_res(audio_sequences, LNet_input)
114
+ low_res_img.detach()
115
+ # 96 x 96
116
+ out = low_res_img
117
+
118
+ p2d = (2,2,2,2)
119
+ out = F.pad(out, p2d, "reflect", 0)
120
+ skip = out
121
+
122
+ for conv1, conv2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], self.to_rgbs):
123
+ out = conv1(out, style_code) # 96, 192, 384
124
+ out = conv2(out, style_code)
125
+ skip = to_rgb(out, style_code, skip)
126
+ _outputs = skip
127
+
128
+ # remove padding
129
+ _outputs = _outputs[:,:,8:-8,8:-8]
130
+
131
+ if input_dim_size > 4:
132
+ _outputs = torch.split(_outputs, B, dim=0)
133
+ outputs = torch.stack(_outputs, dim=2)
134
+ low_res_img = F.interpolate(low_res_img, outputs.size()[3:])
135
+ low_res_img = torch.split(low_res_img, B, dim=0)
136
+ low_res_img = torch.stack(low_res_img, dim=2)
137
+ else:
138
+ outputs = _outputs
139
+ return outputs, low_res_img
models/LNet.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import torch
3
+ import torch.nn as nn
4
+
5
+ from models.transformer import RETURNX, Transformer
6
+ from models.base_blocks import Conv2d, LayerNorm2d, FirstBlock2d, DownBlock2d, UpBlock2d, \
7
+ FFCADAINResBlocks, Jump, FinalBlock2d
8
+
9
+
10
+ class Visual_Encoder(nn.Module):
11
+ def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
12
+ super(Visual_Encoder, self).__init__()
13
+ self.layers = layers
14
+ self.first_inp = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
15
+ self.first_ref = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
16
+ for i in range(layers):
17
+ in_channels = min(ngf*(2**i), img_f)
18
+ out_channels = min(ngf*(2**(i+1)), img_f)
19
+ model_ref = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
20
+ model_inp = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
21
+ if i < 2:
22
+ ca_layer = RETURNX()
23
+ else:
24
+ ca_layer = Transformer(2**(i+1) * ngf,2,4,ngf,ngf*4)
25
+ setattr(self, 'ca' + str(i), ca_layer)
26
+ setattr(self, 'ref_down' + str(i), model_ref)
27
+ setattr(self, 'inp_down' + str(i), model_inp)
28
+ self.output_nc = out_channels * 2
29
+
30
+ def forward(self, maskGT, ref):
31
+ x_maskGT, x_ref = self.first_inp(maskGT), self.first_ref(ref)
32
+ out=[x_maskGT]
33
+ for i in range(self.layers):
34
+ model_ref = getattr(self, 'ref_down'+str(i))
35
+ model_inp = getattr(self, 'inp_down'+str(i))
36
+ ca_layer = getattr(self, 'ca'+str(i))
37
+ x_maskGT, x_ref = model_inp(x_maskGT), model_ref(x_ref)
38
+ x_maskGT = ca_layer(x_maskGT, x_ref)
39
+ if i < self.layers - 1:
40
+ out.append(x_maskGT)
41
+ else:
42
+ out.append(torch.cat([x_maskGT, x_ref], dim=1)) # concat ref features !
43
+ return out
44
+
45
+
46
+ class Decoder(nn.Module):
47
+ def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
48
+ super(Decoder, self).__init__()
49
+ self.layers = layers
50
+ for i in range(layers)[::-1]:
51
+ if i == layers-1:
52
+ in_channels = ngf*(2**(i+1)) * 2
53
+ else:
54
+ in_channels = min(ngf*(2**(i+1)), img_f)
55
+ out_channels = min(ngf*(2**i), img_f)
56
+ up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
57
+ res = FFCADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
58
+ jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
59
+
60
+ setattr(self, 'up' + str(i), up)
61
+ setattr(self, 'res' + str(i), res)
62
+ setattr(self, 'jump' + str(i), jump)
63
+
64
+ self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'sigmoid')
65
+ self.output_nc = out_channels
66
+
67
+ def forward(self, x, z):
68
+ out = x.pop()
69
+ for i in range(self.layers)[::-1]:
70
+ res_model = getattr(self, 'res' + str(i))
71
+ up_model = getattr(self, 'up' + str(i))
72
+ jump_model = getattr(self, 'jump' + str(i))
73
+ out = res_model(out, z)
74
+ out = up_model(out)
75
+ out = jump_model(x.pop()) + out
76
+ out_image = self.final(out)
77
+ return out_image
78
+
79
+
80
+ class LNet(nn.Module):
81
+ def __init__(
82
+ self,
83
+ image_nc=3,
84
+ descriptor_nc=512,
85
+ layer=3,
86
+ base_nc=64,
87
+ max_nc=512,
88
+ num_res_blocks=9,
89
+ use_spect=True,
90
+ encoder=Visual_Encoder,
91
+ decoder=Decoder
92
+ ):
93
+ super(LNet, self).__init__()
94
+
95
+ nonlinearity = nn.LeakyReLU(0.1)
96
+ norm_layer = functools.partial(LayerNorm2d, affine=True)
97
+ kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
98
+ self.descriptor_nc = descriptor_nc
99
+
100
+ self.encoder = encoder(image_nc, base_nc, max_nc, layer, **kwargs)
101
+ self.decoder = decoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
102
+ self.audio_encoder = nn.Sequential(
103
+ Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
104
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
105
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
106
+
107
+ Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
108
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
109
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
110
+
111
+ Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
112
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
113
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
114
+
115
+ Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
116
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
117
+
118
+ Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
119
+ Conv2d(512, descriptor_nc, kernel_size=1, stride=1, padding=0),
120
+ )
121
+
122
+ def forward(self, audio_sequences, face_sequences):
123
+ B = audio_sequences.size(0)
124
+ input_dim_size = len(face_sequences.size())
125
+ if input_dim_size > 4:
126
+ audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
127
+ face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
128
+ cropped, ref = torch.split(face_sequences, 3, dim=1)
129
+
130
+ vis_feat = self.encoder(cropped, ref)
131
+ audio_feat = self.audio_encoder(audio_sequences)
132
+ _outputs = self.decoder(vis_feat, audio_feat)
133
+
134
+ if input_dim_size > 4:
135
+ _outputs = torch.split(_outputs, B, dim=0)
136
+ outputs = torch.stack(_outputs, dim=2)
137
+ else:
138
+ outputs = _outputs
139
+ return outputs
models/__init__.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from models.DNet import DNet
3
+ from models.LNet import LNet
4
+ from models.ENet import ENet
5
+
6
+
7
+ def _load(checkpoint_path):
8
+ checkpoint = torch.load(checkpoint_path)
9
+ return checkpoint
10
+
11
+ def load_checkpoint(path, model):
12
+ print("Load checkpoint from: {}".format(path))
13
+ checkpoint = _load(path)
14
+ s = checkpoint["state_dict"] if 'arcface' not in path else checkpoint
15
+ new_s = {}
16
+ for k, v in s.items():
17
+ if 'low_res' in k:
18
+ continue
19
+ else:
20
+ new_s[k.replace('module.', '')] = v
21
+ model.load_state_dict(new_s, strict=False)
22
+ return model
23
+
24
+ def load_network(args):
25
+ L_net = LNet()
26
+ L_net = load_checkpoint(args.LNet_path, L_net)
27
+ E_net = ENet(lnet=L_net)
28
+ model = load_checkpoint(args.ENet_path, E_net)
29
+ return model.eval()
30
+
31
+ def load_DNet(args):
32
+ D_Net = DNet()
33
+ print("Load checkpoint from: {}".format(args.DNet_path))
34
+ checkpoint = torch.load(args.DNet_path, map_location=lambda storage, loc: storage)
35
+ D_Net.load_state_dict(checkpoint['net_G_ema'], strict=False)
36
+ return D_Net.eval()
models/base_blocks.py ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torch.nn.modules.batchnorm import BatchNorm2d
6
+ from torch.nn.utils.spectral_norm import spectral_norm as SpectralNorm
7
+
8
+ from models.ffc import FFC
9
+ from basicsr.archs.arch_util import default_init_weights
10
+
11
+
12
+ class Conv2d(nn.Module):
13
+ def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
14
+ super().__init__(*args, **kwargs)
15
+ self.conv_block = nn.Sequential(
16
+ nn.Conv2d(cin, cout, kernel_size, stride, padding),
17
+ nn.BatchNorm2d(cout)
18
+ )
19
+ self.act = nn.ReLU()
20
+ self.residual = residual
21
+
22
+ def forward(self, x):
23
+ out = self.conv_block(x)
24
+ if self.residual:
25
+ out += x
26
+ return self.act(out)
27
+
28
+
29
+ class ResBlock(nn.Module):
30
+ def __init__(self, in_channels, out_channels, mode='down'):
31
+ super(ResBlock, self).__init__()
32
+ self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
33
+ self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
34
+ self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
35
+ if mode == 'down':
36
+ self.scale_factor = 0.5
37
+ elif mode == 'up':
38
+ self.scale_factor = 2
39
+
40
+ def forward(self, x):
41
+ out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
42
+ # upsample/downsample
43
+ out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
44
+ out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
45
+ # skip
46
+ x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
47
+ skip = self.skip(x)
48
+ out = out + skip
49
+ return out
50
+
51
+
52
+ class LayerNorm2d(nn.Module):
53
+ def __init__(self, n_out, affine=True):
54
+ super(LayerNorm2d, self).__init__()
55
+ self.n_out = n_out
56
+ self.affine = affine
57
+
58
+ if self.affine:
59
+ self.weight = nn.Parameter(torch.ones(n_out, 1, 1))
60
+ self.bias = nn.Parameter(torch.zeros(n_out, 1, 1))
61
+
62
+ def forward(self, x):
63
+ normalized_shape = x.size()[1:]
64
+ if self.affine:
65
+ return F.layer_norm(x, normalized_shape, \
66
+ self.weight.expand(normalized_shape),
67
+ self.bias.expand(normalized_shape))
68
+ else:
69
+ return F.layer_norm(x, normalized_shape)
70
+
71
+
72
+ def spectral_norm(module, use_spect=True):
73
+ if use_spect:
74
+ return SpectralNorm(module)
75
+ else:
76
+ return module
77
+
78
+
79
+ class FirstBlock2d(nn.Module):
80
+ def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
81
+ super(FirstBlock2d, self).__init__()
82
+ kwargs = {'kernel_size': 7, 'stride': 1, 'padding': 3}
83
+ conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
84
+
85
+ if type(norm_layer) == type(None):
86
+ self.model = nn.Sequential(conv, nonlinearity)
87
+ else:
88
+ self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
89
+
90
+ def forward(self, x):
91
+ out = self.model(x)
92
+ return out
93
+
94
+
95
+ class DownBlock2d(nn.Module):
96
+ def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
97
+ super(DownBlock2d, self).__init__()
98
+ kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
99
+ conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
100
+ pool = nn.AvgPool2d(kernel_size=(2, 2))
101
+
102
+ if type(norm_layer) == type(None):
103
+ self.model = nn.Sequential(conv, nonlinearity, pool)
104
+ else:
105
+ self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity, pool)
106
+
107
+ def forward(self, x):
108
+ out = self.model(x)
109
+ return out
110
+
111
+
112
+ class UpBlock2d(nn.Module):
113
+ def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
114
+ super(UpBlock2d, self).__init__()
115
+ kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
116
+ conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
117
+ if type(norm_layer) == type(None):
118
+ self.model = nn.Sequential(conv, nonlinearity)
119
+ else:
120
+ self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
121
+
122
+ def forward(self, x):
123
+ out = self.model(F.interpolate(x, scale_factor=2))
124
+ return out
125
+
126
+
127
+ class ADAIN(nn.Module):
128
+ def __init__(self, norm_nc, feature_nc):
129
+ super().__init__()
130
+
131
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
132
+
133
+ nhidden = 128
134
+ use_bias=True
135
+
136
+ self.mlp_shared = nn.Sequential(
137
+ nn.Linear(feature_nc, nhidden, bias=use_bias),
138
+ nn.ReLU()
139
+ )
140
+ self.mlp_gamma = nn.Linear(nhidden, norm_nc, bias=use_bias)
141
+ self.mlp_beta = nn.Linear(nhidden, norm_nc, bias=use_bias)
142
+
143
+ def forward(self, x, feature):
144
+
145
+ # Part 1. generate parameter-free normalized activations
146
+ normalized = self.param_free_norm(x)
147
+ # Part 2. produce scaling and bias conditioned on feature
148
+ feature = feature.view(feature.size(0), -1)
149
+ actv = self.mlp_shared(feature)
150
+ gamma = self.mlp_gamma(actv)
151
+ beta = self.mlp_beta(actv)
152
+
153
+ # apply scale and bias
154
+ gamma = gamma.view(*gamma.size()[:2], 1,1)
155
+ beta = beta.view(*beta.size()[:2], 1,1)
156
+ out = normalized * (1 + gamma) + beta
157
+ return out
158
+
159
+
160
+ class FineADAINResBlock2d(nn.Module):
161
+ """
162
+ Define an Residual block for different types
163
+ """
164
+ def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
165
+ super(FineADAINResBlock2d, self).__init__()
166
+ kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
167
+ self.conv1 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
168
+ self.conv2 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
169
+ self.norm1 = ADAIN(input_nc, feature_nc)
170
+ self.norm2 = ADAIN(input_nc, feature_nc)
171
+ self.actvn = nonlinearity
172
+
173
+ def forward(self, x, z):
174
+ dx = self.actvn(self.norm1(self.conv1(x), z))
175
+ dx = self.norm2(self.conv2(x), z)
176
+ out = dx + x
177
+ return out
178
+
179
+
180
+ class FineADAINResBlocks(nn.Module):
181
+ def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
182
+ super(FineADAINResBlocks, self).__init__()
183
+ self.num_block = num_block
184
+ for i in range(num_block):
185
+ model = FineADAINResBlock2d(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
186
+ setattr(self, 'res'+str(i), model)
187
+
188
+ def forward(self, x, z):
189
+ for i in range(self.num_block):
190
+ model = getattr(self, 'res'+str(i))
191
+ x = model(x, z)
192
+ return x
193
+
194
+
195
+ class ADAINEncoderBlock(nn.Module):
196
+ def __init__(self, input_nc, output_nc, feature_nc, nonlinearity=nn.LeakyReLU(), use_spect=False):
197
+ super(ADAINEncoderBlock, self).__init__()
198
+ kwargs_down = {'kernel_size': 4, 'stride': 2, 'padding': 1}
199
+ kwargs_fine = {'kernel_size': 3, 'stride': 1, 'padding': 1}
200
+
201
+ self.conv_0 = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_down), use_spect)
202
+ self.conv_1 = spectral_norm(nn.Conv2d(output_nc, output_nc, **kwargs_fine), use_spect)
203
+
204
+
205
+ self.norm_0 = ADAIN(input_nc, feature_nc)
206
+ self.norm_1 = ADAIN(output_nc, feature_nc)
207
+ self.actvn = nonlinearity
208
+
209
+ def forward(self, x, z):
210
+ x = self.conv_0(self.actvn(self.norm_0(x, z)))
211
+ x = self.conv_1(self.actvn(self.norm_1(x, z)))
212
+ return x
213
+
214
+
215
+ class ADAINDecoderBlock(nn.Module):
216
+ def __init__(self, input_nc, output_nc, hidden_nc, feature_nc, use_transpose=True, nonlinearity=nn.LeakyReLU(), use_spect=False):
217
+ super(ADAINDecoderBlock, self).__init__()
218
+ # Attributes
219
+ self.actvn = nonlinearity
220
+ hidden_nc = min(input_nc, output_nc) if hidden_nc is None else hidden_nc
221
+
222
+ kwargs_fine = {'kernel_size':3, 'stride':1, 'padding':1}
223
+ if use_transpose:
224
+ kwargs_up = {'kernel_size':3, 'stride':2, 'padding':1, 'output_padding':1}
225
+ else:
226
+ kwargs_up = {'kernel_size':3, 'stride':1, 'padding':1}
227
+
228
+ # create conv layers
229
+ self.conv_0 = spectral_norm(nn.Conv2d(input_nc, hidden_nc, **kwargs_fine), use_spect)
230
+ if use_transpose:
231
+ self.conv_1 = spectral_norm(nn.ConvTranspose2d(hidden_nc, output_nc, **kwargs_up), use_spect)
232
+ self.conv_s = spectral_norm(nn.ConvTranspose2d(input_nc, output_nc, **kwargs_up), use_spect)
233
+ else:
234
+ self.conv_1 = nn.Sequential(spectral_norm(nn.Conv2d(hidden_nc, output_nc, **kwargs_up), use_spect),
235
+ nn.Upsample(scale_factor=2))
236
+ self.conv_s = nn.Sequential(spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_up), use_spect),
237
+ nn.Upsample(scale_factor=2))
238
+ # define normalization layers
239
+ self.norm_0 = ADAIN(input_nc, feature_nc)
240
+ self.norm_1 = ADAIN(hidden_nc, feature_nc)
241
+ self.norm_s = ADAIN(input_nc, feature_nc)
242
+
243
+ def forward(self, x, z):
244
+ x_s = self.shortcut(x, z)
245
+ dx = self.conv_0(self.actvn(self.norm_0(x, z)))
246
+ dx = self.conv_1(self.actvn(self.norm_1(dx, z)))
247
+ out = x_s + dx
248
+ return out
249
+
250
+ def shortcut(self, x, z):
251
+ x_s = self.conv_s(self.actvn(self.norm_s(x, z)))
252
+ return x_s
253
+
254
+
255
+ class FineEncoder(nn.Module):
256
+ """docstring for Encoder"""
257
+ def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
258
+ super(FineEncoder, self).__init__()
259
+ self.layers = layers
260
+ self.first = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
261
+ for i in range(layers):
262
+ in_channels = min(ngf*(2**i), img_f)
263
+ out_channels = min(ngf*(2**(i+1)), img_f)
264
+ model = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
265
+ setattr(self, 'down' + str(i), model)
266
+ self.output_nc = out_channels
267
+
268
+ def forward(self, x):
269
+ x = self.first(x)
270
+ out=[x]
271
+ for i in range(self.layers):
272
+ model = getattr(self, 'down'+str(i))
273
+ x = model(x)
274
+ out.append(x)
275
+ return out
276
+
277
+
278
+ class FineDecoder(nn.Module):
279
+ """docstring for FineDecoder"""
280
+ def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
281
+ super(FineDecoder, self).__init__()
282
+ self.layers = layers
283
+ for i in range(layers)[::-1]:
284
+ in_channels = min(ngf*(2**(i+1)), img_f)
285
+ out_channels = min(ngf*(2**i), img_f)
286
+ up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
287
+ res = FineADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
288
+ jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
289
+ setattr(self, 'up' + str(i), up)
290
+ setattr(self, 'res' + str(i), res)
291
+ setattr(self, 'jump' + str(i), jump)
292
+ self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'tanh')
293
+ self.output_nc = out_channels
294
+
295
+ def forward(self, x, z):
296
+ out = x.pop()
297
+ for i in range(self.layers)[::-1]:
298
+ res_model = getattr(self, 'res' + str(i))
299
+ up_model = getattr(self, 'up' + str(i))
300
+ jump_model = getattr(self, 'jump' + str(i))
301
+ out = res_model(out, z)
302
+ out = up_model(out)
303
+ out = jump_model(x.pop()) + out
304
+ out_image = self.final(out)
305
+ return out_image
306
+
307
+
308
+ class ADAINEncoder(nn.Module):
309
+ def __init__(self, image_nc, pose_nc, ngf, img_f, layers, nonlinearity=nn.LeakyReLU(), use_spect=False):
310
+ super(ADAINEncoder, self).__init__()
311
+ self.layers = layers
312
+ self.input_layer = nn.Conv2d(image_nc, ngf, kernel_size=7, stride=1, padding=3)
313
+ for i in range(layers):
314
+ in_channels = min(ngf * (2**i), img_f)
315
+ out_channels = min(ngf *(2**(i+1)), img_f)
316
+ model = ADAINEncoderBlock(in_channels, out_channels, pose_nc, nonlinearity, use_spect)
317
+ setattr(self, 'encoder' + str(i), model)
318
+ self.output_nc = out_channels
319
+
320
+ def forward(self, x, z):
321
+ out = self.input_layer(x)
322
+ out_list = [out]
323
+ for i in range(self.layers):
324
+ model = getattr(self, 'encoder' + str(i))
325
+ out = model(out, z)
326
+ out_list.append(out)
327
+ return out_list
328
+
329
+
330
+ class ADAINDecoder(nn.Module):
331
+ """docstring for ADAINDecoder"""
332
+ def __init__(self, pose_nc, ngf, img_f, encoder_layers, decoder_layers, skip_connect=True,
333
+ nonlinearity=nn.LeakyReLU(), use_spect=False):
334
+
335
+ super(ADAINDecoder, self).__init__()
336
+ self.encoder_layers = encoder_layers
337
+ self.decoder_layers = decoder_layers
338
+ self.skip_connect = skip_connect
339
+ use_transpose = True
340
+ for i in range(encoder_layers-decoder_layers, encoder_layers)[::-1]:
341
+ in_channels = min(ngf * (2**(i+1)), img_f)
342
+ in_channels = in_channels*2 if i != (encoder_layers-1) and self.skip_connect else in_channels
343
+ out_channels = min(ngf * (2**i), img_f)
344
+ model = ADAINDecoderBlock(in_channels, out_channels, out_channels, pose_nc, use_transpose, nonlinearity, use_spect)
345
+ setattr(self, 'decoder' + str(i), model)
346
+ self.output_nc = out_channels*2 if self.skip_connect else out_channels
347
+
348
+ def forward(self, x, z):
349
+ out = x.pop() if self.skip_connect else x
350
+ for i in range(self.encoder_layers-self.decoder_layers, self.encoder_layers)[::-1]:
351
+ model = getattr(self, 'decoder' + str(i))
352
+ out = model(out, z)
353
+ out = torch.cat([out, x.pop()], 1) if self.skip_connect else out
354
+ return out
355
+
356
+
357
+ class ADAINHourglass(nn.Module):
358
+ def __init__(self, image_nc, pose_nc, ngf, img_f, encoder_layers, decoder_layers, nonlinearity, use_spect):
359
+ super(ADAINHourglass, self).__init__()
360
+ self.encoder = ADAINEncoder(image_nc, pose_nc, ngf, img_f, encoder_layers, nonlinearity, use_spect)
361
+ self.decoder = ADAINDecoder(pose_nc, ngf, img_f, encoder_layers, decoder_layers, True, nonlinearity, use_spect)
362
+ self.output_nc = self.decoder.output_nc
363
+
364
+ def forward(self, x, z):
365
+ return self.decoder(self.encoder(x, z), z)
366
+
367
+
368
+ class FineADAINLama(nn.Module):
369
+ def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
370
+ super(FineADAINLama, self).__init__()
371
+ kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
372
+ self.actvn = nonlinearity
373
+ ratio_gin = 0.75
374
+ ratio_gout = 0.75
375
+ self.ffc = FFC(input_nc, input_nc, 3,
376
+ ratio_gin, ratio_gout, 1, 1, 1,
377
+ 1, False, False, padding_type='reflect')
378
+ global_channels = int(input_nc * ratio_gout)
379
+ self.bn_l = ADAIN(input_nc - global_channels, feature_nc)
380
+ self.bn_g = ADAIN(global_channels, feature_nc)
381
+
382
+ def forward(self, x, z):
383
+ x_l, x_g = self.ffc(x)
384
+ x_l = self.actvn(self.bn_l(x_l,z))
385
+ x_g = self.actvn(self.bn_g(x_g,z))
386
+ return x_l, x_g
387
+
388
+
389
+ class FFCResnetBlock(nn.Module):
390
+ def __init__(self, dim, feature_dim, padding_type='reflect', norm_layer=BatchNorm2d, activation_layer=nn.ReLU, dilation=1,
391
+ spatial_transform_kwargs=None, inline=False, **conv_kwargs):
392
+ super().__init__()
393
+ self.conv1 = FineADAINLama(dim, feature_dim, **conv_kwargs)
394
+ self.conv2 = FineADAINLama(dim, feature_dim, **conv_kwargs)
395
+ self.inline = True
396
+
397
+ def forward(self, x, z):
398
+ if self.inline:
399
+ x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
400
+ else:
401
+ x_l, x_g = x if type(x) is tuple else (x, 0)
402
+
403
+ id_l, id_g = x_l, x_g
404
+ x_l, x_g = self.conv1((x_l, x_g), z)
405
+ x_l, x_g = self.conv2((x_l, x_g), z)
406
+
407
+ x_l, x_g = id_l + x_l, id_g + x_g
408
+ out = x_l, x_g
409
+ if self.inline:
410
+ out = torch.cat(out, dim=1)
411
+ return out
412
+
413
+
414
+ class FFCADAINResBlocks(nn.Module):
415
+ def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
416
+ super(FFCADAINResBlocks, self).__init__()
417
+ self.num_block = num_block
418
+ for i in range(num_block):
419
+ model = FFCResnetBlock(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
420
+ setattr(self, 'res'+str(i), model)
421
+
422
+ def forward(self, x, z):
423
+ for i in range(self.num_block):
424
+ model = getattr(self, 'res'+str(i))
425
+ x = model(x, z)
426
+ return x
427
+
428
+
429
+ class Jump(nn.Module):
430
+ def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
431
+ super(Jump, self).__init__()
432
+ kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
433
+ conv = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
434
+ if type(norm_layer) == type(None):
435
+ self.model = nn.Sequential(conv, nonlinearity)
436
+ else:
437
+ self.model = nn.Sequential(conv, norm_layer(input_nc), nonlinearity)
438
+
439
+ def forward(self, x):
440
+ out = self.model(x)
441
+ return out
442
+
443
+
444
+ class FinalBlock2d(nn.Module):
445
+ def __init__(self, input_nc, output_nc, use_spect=False, tanh_or_sigmoid='tanh'):
446
+ super(FinalBlock2d, self).__init__()
447
+ kwargs = {'kernel_size': 7, 'stride': 1, 'padding':3}
448
+ conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
449
+ if tanh_or_sigmoid == 'sigmoid':
450
+ out_nonlinearity = nn.Sigmoid()
451
+ else:
452
+ out_nonlinearity = nn.Tanh()
453
+ self.model = nn.Sequential(conv, out_nonlinearity)
454
+
455
+ def forward(self, x):
456
+ out = self.model(x)
457
+ return out
458
+
459
+
460
+ class ModulatedConv2d(nn.Module):
461
+ def __init__(self,
462
+ in_channels,
463
+ out_channels,
464
+ kernel_size,
465
+ num_style_feat,
466
+ demodulate=True,
467
+ sample_mode=None,
468
+ eps=1e-8):
469
+ super(ModulatedConv2d, self).__init__()
470
+ self.in_channels = in_channels
471
+ self.out_channels = out_channels
472
+ self.kernel_size = kernel_size
473
+ self.demodulate = demodulate
474
+ self.sample_mode = sample_mode
475
+ self.eps = eps
476
+
477
+ # modulation inside each modulated conv
478
+ self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
479
+ # initialization
480
+ default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
481
+
482
+ self.weight = nn.Parameter(
483
+ torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
484
+ math.sqrt(in_channels * kernel_size**2))
485
+ self.padding = kernel_size // 2
486
+
487
+ def forward(self, x, style):
488
+ b, c, h, w = x.shape
489
+ style = self.modulation(style).view(b, 1, c, 1, 1)
490
+ weight = self.weight * style
491
+
492
+ if self.demodulate:
493
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
494
+ weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
495
+
496
+ weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
497
+
498
+ # upsample or downsample if necessary
499
+ if self.sample_mode == 'upsample':
500
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
501
+ elif self.sample_mode == 'downsample':
502
+ x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
503
+
504
+ b, c, h, w = x.shape
505
+ x = x.view(1, b * c, h, w)
506
+ out = F.conv2d(x, weight, padding=self.padding, groups=b)
507
+ out = out.view(b, self.out_channels, *out.shape[2:4])
508
+ return out
509
+
510
+ def __repr__(self):
511
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
512
+ f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
513
+
514
+
515
+ class StyleConv(nn.Module):
516
+ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
517
+ super(StyleConv, self).__init__()
518
+ self.modulated_conv = ModulatedConv2d(
519
+ in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
520
+ self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
521
+ self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
522
+ self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
523
+
524
+ def forward(self, x, style, noise=None):
525
+ # modulate
526
+ out = self.modulated_conv(x, style) * 2**0.5 # for conversion
527
+ # noise injection
528
+ if noise is None:
529
+ b, _, h, w = out.shape
530
+ noise = out.new_empty(b, 1, h, w).normal_()
531
+ out = out + self.weight * noise
532
+ # add bias
533
+ out = out + self.bias
534
+ # activation
535
+ out = self.activate(out)
536
+ return out
537
+
538
+
539
+ class ToRGB(nn.Module):
540
+ def __init__(self, in_channels, num_style_feat, upsample=True):
541
+ super(ToRGB, self).__init__()
542
+ self.upsample = upsample
543
+ self.modulated_conv = ModulatedConv2d(
544
+ in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
545
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
546
+
547
+ def forward(self, x, style, skip=None):
548
+ out = self.modulated_conv(x, style)
549
+ out = out + self.bias
550
+ if skip is not None:
551
+ if self.upsample:
552
+ skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
553
+ out = out + skip
554
+ return out
models/ffc.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Fast Fourier Convolution NeurIPS 2020
2
+ # original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py
3
+ # paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ # from models.modules.squeeze_excitation import SELayer
9
+ import torch.fft
10
+
11
+ class SELayer(nn.Module):
12
+ def __init__(self, channel, reduction=16):
13
+ super(SELayer, self).__init__()
14
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
15
+ self.fc = nn.Sequential(
16
+ nn.Linear(channel, channel // reduction, bias=False),
17
+ nn.ReLU(inplace=True),
18
+ nn.Linear(channel // reduction, channel, bias=False),
19
+ nn.Sigmoid()
20
+ )
21
+
22
+ def forward(self, x):
23
+ b, c, _, _ = x.size()
24
+ y = self.avg_pool(x).view(b, c)
25
+ y = self.fc(y).view(b, c, 1, 1)
26
+ res = x * y.expand_as(x)
27
+ return res
28
+
29
+
30
+ class FFCSE_block(nn.Module):
31
+ def __init__(self, channels, ratio_g):
32
+ super(FFCSE_block, self).__init__()
33
+ in_cg = int(channels * ratio_g)
34
+ in_cl = channels - in_cg
35
+ r = 16
36
+
37
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
38
+ self.conv1 = nn.Conv2d(channels, channels // r,
39
+ kernel_size=1, bias=True)
40
+ self.relu1 = nn.ReLU(inplace=True)
41
+ self.conv_a2l = None if in_cl == 0 else nn.Conv2d(
42
+ channels // r, in_cl, kernel_size=1, bias=True)
43
+ self.conv_a2g = None if in_cg == 0 else nn.Conv2d(
44
+ channels // r, in_cg, kernel_size=1, bias=True)
45
+ self.sigmoid = nn.Sigmoid()
46
+
47
+ def forward(self, x):
48
+ x = x if type(x) is tuple else (x, 0)
49
+ id_l, id_g = x
50
+
51
+ x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1)
52
+ x = self.avgpool(x)
53
+ x = self.relu1(self.conv1(x))
54
+
55
+ x_l = 0 if self.conv_a2l is None else id_l * \
56
+ self.sigmoid(self.conv_a2l(x))
57
+ x_g = 0 if self.conv_a2g is None else id_g * \
58
+ self.sigmoid(self.conv_a2g(x))
59
+ return x_l, x_g
60
+
61
+
62
+ class FourierUnit(nn.Module):
63
+
64
+ def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear',
65
+ spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'):
66
+ # bn_layer not used
67
+ super(FourierUnit, self).__init__()
68
+ self.groups = groups
69
+
70
+ self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
71
+ out_channels=out_channels * 2,
72
+ kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False)
73
+ self.bn = torch.nn.BatchNorm2d(out_channels * 2)
74
+ self.relu = torch.nn.ReLU(inplace=True)
75
+
76
+ # squeeze and excitation block
77
+ self.use_se = use_se
78
+ if use_se:
79
+ if se_kwargs is None:
80
+ se_kwargs = {}
81
+ self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
82
+
83
+ self.spatial_scale_factor = spatial_scale_factor
84
+ self.spatial_scale_mode = spatial_scale_mode
85
+ self.spectral_pos_encoding = spectral_pos_encoding
86
+ self.ffc3d = ffc3d
87
+ self.fft_norm = fft_norm
88
+
89
+ def forward(self, x):
90
+ batch = x.shape[0]
91
+
92
+ if self.spatial_scale_factor is not None:
93
+ orig_size = x.shape[-2:]
94
+ x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False)
95
+
96
+ r_size = x.size()
97
+ # (batch, c, h, w/2+1, 2)
98
+ fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
99
+ ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
100
+ ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
101
+ ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
102
+ ffted = ffted.view((batch, -1,) + ffted.size()[3:])
103
+
104
+ if self.spectral_pos_encoding:
105
+ height, width = ffted.shape[-2:]
106
+ coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted)
107
+ coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted)
108
+ ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
109
+
110
+ if self.use_se:
111
+ ffted = self.se(ffted)
112
+
113
+ ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
114
+ ffted = self.relu(self.bn(ffted))
115
+
116
+ ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
117
+ 0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2)
118
+ ffted = torch.complex(ffted[..., 0], ffted[..., 1])
119
+
120
+ ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
121
+ output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm)
122
+
123
+ if self.spatial_scale_factor is not None:
124
+ output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False)
125
+
126
+ return output
127
+
128
+
129
+ class SpectralTransform(nn.Module):
130
+ def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs):
131
+ # bn_layer not used
132
+ super(SpectralTransform, self).__init__()
133
+ self.enable_lfu = enable_lfu
134
+ if stride == 2:
135
+ self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
136
+ else:
137
+ self.downsample = nn.Identity()
138
+
139
+ self.stride = stride
140
+ self.conv1 = nn.Sequential(
141
+ nn.Conv2d(in_channels, out_channels //
142
+ 2, kernel_size=1, groups=groups, bias=False),
143
+ nn.BatchNorm2d(out_channels // 2),
144
+ nn.ReLU(inplace=True)
145
+ )
146
+ self.fu = FourierUnit(
147
+ out_channels // 2, out_channels // 2, groups, **fu_kwargs)
148
+ if self.enable_lfu:
149
+ self.lfu = FourierUnit(
150
+ out_channels // 2, out_channels // 2, groups)
151
+ self.conv2 = torch.nn.Conv2d(
152
+ out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)
153
+
154
+ def forward(self, x):
155
+ x = self.downsample(x)
156
+ x = self.conv1(x)
157
+ output = self.fu(x)
158
+
159
+ if self.enable_lfu:
160
+ n, c, h, w = x.shape
161
+ split_no = 2
162
+ split_s = h // split_no
163
+ xs = torch.cat(torch.split(
164
+ x[:, :c // 4], split_s, dim=-2), dim=1).contiguous()
165
+ xs = torch.cat(torch.split(xs, split_s, dim=-1),
166
+ dim=1).contiguous()
167
+ xs = self.lfu(xs)
168
+ xs = xs.repeat(1, 1, split_no, split_no).contiguous()
169
+ else:
170
+ xs = 0
171
+
172
+ output = self.conv2(x + output + xs)
173
+ return output
174
+
175
+
176
+ class FFC(nn.Module):
177
+
178
+ def __init__(self, in_channels, out_channels, kernel_size,
179
+ ratio_gin, ratio_gout, stride=1, padding=0,
180
+ dilation=1, groups=1, bias=False, enable_lfu=True,
181
+ padding_type='reflect', gated=False, **spectral_kwargs):
182
+ super(FFC, self).__init__()
183
+
184
+ assert stride == 1 or stride == 2, "Stride should be 1 or 2."
185
+ self.stride = stride
186
+
187
+ in_cg = int(in_channels * ratio_gin)
188
+ in_cl = in_channels - in_cg
189
+ out_cg = int(out_channels * ratio_gout)
190
+ out_cl = out_channels - out_cg
191
+
192
+ self.ratio_gin = ratio_gin
193
+ self.ratio_gout = ratio_gout
194
+ self.global_in_num = in_cg
195
+
196
+ module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
197
+ self.convl2l = module(in_cl, out_cl, kernel_size,
198
+ stride, padding, dilation, groups, bias, padding_mode=padding_type)
199
+ module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
200
+ self.convl2g = module(in_cl, out_cg, kernel_size,
201
+ stride, padding, dilation, groups, bias, padding_mode=padding_type)
202
+ module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
203
+ self.convg2l = module(in_cg, out_cl, kernel_size,
204
+ stride, padding, dilation, groups, bias, padding_mode=padding_type)
205
+ module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
206
+ self.convg2g = module(
207
+ in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs)
208
+
209
+ self.gated = gated
210
+ module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
211
+ self.gate = module(in_channels, 2, 1)
212
+
213
+ def forward(self, x):
214
+ x_l, x_g = x if type(x) is tuple else (x, 0)
215
+ out_xl, out_xg = 0, 0
216
+
217
+ if self.gated:
218
+ total_input_parts = [x_l]
219
+ if torch.is_tensor(x_g):
220
+ total_input_parts.append(x_g)
221
+ total_input = torch.cat(total_input_parts, dim=1)
222
+
223
+ gates = torch.sigmoid(self.gate(total_input))
224
+ g2l_gate, l2g_gate = gates.chunk(2, dim=1)
225
+ else:
226
+ g2l_gate, l2g_gate = 1, 1
227
+
228
+ if self.ratio_gout != 1:
229
+ out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
230
+ if self.ratio_gout != 0:
231
+ out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
232
+
233
+ return out_xl, out_xg
models/transformer.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+ from einops import rearrange
5
+
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ import numpy as np
9
+
10
+
11
+ class GELU(nn.Module):
12
+ def __init__(self):
13
+ super(GELU, self).__init__()
14
+ def forward(self, x):
15
+ return 0.5*x*(1+F.tanh(np.sqrt(2/np.pi)*(x+0.044715*torch.pow(x,3))))
16
+
17
+ # helpers
18
+
19
+ def pair(t):
20
+ return t if isinstance(t, tuple) else (t, t)
21
+
22
+ # classes
23
+
24
+ class PreNorm(nn.Module):
25
+ def __init__(self, dim, fn):
26
+ super().__init__()
27
+ self.norm = nn.LayerNorm(dim)
28
+ self.fn = fn
29
+ def forward(self, x, **kwargs):
30
+ return self.fn(self.norm(x), **kwargs)
31
+
32
+ class DualPreNorm(nn.Module):
33
+ def __init__(self, dim, fn):
34
+ super().__init__()
35
+ self.normx = nn.LayerNorm(dim)
36
+ self.normy = nn.LayerNorm(dim)
37
+ self.fn = fn
38
+ def forward(self, x, y, **kwargs):
39
+ return self.fn(self.normx(x), self.normy(y), **kwargs)
40
+
41
+ class FeedForward(nn.Module):
42
+ def __init__(self, dim, hidden_dim, dropout = 0.):
43
+ super().__init__()
44
+ self.net = nn.Sequential(
45
+ nn.Linear(dim, hidden_dim),
46
+ GELU(),
47
+ nn.Dropout(dropout),
48
+ nn.Linear(hidden_dim, dim),
49
+ nn.Dropout(dropout)
50
+ )
51
+ def forward(self, x):
52
+ return self.net(x)
53
+
54
+ class Attention(nn.Module):
55
+ def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
56
+ super().__init__()
57
+ inner_dim = dim_head * heads
58
+ project_out = not (heads == 1 and dim_head == dim)
59
+
60
+ self.heads = heads
61
+ self.scale = dim_head ** -0.5
62
+
63
+ self.attend = nn.Softmax(dim = -1)
64
+
65
+ self.to_q = nn.Linear(dim, inner_dim, bias = False)
66
+ self.to_k = nn.Linear(dim, inner_dim, bias = False)
67
+ self.to_v = nn.Linear(dim, inner_dim, bias = False)
68
+
69
+
70
+ self.to_out = nn.Sequential(
71
+ nn.Linear(inner_dim, dim),
72
+ nn.Dropout(dropout)
73
+ ) if project_out else nn.Identity()
74
+
75
+ def forward(self, x, y):
76
+ # qk = self.to_qk(x).chunk(2, dim = -1) #
77
+ q = rearrange(self.to_q(x), 'b n (h d) -> b h n d', h = self.heads) # q,k from the zero feature
78
+ k = rearrange(self.to_k(x), 'b n (h d) -> b h n d', h = self.heads) # v from the reference features
79
+ v = rearrange(self.to_v(y), 'b n (h d) -> b h n d', h = self.heads)
80
+
81
+ dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
82
+
83
+ attn = self.attend(dots)
84
+
85
+ out = torch.matmul(attn, v)
86
+ out = rearrange(out, 'b h n d -> b n (h d)')
87
+ return self.to_out(out)
88
+
89
+ class Transformer(nn.Module):
90
+ def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
91
+ super().__init__()
92
+ self.layers = nn.ModuleList([])
93
+ for _ in range(depth):
94
+ self.layers.append(nn.ModuleList([
95
+ DualPreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
96
+ PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
97
+ ]))
98
+
99
+
100
+ def forward(self, x, y): # x is the cropped, y is the foreign reference
101
+ bs,c,h,w = x.size()
102
+
103
+ # img to embedding
104
+ x = x.view(bs,c,-1).permute(0,2,1)
105
+ y = y.view(bs,c,-1).permute(0,2,1)
106
+
107
+ for attn, ff in self.layers:
108
+ x = attn(x, y) + x
109
+ x = ff(x) + x
110
+
111
+ x = x.view(bs,h,w,c).permute(0,3,1,2)
112
+ return x
113
+
114
+ class RETURNX(nn.Module):
115
+ def __init__(self,):
116
+ super().__init__()
117
+
118
+ def forward(self, x, y): # x is the cropped, y is the foreign reference
119
+ return x
requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ basicsr==1.4.2
2
+ dlib==19.24.2
3
+ docopt==0.6.2
4
+ dominate==2.8.0
5
+ easydict==1.10
6
+ einops==0.7.0
7
+ face_alignment==1.4.1
8
+ facexlib==0.3.0
9
+ gradio==3.46.1
10
+ imageio==2.31.5
11
+ insightface==0.7.3
12
+ iou==0.1.0
13
+ kornia==0.7.0
14
+ librosa==0.8.0
15
+ matplotlib==3.7.1
16
+ menpo==0.11.0
17
+ mxnet==1.9.1
18
+ numpy==1.23.5
19
+ onnx==1.14.1
20
+ onnxruntime==1.16.0
21
+ onnxsim==0.4.33
third_part/GFPGAN/LICENSE ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tencent is pleased to support the open source community by making GFPGAN available.
2
+
3
+ Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
4
+
5
+ GFPGAN is licensed under the Apache License Version 2.0 except for the third-party components listed below.
6
+
7
+
8
+ Terms of the Apache License Version 2.0:
9
+ ---------------------------------------------
10
+ Apache License
11
+
12
+ Version 2.0, January 2004
13
+
14
+ http://www.apache.org/licenses/
15
+
16
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
17
+ 1. Definitions.
18
+
19
+ “License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.
20
+
21
+ “Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
22
+
23
+ “Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ “You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.
26
+
27
+ “Source” form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.
28
+
29
+ “Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
30
+
31
+ “Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
32
+
33
+ “Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
34
+
35
+ “Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”
36
+
37
+ “Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.
38
+
39
+ 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
40
+
41
+ 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
42
+
43
+ 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
44
+
45
+ You must give any other recipients of the Work or Derivative Works a copy of this License; and
46
+
47
+ You must cause any modified files to carry prominent notices stating that You changed the files; and
48
+
49
+ You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
50
+
51
+ If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.
52
+
53
+ You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.
54
+
55
+ 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
56
+
57
+ 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
58
+
59
+ 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
60
+
61
+ 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
62
+
63
+ 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
64
+
65
+ END OF TERMS AND CONDITIONS
66
+
67
+
68
+
69
+ Other dependencies and licenses:
70
+
71
+
72
+ Open Source Software licensed under the Apache 2.0 license and Other Licenses of the Third-Party Components therein:
73
+ ---------------------------------------------
74
+ 1. basicsr
75
+ Copyright 2018-2020 BasicSR Authors
76
+
77
+
78
+ This BasicSR project is released under the Apache 2.0 license.
79
+
80
+ A copy of Apache 2.0 is included in this file.
81
+
82
+ StyleGAN2
83
+ The codes are modified from the repository stylegan2-pytorch. Many thanks to the author - Kim Seonghyeon 😊 for translating from the official TensorFlow codes to PyTorch ones. Here is the license of stylegan2-pytorch.
84
+ The official repository is https://github.com/NVlabs/stylegan2, and here is the NVIDIA license.
85
+ DFDNet
86
+ The codes are largely modified from the repository DFDNet. Their license is Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
87
+
88
+ Terms of the Nvidia License:
89
+ ---------------------------------------------
90
+
91
+ 1. Definitions
92
+
93
+ "Licensor" means any person or entity that distributes its Work.
94
+
95
+ "Software" means the original work of authorship made available under
96
+ this License.
97
+
98
+ "Work" means the Software and any additions to or derivative works of
99
+ the Software that are made available under this License.
100
+
101
+ "Nvidia Processors" means any central processing unit (CPU), graphics
102
+ processing unit (GPU), field-programmable gate array (FPGA),
103
+ application-specific integrated circuit (ASIC) or any combination
104
+ thereof designed, made, sold, or provided by Nvidia or its affiliates.
105
+
106
+ The terms "reproduce," "reproduction," "derivative works," and
107
+ "distribution" have the meaning as provided under U.S. copyright law;
108
+ provided, however, that for the purposes of this License, derivative
109
+ works shall not include works that remain separable from, or merely
110
+ link (or bind by name) to the interfaces of, the Work.
111
+
112
+ Works, including the Software, are "made available" under this License
113
+ by including in or with the Work either (a) a copyright notice
114
+ referencing the applicability of this License to the Work, or (b) a
115
+ copy of this License.
116
+
117
+ 2. License Grants
118
+
119
+ 2.1 Copyright Grant. Subject to the terms and conditions of this
120
+ License, each Licensor grants to you a perpetual, worldwide,
121
+ non-exclusive, royalty-free, copyright license to reproduce,
122
+ prepare derivative works of, publicly display, publicly perform,
123
+ sublicense and distribute its Work and any resulting derivative
124
+ works in any form.
125
+
126
+ 3. Limitations
127
+
128
+ 3.1 Redistribution. You may reproduce or distribute the Work only
129
+ if (a) you do so under this License, (b) you include a complete
130
+ copy of this License with your distribution, and (c) you retain
131
+ without modification any copyright, patent, trademark, or
132
+ attribution notices that are present in the Work.
133
+
134
+ 3.2 Derivative Works. You may specify that additional or different
135
+ terms apply to the use, reproduction, and distribution of your
136
+ derivative works of the Work ("Your Terms") only if (a) Your Terms
137
+ provide that the use limitation in Section 3.3 applies to your
138
+ derivative works, and (b) you identify the specific derivative
139
+ works that are subject to Your Terms. Notwithstanding Your Terms,
140
+ this License (including the redistribution requirements in Section
141
+ 3.1) will continue to apply to the Work itself.
142
+
143
+ 3.3 Use Limitation. The Work and any derivative works thereof only
144
+ may be used or intended for use non-commercially. The Work or
145
+ derivative works thereof may be used or intended for use by Nvidia
146
+ or its affiliates commercially or non-commercially. As used herein,
147
+ "non-commercially" means for research or evaluation purposes only.
148
+
149
+ 3.4 Patent Claims. If you bring or threaten to bring a patent claim
150
+ against any Licensor (including any claim, cross-claim or
151
+ counterclaim in a lawsuit) to enforce any patents that you allege
152
+ are infringed by any Work, then your rights under this License from
153
+ such Licensor (including the grants in Sections 2.1 and 2.2) will
154
+ terminate immediately.
155
+
156
+ 3.5 Trademarks. This License does not grant any rights to use any
157
+ Licensor's or its affiliates' names, logos, or trademarks, except
158
+ as necessary to reproduce the notices described in this License.
159
+
160
+ 3.6 Termination. If you violate any term of this License, then your
161
+ rights under this License (including the grants in Sections 2.1 and
162
+ 2.2) will terminate immediately.
163
+
164
+ 4. Disclaimer of Warranty.
165
+
166
+ THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
167
+ KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
168
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
169
+ NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
170
+ THIS LICENSE.
171
+
172
+ 5. Limitation of Liability.
173
+
174
+ EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
175
+ THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
176
+ SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
177
+ INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
178
+ OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
179
+ (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
180
+ LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
181
+ COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
182
+ THE POSSIBILITY OF SUCH DAMAGES.
183
+
184
+ MIT License
185
+
186
+ Copyright (c) 2019 Kim Seonghyeon
187
+
188
+ Permission is hereby granted, free of charge, to any person obtaining a copy
189
+ of this software and associated documentation files (the "Software"), to deal
190
+ in the Software without restriction, including without limitation the rights
191
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
192
+ copies of the Software, and to permit persons to whom the Software is
193
+ furnished to do so, subject to the following conditions:
194
+
195
+ The above copyright notice and this permission notice shall be included in all
196
+ copies or substantial portions of the Software.
197
+
198
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
199
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
200
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
201
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
202
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
203
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
204
+ SOFTWARE.
205
+
206
+
207
+
208
+ Open Source Software licensed under the BSD 3-Clause license:
209
+ ---------------------------------------------
210
+ 1. torchvision
211
+ Copyright (c) Soumith Chintala 2016,
212
+ All rights reserved.
213
+
214
+ 2. torch
215
+ Copyright (c) 2016- Facebook, Inc (Adam Paszke)
216
+ Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
217
+ Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
218
+ Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
219
+ Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
220
+ Copyright (c) 2011-2013 NYU (Clement Farabet)
221
+ Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
222
+ Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
223
+ Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
224
+
225
+
226
+ Terms of the BSD 3-Clause License:
227
+ ---------------------------------------------
228
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
229
+
230
+ 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
231
+
232
+ 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
233
+
234
+ 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
235
+
236
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
237
+
238
+
239
+
240
+ Open Source Software licensed under the BSD 3-Clause License and Other Licenses of the Third-Party Components therein:
241
+ ---------------------------------------------
242
+ 1. numpy
243
+ Copyright (c) 2005-2020, NumPy Developers.
244
+ All rights reserved.
245
+
246
+ A copy of BSD 3-Clause License is included in this file.
247
+
248
+ The NumPy repository and source distributions bundle several libraries that are
249
+ compatibly licensed. We list these here.
250
+
251
+ Name: Numpydoc
252
+ Files: doc/sphinxext/numpydoc/*
253
+ License: BSD-2-Clause
254
+ For details, see doc/sphinxext/LICENSE.txt
255
+
256
+ Name: scipy-sphinx-theme
257
+ Files: doc/scipy-sphinx-theme/*
258
+ License: BSD-3-Clause AND PSF-2.0 AND Apache-2.0
259
+ For details, see doc/scipy-sphinx-theme/LICENSE.txt
260
+
261
+ Name: lapack-lite
262
+ Files: numpy/linalg/lapack_lite/*
263
+ License: BSD-3-Clause
264
+ For details, see numpy/linalg/lapack_lite/LICENSE.txt
265
+
266
+ Name: tempita
267
+ Files: tools/npy_tempita/*
268
+ License: MIT
269
+ For details, see tools/npy_tempita/license.txt
270
+
271
+ Name: dragon4
272
+ Files: numpy/core/src/multiarray/dragon4.c
273
+ License: MIT
274
+ For license text, see numpy/core/src/multiarray/dragon4.c
275
+
276
+
277
+
278
+ Open Source Software licensed under the MIT license:
279
+ ---------------------------------------------
280
+ 1. facexlib
281
+ Copyright (c) 2020 Xintao Wang
282
+
283
+ 2. opencv-python
284
+ Copyright (c) Olli-Pekka Heinisuo
285
+ Please note that only files in cv2 package are used.
286
+
287
+
288
+ Terms of the MIT License:
289
+ ---------------------------------------------
290
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
291
+
292
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
293
+
294
+ THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
295
+
296
+
297
+
298
+ Open Source Software licensed under the MIT license and Other Licenses of the Third-Party Components therein:
299
+ ---------------------------------------------
300
+ 1. tqdm
301
+ Copyright (c) 2013 noamraph
302
+
303
+ `tqdm` is a product of collaborative work.
304
+ Unless otherwise stated, all authors (see commit logs) retain copyright
305
+ for their respective work, and release the work under the MIT licence
306
+ (text below).
307
+
308
+ Exceptions or notable authors are listed below
309
+ in reverse chronological order:
310
+
311
+ * files: *
312
+ MPLv2.0 2015-2020 (c) Casper da Costa-Luis
313
+ [casperdcl](https://github.com/casperdcl).
314
+ * files: tqdm/_tqdm.py
315
+ MIT 2016 (c) [PR #96] on behalf of Google Inc.
316
+ * files: tqdm/_tqdm.py setup.py README.rst MANIFEST.in .gitignore
317
+ MIT 2013 (c) Noam Yorav-Raphael, original author.
318
+
319
+ [PR #96]: https://github.com/tqdm/tqdm/pull/96
320
+
321
+
322
+ Mozilla Public Licence (MPL) v. 2.0 - Exhibit A
323
+ -----------------------------------------------
324
+
325
+ This Source Code Form is subject to the terms of the
326
+ Mozilla Public License, v. 2.0.
327
+ If a copy of the MPL was not distributed with this file,
328
+ You can obtain one at https://mozilla.org/MPL/2.0/.
329
+
330
+
331
+ MIT License (MIT)
332
+ -----------------
333
+
334
+ Copyright (c) 2013 noamraph
335
+
336
+ Permission is hereby granted, free of charge, to any person obtaining a copy of
337
+ this software and associated documentation files (the "Software"), to deal in
338
+ the Software without restriction, including without limitation the rights to
339
+ use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
340
+ the Software, and to permit persons to whom the Software is furnished to do so,
341
+ subject to the following conditions:
342
+
343
+ The above copyright notice and this permission notice shall be included in all
344
+ copies or substantial portions of the Software.
345
+
346
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
347
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
348
+ FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
349
+ COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
350
+ IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
351
+ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
third_part/GFPGAN/gfpgan/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+
3
+ from .archs import *
4
+ from .data import *
5
+ from .models import *
6
+ from .utils import *
7
+
8
+ # from .version import *
third_part/GFPGAN/gfpgan/archs/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import arch modules for registry
6
+ # scan all the files that end with '_arch.py' under the archs folder
7
+ arch_folder = osp.dirname(osp.abspath(__file__))
8
+ arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
9
+ # import all the arch modules
10
+ _arch_modules = [importlib.import_module(f'gfpgan.archs.{file_name}') for file_name in arch_filenames]
third_part/GFPGAN/gfpgan/archs/arcface_arch.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from basicsr.utils.registry import ARCH_REGISTRY
3
+
4
+
5
+ def conv3x3(inplanes, outplanes, stride=1):
6
+ """A simple wrapper for 3x3 convolution with padding.
7
+
8
+ Args:
9
+ inplanes (int): Channel number of inputs.
10
+ outplanes (int): Channel number of outputs.
11
+ stride (int): Stride in convolution. Default: 1.
12
+ """
13
+ return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)
14
+
15
+
16
+ class BasicBlock(nn.Module):
17
+ """Basic residual block used in the ResNetArcFace architecture.
18
+
19
+ Args:
20
+ inplanes (int): Channel number of inputs.
21
+ planes (int): Channel number of outputs.
22
+ stride (int): Stride in convolution. Default: 1.
23
+ downsample (nn.Module): The downsample module. Default: None.
24
+ """
25
+ expansion = 1 # output channel expansion ratio
26
+
27
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
28
+ super(BasicBlock, self).__init__()
29
+ self.conv1 = conv3x3(inplanes, planes, stride)
30
+ self.bn1 = nn.BatchNorm2d(planes)
31
+ self.relu = nn.ReLU(inplace=True)
32
+ self.conv2 = conv3x3(planes, planes)
33
+ self.bn2 = nn.BatchNorm2d(planes)
34
+ self.downsample = downsample
35
+ self.stride = stride
36
+
37
+ def forward(self, x):
38
+ residual = x
39
+
40
+ out = self.conv1(x)
41
+ out = self.bn1(out)
42
+ out = self.relu(out)
43
+
44
+ out = self.conv2(out)
45
+ out = self.bn2(out)
46
+
47
+ if self.downsample is not None:
48
+ residual = self.downsample(x)
49
+
50
+ out += residual
51
+ out = self.relu(out)
52
+
53
+ return out
54
+
55
+
56
+ class IRBlock(nn.Module):
57
+ """Improved residual block (IR Block) used in the ResNetArcFace architecture.
58
+
59
+ Args:
60
+ inplanes (int): Channel number of inputs.
61
+ planes (int): Channel number of outputs.
62
+ stride (int): Stride in convolution. Default: 1.
63
+ downsample (nn.Module): The downsample module. Default: None.
64
+ use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
65
+ """
66
+ expansion = 1 # output channel expansion ratio
67
+
68
+ def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
69
+ super(IRBlock, self).__init__()
70
+ self.bn0 = nn.BatchNorm2d(inplanes)
71
+ self.conv1 = conv3x3(inplanes, inplanes)
72
+ self.bn1 = nn.BatchNorm2d(inplanes)
73
+ self.prelu = nn.PReLU()
74
+ self.conv2 = conv3x3(inplanes, planes, stride)
75
+ self.bn2 = nn.BatchNorm2d(planes)
76
+ self.downsample = downsample
77
+ self.stride = stride
78
+ self.use_se = use_se
79
+ if self.use_se:
80
+ self.se = SEBlock(planes)
81
+
82
+ def forward(self, x):
83
+ residual = x
84
+ out = self.bn0(x)
85
+ out = self.conv1(out)
86
+ out = self.bn1(out)
87
+ out = self.prelu(out)
88
+
89
+ out = self.conv2(out)
90
+ out = self.bn2(out)
91
+ if self.use_se:
92
+ out = self.se(out)
93
+
94
+ if self.downsample is not None:
95
+ residual = self.downsample(x)
96
+
97
+ out += residual
98
+ out = self.prelu(out)
99
+
100
+ return out
101
+
102
+
103
+ class Bottleneck(nn.Module):
104
+ """Bottleneck block used in the ResNetArcFace architecture.
105
+
106
+ Args:
107
+ inplanes (int): Channel number of inputs.
108
+ planes (int): Channel number of outputs.
109
+ stride (int): Stride in convolution. Default: 1.
110
+ downsample (nn.Module): The downsample module. Default: None.
111
+ """
112
+ expansion = 4 # output channel expansion ratio
113
+
114
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
115
+ super(Bottleneck, self).__init__()
116
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
117
+ self.bn1 = nn.BatchNorm2d(planes)
118
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
119
+ self.bn2 = nn.BatchNorm2d(planes)
120
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
121
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
122
+ self.relu = nn.ReLU(inplace=True)
123
+ self.downsample = downsample
124
+ self.stride = stride
125
+
126
+ def forward(self, x):
127
+ residual = x
128
+
129
+ out = self.conv1(x)
130
+ out = self.bn1(out)
131
+ out = self.relu(out)
132
+
133
+ out = self.conv2(out)
134
+ out = self.bn2(out)
135
+ out = self.relu(out)
136
+
137
+ out = self.conv3(out)
138
+ out = self.bn3(out)
139
+
140
+ if self.downsample is not None:
141
+ residual = self.downsample(x)
142
+
143
+ out += residual
144
+ out = self.relu(out)
145
+
146
+ return out
147
+
148
+
149
+ class SEBlock(nn.Module):
150
+ """The squeeze-and-excitation block (SEBlock) used in the IRBlock.
151
+
152
+ Args:
153
+ channel (int): Channel number of inputs.
154
+ reduction (int): Channel reduction ration. Default: 16.
155
+ """
156
+
157
+ def __init__(self, channel, reduction=16):
158
+ super(SEBlock, self).__init__()
159
+ self.avg_pool = nn.AdaptiveAvgPool2d(1) # pool to 1x1 without spatial information
160
+ self.fc = nn.Sequential(
161
+ nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel),
162
+ nn.Sigmoid())
163
+
164
+ def forward(self, x):
165
+ b, c, _, _ = x.size()
166
+ y = self.avg_pool(x).view(b, c)
167
+ y = self.fc(y).view(b, c, 1, 1)
168
+ return x * y
169
+
170
+
171
+ @ARCH_REGISTRY.register()
172
+ class ResNetArcFace(nn.Module):
173
+ """ArcFace with ResNet architectures.
174
+
175
+ Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
176
+
177
+ Args:
178
+ block (str): Block used in the ArcFace architecture.
179
+ layers (tuple(int)): Block numbers in each layer.
180
+ use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
181
+ """
182
+
183
+ def __init__(self, block, layers, use_se=True):
184
+ if block == 'IRBlock':
185
+ block = IRBlock
186
+ self.inplanes = 64
187
+ self.use_se = use_se
188
+ super(ResNetArcFace, self).__init__()
189
+
190
+ self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
191
+ self.bn1 = nn.BatchNorm2d(64)
192
+ self.prelu = nn.PReLU()
193
+ self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
194
+ self.layer1 = self._make_layer(block, 64, layers[0])
195
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
196
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
197
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
198
+ self.bn4 = nn.BatchNorm2d(512)
199
+ self.dropout = nn.Dropout()
200
+ self.fc5 = nn.Linear(512 * 8 * 8, 512)
201
+ self.bn5 = nn.BatchNorm1d(512)
202
+
203
+ # initialization
204
+ for m in self.modules():
205
+ if isinstance(m, nn.Conv2d):
206
+ nn.init.xavier_normal_(m.weight)
207
+ elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
208
+ nn.init.constant_(m.weight, 1)
209
+ nn.init.constant_(m.bias, 0)
210
+ elif isinstance(m, nn.Linear):
211
+ nn.init.xavier_normal_(m.weight)
212
+ nn.init.constant_(m.bias, 0)
213
+
214
+ def _make_layer(self, block, planes, num_blocks, stride=1):
215
+ downsample = None
216
+ if stride != 1 or self.inplanes != planes * block.expansion:
217
+ downsample = nn.Sequential(
218
+ nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
219
+ nn.BatchNorm2d(planes * block.expansion),
220
+ )
221
+ layers = []
222
+ layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
223
+ self.inplanes = planes
224
+ for _ in range(1, num_blocks):
225
+ layers.append(block(self.inplanes, planes, use_se=self.use_se))
226
+
227
+ return nn.Sequential(*layers)
228
+
229
+ def forward(self, x):
230
+ x = self.conv1(x)
231
+ x = self.bn1(x)
232
+ x = self.prelu(x)
233
+ x = self.maxpool(x)
234
+
235
+ x = self.layer1(x)
236
+ x = self.layer2(x)
237
+ x = self.layer3(x)
238
+ x = self.layer4(x)
239
+ x = self.bn4(x)
240
+ x = self.dropout(x)
241
+ x = x.view(x.size(0), -1)
242
+ x = self.fc5(x)
243
+ x = self.bn5(x)
244
+
245
+ return x
third_part/GFPGAN/gfpgan/archs/gfpgan_bilinear_arch.py ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.utils.registry import ARCH_REGISTRY
5
+ from torch import nn
6
+
7
+ from .gfpganv1_arch import ResUpBlock
8
+ from .stylegan2_bilinear_arch import (ConvLayer, EqualConv2d, EqualLinear, ResBlock, ScaledLeakyReLU,
9
+ StyleGAN2GeneratorBilinear)
10
+
11
+
12
+ class StyleGAN2GeneratorBilinearSFT(StyleGAN2GeneratorBilinear):
13
+ """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
14
+
15
+ It is the bilinear version. It does not use the complicated UpFirDnSmooth function that is not friendly for
16
+ deployment. It can be easily converted to the clean version: StyleGAN2GeneratorCSFT.
17
+
18
+ Args:
19
+ out_size (int): The spatial size of outputs.
20
+ num_style_feat (int): Channel number of style features. Default: 512.
21
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
22
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
23
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
24
+ narrow (float): The narrow ratio for channels. Default: 1.
25
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
26
+ """
27
+
28
+ def __init__(self,
29
+ out_size,
30
+ num_style_feat=512,
31
+ num_mlp=8,
32
+ channel_multiplier=2,
33
+ lr_mlp=0.01,
34
+ narrow=1,
35
+ sft_half=False):
36
+ super(StyleGAN2GeneratorBilinearSFT, self).__init__(
37
+ out_size,
38
+ num_style_feat=num_style_feat,
39
+ num_mlp=num_mlp,
40
+ channel_multiplier=channel_multiplier,
41
+ lr_mlp=lr_mlp,
42
+ narrow=narrow)
43
+ self.sft_half = sft_half
44
+
45
+ def forward(self,
46
+ styles,
47
+ conditions,
48
+ input_is_latent=False,
49
+ noise=None,
50
+ randomize_noise=True,
51
+ truncation=1,
52
+ truncation_latent=None,
53
+ inject_index=None,
54
+ return_latents=False):
55
+ """Forward function for StyleGAN2GeneratorBilinearSFT.
56
+
57
+ Args:
58
+ styles (list[Tensor]): Sample codes of styles.
59
+ conditions (list[Tensor]): SFT conditions to generators.
60
+ input_is_latent (bool): Whether input is latent style. Default: False.
61
+ noise (Tensor | None): Input noise or None. Default: None.
62
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
63
+ truncation (float): The truncation ratio. Default: 1.
64
+ truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
65
+ inject_index (int | None): The injection index for mixing noise. Default: None.
66
+ return_latents (bool): Whether to return style latents. Default: False.
67
+ """
68
+ # style codes -> latents with Style MLP layer
69
+ if not input_is_latent:
70
+ styles = [self.style_mlp(s) for s in styles]
71
+ # noises
72
+ if noise is None:
73
+ if randomize_noise:
74
+ noise = [None] * self.num_layers # for each style conv layer
75
+ else: # use the stored noise
76
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
77
+ # style truncation
78
+ if truncation < 1:
79
+ style_truncation = []
80
+ for style in styles:
81
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
82
+ styles = style_truncation
83
+ # get style latents with injection
84
+ if len(styles) == 1:
85
+ inject_index = self.num_latent
86
+
87
+ if styles[0].ndim < 3:
88
+ # repeat latent code for all the layers
89
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
90
+ else: # used for encoder with different latent code for each layer
91
+ latent = styles[0]
92
+ elif len(styles) == 2: # mixing noises
93
+ if inject_index is None:
94
+ inject_index = random.randint(1, self.num_latent - 1)
95
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
96
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
97
+ latent = torch.cat([latent1, latent2], 1)
98
+
99
+ # main generation
100
+ out = self.constant_input(latent.shape[0])
101
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
102
+ skip = self.to_rgb1(out, latent[:, 1])
103
+
104
+ i = 1
105
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
106
+ noise[2::2], self.to_rgbs):
107
+ out = conv1(out, latent[:, i], noise=noise1)
108
+
109
+ # the conditions may have fewer levels
110
+ if i < len(conditions):
111
+ # SFT part to combine the conditions
112
+ if self.sft_half: # only apply SFT to half of the channels
113
+ out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
114
+ out_sft = out_sft * conditions[i - 1] + conditions[i]
115
+ out = torch.cat([out_same, out_sft], dim=1)
116
+ else: # apply SFT to all the channels
117
+ out = out * conditions[i - 1] + conditions[i]
118
+
119
+ out = conv2(out, latent[:, i + 1], noise=noise2)
120
+ skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
121
+ i += 2
122
+
123
+ image = skip
124
+
125
+ if return_latents:
126
+ return image, latent
127
+ else:
128
+ return image, None
129
+
130
+
131
+ @ARCH_REGISTRY.register()
132
+ class GFPGANBilinear(nn.Module):
133
+ """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
134
+
135
+ It is the bilinear version and it does not use the complicated UpFirDnSmooth function that is not friendly for
136
+ deployment. It can be easily converted to the clean version: GFPGANv1Clean.
137
+
138
+
139
+ Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
140
+
141
+ Args:
142
+ out_size (int): The spatial size of outputs.
143
+ num_style_feat (int): Channel number of style features. Default: 512.
144
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
145
+ decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
146
+ fix_decoder (bool): Whether to fix the decoder. Default: True.
147
+
148
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
149
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
150
+ input_is_latent (bool): Whether input is latent style. Default: False.
151
+ different_w (bool): Whether to use different latent w for different layers. Default: False.
152
+ narrow (float): The narrow ratio for channels. Default: 1.
153
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
154
+ """
155
+
156
+ def __init__(
157
+ self,
158
+ out_size,
159
+ num_style_feat=512,
160
+ channel_multiplier=1,
161
+ decoder_load_path=None,
162
+ fix_decoder=True,
163
+ # for stylegan decoder
164
+ num_mlp=8,
165
+ lr_mlp=0.01,
166
+ input_is_latent=False,
167
+ different_w=False,
168
+ narrow=1,
169
+ sft_half=False):
170
+
171
+ super(GFPGANBilinear, self).__init__()
172
+ self.input_is_latent = input_is_latent
173
+ self.different_w = different_w
174
+ self.num_style_feat = num_style_feat
175
+
176
+ unet_narrow = narrow * 0.5 # by default, use a half of input channels
177
+ channels = {
178
+ '4': int(512 * unet_narrow),
179
+ '8': int(512 * unet_narrow),
180
+ '16': int(512 * unet_narrow),
181
+ '32': int(512 * unet_narrow),
182
+ '64': int(256 * channel_multiplier * unet_narrow),
183
+ '128': int(128 * channel_multiplier * unet_narrow),
184
+ '256': int(64 * channel_multiplier * unet_narrow),
185
+ '512': int(32 * channel_multiplier * unet_narrow),
186
+ '1024': int(16 * channel_multiplier * unet_narrow)
187
+ }
188
+
189
+ self.log_size = int(math.log(out_size, 2))
190
+ first_out_size = 2**(int(math.log(out_size, 2)))
191
+
192
+ self.conv_body_first = ConvLayer(3, channels[f'{first_out_size}'], 1, bias=True, activate=True)
193
+
194
+ # downsample
195
+ in_channels = channels[f'{first_out_size}']
196
+ self.conv_body_down = nn.ModuleList()
197
+ for i in range(self.log_size, 2, -1):
198
+ out_channels = channels[f'{2**(i - 1)}']
199
+ self.conv_body_down.append(ResBlock(in_channels, out_channels))
200
+ in_channels = out_channels
201
+
202
+ self.final_conv = ConvLayer(in_channels, channels['4'], 3, bias=True, activate=True)
203
+
204
+ # upsample
205
+ in_channels = channels['4']
206
+ self.conv_body_up = nn.ModuleList()
207
+ for i in range(3, self.log_size + 1):
208
+ out_channels = channels[f'{2**i}']
209
+ self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
210
+ in_channels = out_channels
211
+
212
+ # to RGB
213
+ self.toRGB = nn.ModuleList()
214
+ for i in range(3, self.log_size + 1):
215
+ self.toRGB.append(EqualConv2d(channels[f'{2**i}'], 3, 1, stride=1, padding=0, bias=True, bias_init_val=0))
216
+
217
+ if different_w:
218
+ linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
219
+ else:
220
+ linear_out_channel = num_style_feat
221
+
222
+ self.final_linear = EqualLinear(
223
+ channels['4'] * 4 * 4, linear_out_channel, bias=True, bias_init_val=0, lr_mul=1, activation=None)
224
+
225
+ # the decoder: stylegan2 generator with SFT modulations
226
+ self.stylegan_decoder = StyleGAN2GeneratorBilinearSFT(
227
+ out_size=out_size,
228
+ num_style_feat=num_style_feat,
229
+ num_mlp=num_mlp,
230
+ channel_multiplier=channel_multiplier,
231
+ lr_mlp=lr_mlp,
232
+ narrow=narrow,
233
+ sft_half=sft_half)
234
+
235
+ # load pre-trained stylegan2 model if necessary
236
+ if decoder_load_path:
237
+ self.stylegan_decoder.load_state_dict(
238
+ torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
239
+ # fix decoder without updating params
240
+ if fix_decoder:
241
+ for _, param in self.stylegan_decoder.named_parameters():
242
+ param.requires_grad = False
243
+
244
+ # for SFT modulations (scale and shift)
245
+ self.condition_scale = nn.ModuleList()
246
+ self.condition_shift = nn.ModuleList()
247
+ for i in range(3, self.log_size + 1):
248
+ out_channels = channels[f'{2**i}']
249
+ if sft_half:
250
+ sft_out_channels = out_channels
251
+ else:
252
+ sft_out_channels = out_channels * 2
253
+ self.condition_scale.append(
254
+ nn.Sequential(
255
+ EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
256
+ ScaledLeakyReLU(0.2),
257
+ EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=1)))
258
+ self.condition_shift.append(
259
+ nn.Sequential(
260
+ EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
261
+ ScaledLeakyReLU(0.2),
262
+ EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0)))
263
+
264
+ def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
265
+ """Forward function for GFPGANBilinear.
266
+
267
+ Args:
268
+ x (Tensor): Input images.
269
+ return_latents (bool): Whether to return style latents. Default: False.
270
+ return_rgb (bool): Whether return intermediate rgb images. Default: True.
271
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
272
+ """
273
+ conditions = []
274
+ unet_skips = []
275
+ out_rgbs = []
276
+
277
+ # encoder
278
+ feat = self.conv_body_first(x)
279
+ for i in range(self.log_size - 2):
280
+ feat = self.conv_body_down[i](feat)
281
+ unet_skips.insert(0, feat)
282
+
283
+ feat = self.final_conv(feat)
284
+
285
+ # style code
286
+ style_code = self.final_linear(feat.view(feat.size(0), -1))
287
+ if self.different_w:
288
+ style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
289
+
290
+ # decode
291
+ for i in range(self.log_size - 2):
292
+ # add unet skip
293
+ feat = feat + unet_skips[i]
294
+ # ResUpLayer
295
+ feat = self.conv_body_up[i](feat)
296
+ # generate scale and shift for SFT layers
297
+ scale = self.condition_scale[i](feat)
298
+ conditions.append(scale.clone())
299
+ shift = self.condition_shift[i](feat)
300
+ conditions.append(shift.clone())
301
+ # generate rgb images
302
+ if return_rgb:
303
+ out_rgbs.append(self.toRGB[i](feat))
304
+
305
+ # decoder
306
+ image, _ = self.stylegan_decoder([style_code],
307
+ conditions,
308
+ return_latents=return_latents,
309
+ input_is_latent=self.input_is_latent,
310
+ randomize_noise=randomize_noise)
311
+
312
+ return image, out_rgbs
third_part/GFPGAN/gfpgan/archs/gfpganv1_arch.py ADDED
@@ -0,0 +1,439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.archs.stylegan2_arch import (ConvLayer, EqualConv2d, EqualLinear, ResBlock, ScaledLeakyReLU,
5
+ StyleGAN2Generator)
6
+ from basicsr.ops.fused_act import FusedLeakyReLU
7
+ from basicsr.utils.registry import ARCH_REGISTRY
8
+ from torch import nn
9
+ from torch.nn import functional as F
10
+
11
+
12
+ class StyleGAN2GeneratorSFT(StyleGAN2Generator):
13
+ """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
14
+
15
+ Args:
16
+ out_size (int): The spatial size of outputs.
17
+ num_style_feat (int): Channel number of style features. Default: 512.
18
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
19
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
20
+ resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
21
+ applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
22
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
23
+ narrow (float): The narrow ratio for channels. Default: 1.
24
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
25
+ """
26
+
27
+ def __init__(self,
28
+ out_size,
29
+ num_style_feat=512,
30
+ num_mlp=8,
31
+ channel_multiplier=2,
32
+ resample_kernel=(1, 3, 3, 1),
33
+ lr_mlp=0.01,
34
+ narrow=1,
35
+ sft_half=False):
36
+ super(StyleGAN2GeneratorSFT, self).__init__(
37
+ out_size,
38
+ num_style_feat=num_style_feat,
39
+ num_mlp=num_mlp,
40
+ channel_multiplier=channel_multiplier,
41
+ resample_kernel=resample_kernel,
42
+ lr_mlp=lr_mlp,
43
+ narrow=narrow)
44
+ self.sft_half = sft_half
45
+
46
+ def forward(self,
47
+ styles,
48
+ conditions,
49
+ input_is_latent=False,
50
+ noise=None,
51
+ randomize_noise=True,
52
+ truncation=1,
53
+ truncation_latent=None,
54
+ inject_index=None,
55
+ return_latents=False):
56
+ """Forward function for StyleGAN2GeneratorSFT.
57
+
58
+ Args:
59
+ styles (list[Tensor]): Sample codes of styles.
60
+ conditions (list[Tensor]): SFT conditions to generators.
61
+ input_is_latent (bool): Whether input is latent style. Default: False.
62
+ noise (Tensor | None): Input noise or None. Default: None.
63
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
64
+ truncation (float): The truncation ratio. Default: 1.
65
+ truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
66
+ inject_index (int | None): The injection index for mixing noise. Default: None.
67
+ return_latents (bool): Whether to return style latents. Default: False.
68
+ """
69
+ # style codes -> latents with Style MLP layer
70
+ if not input_is_latent:
71
+ styles = [self.style_mlp(s) for s in styles]
72
+ # noises
73
+ if noise is None:
74
+ if randomize_noise:
75
+ noise = [None] * self.num_layers # for each style conv layer
76
+ else: # use the stored noise
77
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
78
+ # style truncation
79
+ if truncation < 1:
80
+ style_truncation = []
81
+ for style in styles:
82
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
83
+ styles = style_truncation
84
+ # get style latents with injection
85
+ if len(styles) == 1:
86
+ inject_index = self.num_latent
87
+
88
+ if styles[0].ndim < 3:
89
+ # repeat latent code for all the layers
90
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
91
+ else: # used for encoder with different latent code for each layer
92
+ latent = styles[0]
93
+ elif len(styles) == 2: # mixing noises
94
+ if inject_index is None:
95
+ inject_index = random.randint(1, self.num_latent - 1)
96
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
97
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
98
+ latent = torch.cat([latent1, latent2], 1)
99
+
100
+ # main generation
101
+ out = self.constant_input(latent.shape[0])
102
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
103
+ skip = self.to_rgb1(out, latent[:, 1])
104
+
105
+ i = 1
106
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
107
+ noise[2::2], self.to_rgbs):
108
+ out = conv1(out, latent[:, i], noise=noise1)
109
+
110
+ # the conditions may have fewer levels
111
+ if i < len(conditions):
112
+ # SFT part to combine the conditions
113
+ if self.sft_half: # only apply SFT to half of the channels
114
+ out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
115
+ out_sft = out_sft * conditions[i - 1] + conditions[i]
116
+ out = torch.cat([out_same, out_sft], dim=1)
117
+ else: # apply SFT to all the channels
118
+ out = out * conditions[i - 1] + conditions[i]
119
+
120
+ out = conv2(out, latent[:, i + 1], noise=noise2)
121
+ skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
122
+ i += 2
123
+
124
+ image = skip
125
+
126
+ if return_latents:
127
+ return image, latent
128
+ else:
129
+ return image, None
130
+
131
+
132
+ class ConvUpLayer(nn.Module):
133
+ """Convolutional upsampling layer. It uses bilinear upsampler + Conv.
134
+
135
+ Args:
136
+ in_channels (int): Channel number of the input.
137
+ out_channels (int): Channel number of the output.
138
+ kernel_size (int): Size of the convolving kernel.
139
+ stride (int): Stride of the convolution. Default: 1
140
+ padding (int): Zero-padding added to both sides of the input. Default: 0.
141
+ bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``.
142
+ bias_init_val (float): Bias initialized value. Default: 0.
143
+ activate (bool): Whether use activateion. Default: True.
144
+ """
145
+
146
+ def __init__(self,
147
+ in_channels,
148
+ out_channels,
149
+ kernel_size,
150
+ stride=1,
151
+ padding=0,
152
+ bias=True,
153
+ bias_init_val=0,
154
+ activate=True):
155
+ super(ConvUpLayer, self).__init__()
156
+ self.in_channels = in_channels
157
+ self.out_channels = out_channels
158
+ self.kernel_size = kernel_size
159
+ self.stride = stride
160
+ self.padding = padding
161
+ # self.scale is used to scale the convolution weights, which is related to the common initializations.
162
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
163
+
164
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
165
+
166
+ if bias and not activate:
167
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
168
+ else:
169
+ self.register_parameter('bias', None)
170
+
171
+ # activation
172
+ if activate:
173
+ if bias:
174
+ self.activation = FusedLeakyReLU(out_channels)
175
+ else:
176
+ self.activation = ScaledLeakyReLU(0.2)
177
+ else:
178
+ self.activation = None
179
+
180
+ def forward(self, x):
181
+ # bilinear upsample
182
+ out = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
183
+ # conv
184
+ out = F.conv2d(
185
+ out,
186
+ self.weight * self.scale,
187
+ bias=self.bias,
188
+ stride=self.stride,
189
+ padding=self.padding,
190
+ )
191
+ # activation
192
+ if self.activation is not None:
193
+ out = self.activation(out)
194
+ return out
195
+
196
+
197
+ class ResUpBlock(nn.Module):
198
+ """Residual block with upsampling.
199
+
200
+ Args:
201
+ in_channels (int): Channel number of the input.
202
+ out_channels (int): Channel number of the output.
203
+ """
204
+
205
+ def __init__(self, in_channels, out_channels):
206
+ super(ResUpBlock, self).__init__()
207
+
208
+ self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
209
+ self.conv2 = ConvUpLayer(in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True)
210
+ self.skip = ConvUpLayer(in_channels, out_channels, 1, bias=False, activate=False)
211
+
212
+ def forward(self, x):
213
+ out = self.conv1(x)
214
+ out = self.conv2(out)
215
+ skip = self.skip(x)
216
+ out = (out + skip) / math.sqrt(2)
217
+ return out
218
+
219
+
220
+ @ARCH_REGISTRY.register()
221
+ class GFPGANv1(nn.Module):
222
+ """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
223
+
224
+ Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
225
+
226
+ Args:
227
+ out_size (int): The spatial size of outputs.
228
+ num_style_feat (int): Channel number of style features. Default: 512.
229
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
230
+ resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
231
+ applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
232
+ decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
233
+ fix_decoder (bool): Whether to fix the decoder. Default: True.
234
+
235
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
236
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
237
+ input_is_latent (bool): Whether input is latent style. Default: False.
238
+ different_w (bool): Whether to use different latent w for different layers. Default: False.
239
+ narrow (float): The narrow ratio for channels. Default: 1.
240
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
241
+ """
242
+
243
+ def __init__(
244
+ self,
245
+ out_size,
246
+ num_style_feat=512,
247
+ channel_multiplier=1,
248
+ resample_kernel=(1, 3, 3, 1),
249
+ decoder_load_path=None,
250
+ fix_decoder=True,
251
+ # for stylegan decoder
252
+ num_mlp=8,
253
+ lr_mlp=0.01,
254
+ input_is_latent=False,
255
+ different_w=False,
256
+ narrow=1,
257
+ sft_half=False):
258
+
259
+ super(GFPGANv1, self).__init__()
260
+ self.input_is_latent = input_is_latent
261
+ self.different_w = different_w
262
+ self.num_style_feat = num_style_feat
263
+
264
+ unet_narrow = narrow * 0.5 # by default, use a half of input channels
265
+ channels = {
266
+ '4': int(512 * unet_narrow),
267
+ '8': int(512 * unet_narrow),
268
+ '16': int(512 * unet_narrow),
269
+ '32': int(512 * unet_narrow),
270
+ '64': int(256 * channel_multiplier * unet_narrow),
271
+ '128': int(128 * channel_multiplier * unet_narrow),
272
+ '256': int(64 * channel_multiplier * unet_narrow),
273
+ '512': int(32 * channel_multiplier * unet_narrow),
274
+ '1024': int(16 * channel_multiplier * unet_narrow)
275
+ }
276
+
277
+ self.log_size = int(math.log(out_size, 2))
278
+ first_out_size = 2**(int(math.log(out_size, 2)))
279
+
280
+ self.conv_body_first = ConvLayer(3, channels[f'{first_out_size}'], 1, bias=True, activate=True)
281
+
282
+ # downsample
283
+ in_channels = channels[f'{first_out_size}']
284
+ self.conv_body_down = nn.ModuleList()
285
+ for i in range(self.log_size, 2, -1):
286
+ out_channels = channels[f'{2**(i - 1)}']
287
+ self.conv_body_down.append(ResBlock(in_channels, out_channels, resample_kernel))
288
+ in_channels = out_channels
289
+
290
+ self.final_conv = ConvLayer(in_channels, channels['4'], 3, bias=True, activate=True)
291
+
292
+ # upsample
293
+ in_channels = channels['4']
294
+ self.conv_body_up = nn.ModuleList()
295
+ for i in range(3, self.log_size + 1):
296
+ out_channels = channels[f'{2**i}']
297
+ self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
298
+ in_channels = out_channels
299
+
300
+ # to RGB
301
+ self.toRGB = nn.ModuleList()
302
+ for i in range(3, self.log_size + 1):
303
+ self.toRGB.append(EqualConv2d(channels[f'{2**i}'], 3, 1, stride=1, padding=0, bias=True, bias_init_val=0))
304
+
305
+ if different_w:
306
+ linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
307
+ else:
308
+ linear_out_channel = num_style_feat
309
+
310
+ self.final_linear = EqualLinear(
311
+ channels['4'] * 4 * 4, linear_out_channel, bias=True, bias_init_val=0, lr_mul=1, activation=None)
312
+
313
+ # the decoder: stylegan2 generator with SFT modulations
314
+ self.stylegan_decoder = StyleGAN2GeneratorSFT(
315
+ out_size=out_size,
316
+ num_style_feat=num_style_feat,
317
+ num_mlp=num_mlp,
318
+ channel_multiplier=channel_multiplier,
319
+ resample_kernel=resample_kernel,
320
+ lr_mlp=lr_mlp,
321
+ narrow=narrow,
322
+ sft_half=sft_half)
323
+
324
+ # load pre-trained stylegan2 model if necessary
325
+ if decoder_load_path:
326
+ self.stylegan_decoder.load_state_dict(
327
+ torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
328
+ # fix decoder without updating params
329
+ if fix_decoder:
330
+ for _, param in self.stylegan_decoder.named_parameters():
331
+ param.requires_grad = False
332
+
333
+ # for SFT modulations (scale and shift)
334
+ self.condition_scale = nn.ModuleList()
335
+ self.condition_shift = nn.ModuleList()
336
+ for i in range(3, self.log_size + 1):
337
+ out_channels = channels[f'{2**i}']
338
+ if sft_half:
339
+ sft_out_channels = out_channels
340
+ else:
341
+ sft_out_channels = out_channels * 2
342
+ self.condition_scale.append(
343
+ nn.Sequential(
344
+ EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
345
+ ScaledLeakyReLU(0.2),
346
+ EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=1)))
347
+ self.condition_shift.append(
348
+ nn.Sequential(
349
+ EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
350
+ ScaledLeakyReLU(0.2),
351
+ EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0)))
352
+
353
+ def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
354
+ """Forward function for GFPGANv1.
355
+
356
+ Args:
357
+ x (Tensor): Input images.
358
+ return_latents (bool): Whether to return style latents. Default: False.
359
+ return_rgb (bool): Whether return intermediate rgb images. Default: True.
360
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
361
+ """
362
+ conditions = []
363
+ unet_skips = []
364
+ out_rgbs = []
365
+
366
+ # encoder
367
+ feat = self.conv_body_first(x)
368
+ for i in range(self.log_size - 2):
369
+ feat = self.conv_body_down[i](feat)
370
+ unet_skips.insert(0, feat)
371
+
372
+ feat = self.final_conv(feat)
373
+
374
+ # style code
375
+ style_code = self.final_linear(feat.view(feat.size(0), -1))
376
+ if self.different_w:
377
+ style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
378
+
379
+ # decode
380
+ for i in range(self.log_size - 2):
381
+ # add unet skip
382
+ feat = feat + unet_skips[i]
383
+ # ResUpLayer
384
+ feat = self.conv_body_up[i](feat)
385
+ # generate scale and shift for SFT layers
386
+ scale = self.condition_scale[i](feat)
387
+ conditions.append(scale.clone())
388
+ shift = self.condition_shift[i](feat)
389
+ conditions.append(shift.clone())
390
+ # generate rgb images
391
+ if return_rgb:
392
+ out_rgbs.append(self.toRGB[i](feat))
393
+
394
+ # decoder
395
+ image, _ = self.stylegan_decoder([style_code],
396
+ conditions,
397
+ return_latents=return_latents,
398
+ input_is_latent=self.input_is_latent,
399
+ randomize_noise=randomize_noise)
400
+
401
+ return image, out_rgbs
402
+
403
+
404
+ @ARCH_REGISTRY.register()
405
+ class FacialComponentDiscriminator(nn.Module):
406
+ """Facial component (eyes, mouth, noise) discriminator used in GFPGAN.
407
+ """
408
+
409
+ def __init__(self):
410
+ super(FacialComponentDiscriminator, self).__init__()
411
+ # It now uses a VGG-style architectrue with fixed model size
412
+ self.conv1 = ConvLayer(3, 64, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
413
+ self.conv2 = ConvLayer(64, 128, 3, downsample=True, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
414
+ self.conv3 = ConvLayer(128, 128, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
415
+ self.conv4 = ConvLayer(128, 256, 3, downsample=True, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
416
+ self.conv5 = ConvLayer(256, 256, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
417
+ self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False)
418
+
419
+ def forward(self, x, return_feats=False):
420
+ """Forward function for FacialComponentDiscriminator.
421
+
422
+ Args:
423
+ x (Tensor): Input images.
424
+ return_feats (bool): Whether to return intermediate features. Default: False.
425
+ """
426
+ feat = self.conv1(x)
427
+ feat = self.conv3(self.conv2(feat))
428
+ rlt_feats = []
429
+ if return_feats:
430
+ rlt_feats.append(feat.clone())
431
+ feat = self.conv5(self.conv4(feat))
432
+ if return_feats:
433
+ rlt_feats.append(feat.clone())
434
+ out = self.final_conv(feat)
435
+
436
+ if return_feats:
437
+ return out, rlt_feats
438
+ else:
439
+ return out, None
third_part/GFPGAN/gfpgan/archs/gfpganv1_clean_arch.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.utils.registry import ARCH_REGISTRY
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from .stylegan2_clean_arch import StyleGAN2GeneratorClean
9
+
10
+
11
+ class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean):
12
+ """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
13
+
14
+ It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
15
+
16
+ Args:
17
+ out_size (int): The spatial size of outputs.
18
+ num_style_feat (int): Channel number of style features. Default: 512.
19
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
20
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
21
+ narrow (float): The narrow ratio for channels. Default: 1.
22
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
23
+ """
24
+
25
+ def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1, sft_half=False):
26
+ super(StyleGAN2GeneratorCSFT, self).__init__(
27
+ out_size,
28
+ num_style_feat=num_style_feat,
29
+ num_mlp=num_mlp,
30
+ channel_multiplier=channel_multiplier,
31
+ narrow=narrow)
32
+ self.sft_half = sft_half
33
+
34
+ def forward(self,
35
+ styles,
36
+ conditions,
37
+ input_is_latent=False,
38
+ noise=None,
39
+ randomize_noise=True,
40
+ truncation=1,
41
+ truncation_latent=None,
42
+ inject_index=None,
43
+ return_latents=False):
44
+ """Forward function for StyleGAN2GeneratorCSFT.
45
+
46
+ Args:
47
+ styles (list[Tensor]): Sample codes of styles.
48
+ conditions (list[Tensor]): SFT conditions to generators.
49
+ input_is_latent (bool): Whether input is latent style. Default: False.
50
+ noise (Tensor | None): Input noise or None. Default: None.
51
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
52
+ truncation (float): The truncation ratio. Default: 1.
53
+ truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
54
+ inject_index (int | None): The injection index for mixing noise. Default: None.
55
+ return_latents (bool): Whether to return style latents. Default: False.
56
+ """
57
+ # style codes -> latents with Style MLP layer
58
+ if not input_is_latent:
59
+ styles = [self.style_mlp(s) for s in styles]
60
+ # noises
61
+ if noise is None:
62
+ if randomize_noise:
63
+ noise = [None] * self.num_layers # for each style conv layer
64
+ else: # use the stored noise
65
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
66
+ # style truncation
67
+ if truncation < 1:
68
+ style_truncation = []
69
+ for style in styles:
70
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
71
+ styles = style_truncation
72
+ # get style latents with injection
73
+ if len(styles) == 1:
74
+ inject_index = self.num_latent
75
+
76
+ if styles[0].ndim < 3:
77
+ # repeat latent code for all the layers
78
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
79
+ else: # used for encoder with different latent code for each layer
80
+ latent = styles[0]
81
+ elif len(styles) == 2: # mixing noises
82
+ if inject_index is None:
83
+ inject_index = random.randint(1, self.num_latent - 1)
84
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
85
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
86
+ latent = torch.cat([latent1, latent2], 1)
87
+
88
+ # main generation
89
+ out = self.constant_input(latent.shape[0])
90
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
91
+ skip = self.to_rgb1(out, latent[:, 1])
92
+
93
+ i = 1
94
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
95
+ noise[2::2], self.to_rgbs):
96
+ out = conv1(out, latent[:, i], noise=noise1)
97
+
98
+ # the conditions may have fewer levels
99
+ if i < len(conditions):
100
+ # SFT part to combine the conditions
101
+ if self.sft_half: # only apply SFT to half of the channels
102
+ out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
103
+ out_sft = out_sft * conditions[i - 1] + conditions[i]
104
+ out = torch.cat([out_same, out_sft], dim=1)
105
+ else: # apply SFT to all the channels
106
+ out = out * conditions[i - 1] + conditions[i]
107
+
108
+ out = conv2(out, latent[:, i + 1], noise=noise2)
109
+ skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
110
+ i += 2
111
+
112
+ image = skip
113
+
114
+ if return_latents:
115
+ return image, latent
116
+ else:
117
+ return image, None
118
+
119
+
120
+ class ResBlock(nn.Module):
121
+ """Residual block with bilinear upsampling/downsampling.
122
+
123
+ Args:
124
+ in_channels (int): Channel number of the input.
125
+ out_channels (int): Channel number of the output.
126
+ mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
127
+ """
128
+
129
+ def __init__(self, in_channels, out_channels, mode='down'):
130
+ super(ResBlock, self).__init__()
131
+
132
+ self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
133
+ self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
134
+ self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
135
+ if mode == 'down':
136
+ self.scale_factor = 0.5
137
+ elif mode == 'up':
138
+ self.scale_factor = 2
139
+
140
+ def forward(self, x):
141
+ out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
142
+ # upsample/downsample
143
+ out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
144
+ out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
145
+ # skip
146
+ x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
147
+ skip = self.skip(x)
148
+ out = out + skip
149
+ return out
150
+
151
+
152
+ @ARCH_REGISTRY.register()
153
+ class GFPGANv1Clean(nn.Module):
154
+ """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
155
+
156
+ It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
157
+
158
+ Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
159
+
160
+ Args:
161
+ out_size (int): The spatial size of outputs.
162
+ num_style_feat (int): Channel number of style features. Default: 512.
163
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
164
+ decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
165
+ fix_decoder (bool): Whether to fix the decoder. Default: True.
166
+
167
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
168
+ input_is_latent (bool): Whether input is latent style. Default: False.
169
+ different_w (bool): Whether to use different latent w for different layers. Default: False.
170
+ narrow (float): The narrow ratio for channels. Default: 1.
171
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
172
+ """
173
+
174
+ def __init__(
175
+ self,
176
+ out_size,
177
+ num_style_feat=512,
178
+ channel_multiplier=1,
179
+ decoder_load_path=None,
180
+ fix_decoder=True,
181
+ # for stylegan decoder
182
+ num_mlp=8,
183
+ input_is_latent=False,
184
+ different_w=False,
185
+ narrow=1,
186
+ sft_half=False):
187
+
188
+ super(GFPGANv1Clean, self).__init__()
189
+ self.input_is_latent = input_is_latent
190
+ self.different_w = different_w
191
+ self.num_style_feat = num_style_feat
192
+
193
+ unet_narrow = narrow * 0.5 # by default, use a half of input channels
194
+ channels = {
195
+ '4': int(512 * unet_narrow),
196
+ '8': int(512 * unet_narrow),
197
+ '16': int(512 * unet_narrow),
198
+ '32': int(512 * unet_narrow),
199
+ '64': int(256 * channel_multiplier * unet_narrow),
200
+ '128': int(128 * channel_multiplier * unet_narrow),
201
+ '256': int(64 * channel_multiplier * unet_narrow),
202
+ '512': int(32 * channel_multiplier * unet_narrow),
203
+ '1024': int(16 * channel_multiplier * unet_narrow)
204
+ }
205
+
206
+ self.log_size = int(math.log(out_size, 2))
207
+ first_out_size = 2**(int(math.log(out_size, 2)))
208
+
209
+ self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1)
210
+
211
+ # downsample
212
+ in_channels = channels[f'{first_out_size}']
213
+ self.conv_body_down = nn.ModuleList()
214
+ for i in range(self.log_size, 2, -1):
215
+ out_channels = channels[f'{2**(i - 1)}']
216
+ self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down'))
217
+ in_channels = out_channels
218
+
219
+ self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1)
220
+
221
+ # upsample
222
+ in_channels = channels['4']
223
+ self.conv_body_up = nn.ModuleList()
224
+ for i in range(3, self.log_size + 1):
225
+ out_channels = channels[f'{2**i}']
226
+ self.conv_body_up.append(ResBlock(in_channels, out_channels, mode='up'))
227
+ in_channels = out_channels
228
+
229
+ # to RGB
230
+ self.toRGB = nn.ModuleList()
231
+ for i in range(3, self.log_size + 1):
232
+ self.toRGB.append(nn.Conv2d(channels[f'{2**i}'], 3, 1))
233
+
234
+ if different_w:
235
+ linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
236
+ else:
237
+ linear_out_channel = num_style_feat
238
+
239
+ self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel)
240
+
241
+ # the decoder: stylegan2 generator with SFT modulations
242
+ self.stylegan_decoder = StyleGAN2GeneratorCSFT(
243
+ out_size=out_size,
244
+ num_style_feat=num_style_feat,
245
+ num_mlp=num_mlp,
246
+ channel_multiplier=channel_multiplier,
247
+ narrow=narrow,
248
+ sft_half=sft_half)
249
+
250
+ # load pre-trained stylegan2 model if necessary
251
+ if decoder_load_path:
252
+ self.stylegan_decoder.load_state_dict(
253
+ torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
254
+ # fix decoder without updating params
255
+ if fix_decoder:
256
+ for _, param in self.stylegan_decoder.named_parameters():
257
+ param.requires_grad = False
258
+
259
+ # for SFT modulations (scale and shift)
260
+ self.condition_scale = nn.ModuleList()
261
+ self.condition_shift = nn.ModuleList()
262
+ for i in range(3, self.log_size + 1):
263
+ out_channels = channels[f'{2**i}']
264
+ if sft_half:
265
+ sft_out_channels = out_channels
266
+ else:
267
+ sft_out_channels = out_channels * 2
268
+ self.condition_scale.append(
269
+ nn.Sequential(
270
+ nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
271
+ nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
272
+ self.condition_shift.append(
273
+ nn.Sequential(
274
+ nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
275
+ nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
276
+
277
+ def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
278
+ """Forward function for GFPGANv1Clean.
279
+
280
+ Args:
281
+ x (Tensor): Input images.
282
+ return_latents (bool): Whether to return style latents. Default: False.
283
+ return_rgb (bool): Whether return intermediate rgb images. Default: True.
284
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
285
+ """
286
+ conditions = []
287
+ unet_skips = []
288
+ out_rgbs = []
289
+
290
+ # encoder
291
+ feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
292
+ for i in range(self.log_size - 2):
293
+ feat = self.conv_body_down[i](feat)
294
+ unet_skips.insert(0, feat)
295
+ feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
296
+
297
+ # style code
298
+ style_code = self.final_linear(feat.view(feat.size(0), -1))
299
+ if self.different_w:
300
+ style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
301
+
302
+ # decode
303
+ for i in range(self.log_size - 2):
304
+ # add unet skip
305
+ feat = feat + unet_skips[i]
306
+ # ResUpLayer
307
+ feat = self.conv_body_up[i](feat)
308
+ # generate scale and shift for SFT layers
309
+ scale = self.condition_scale[i](feat)
310
+ conditions.append(scale.clone())
311
+ shift = self.condition_shift[i](feat)
312
+ conditions.append(shift.clone())
313
+ # generate rgb images
314
+ if return_rgb:
315
+ out_rgbs.append(self.toRGB[i](feat))
316
+
317
+ # decoder
318
+ image, _ = self.stylegan_decoder([style_code],
319
+ conditions,
320
+ return_latents=return_latents,
321
+ input_is_latent=self.input_is_latent,
322
+ randomize_noise=randomize_noise)
323
+
324
+ return image, out_rgbs
third_part/GFPGAN/gfpgan/archs/stylegan2_bilinear_arch.py ADDED
@@ -0,0 +1,613 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+
10
+ class NormStyleCode(nn.Module):
11
+
12
+ def forward(self, x):
13
+ """Normalize the style codes.
14
+
15
+ Args:
16
+ x (Tensor): Style codes with shape (b, c).
17
+
18
+ Returns:
19
+ Tensor: Normalized tensor.
20
+ """
21
+ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
22
+
23
+
24
+ class EqualLinear(nn.Module):
25
+ """Equalized Linear as StyleGAN2.
26
+
27
+ Args:
28
+ in_channels (int): Size of each sample.
29
+ out_channels (int): Size of each output sample.
30
+ bias (bool): If set to ``False``, the layer will not learn an additive
31
+ bias. Default: ``True``.
32
+ bias_init_val (float): Bias initialized value. Default: 0.
33
+ lr_mul (float): Learning rate multiplier. Default: 1.
34
+ activation (None | str): The activation after ``linear`` operation.
35
+ Supported: 'fused_lrelu', None. Default: None.
36
+ """
37
+
38
+ def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None):
39
+ super(EqualLinear, self).__init__()
40
+ self.in_channels = in_channels
41
+ self.out_channels = out_channels
42
+ self.lr_mul = lr_mul
43
+ self.activation = activation
44
+ if self.activation not in ['fused_lrelu', None]:
45
+ raise ValueError(f'Wrong activation value in EqualLinear: {activation}'
46
+ "Supported ones are: ['fused_lrelu', None].")
47
+ self.scale = (1 / math.sqrt(in_channels)) * lr_mul
48
+
49
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
50
+ if bias:
51
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
52
+ else:
53
+ self.register_parameter('bias', None)
54
+
55
+ def forward(self, x):
56
+ if self.bias is None:
57
+ bias = None
58
+ else:
59
+ bias = self.bias * self.lr_mul
60
+ if self.activation == 'fused_lrelu':
61
+ out = F.linear(x, self.weight * self.scale)
62
+ out = fused_leaky_relu(out, bias)
63
+ else:
64
+ out = F.linear(x, self.weight * self.scale, bias=bias)
65
+ return out
66
+
67
+ def __repr__(self):
68
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
69
+ f'out_channels={self.out_channels}, bias={self.bias is not None})')
70
+
71
+
72
+ class ModulatedConv2d(nn.Module):
73
+ """Modulated Conv2d used in StyleGAN2.
74
+
75
+ There is no bias in ModulatedConv2d.
76
+
77
+ Args:
78
+ in_channels (int): Channel number of the input.
79
+ out_channels (int): Channel number of the output.
80
+ kernel_size (int): Size of the convolving kernel.
81
+ num_style_feat (int): Channel number of style features.
82
+ demodulate (bool): Whether to demodulate in the conv layer.
83
+ Default: True.
84
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
85
+ Default: None.
86
+ eps (float): A value added to the denominator for numerical stability.
87
+ Default: 1e-8.
88
+ """
89
+
90
+ def __init__(self,
91
+ in_channels,
92
+ out_channels,
93
+ kernel_size,
94
+ num_style_feat,
95
+ demodulate=True,
96
+ sample_mode=None,
97
+ eps=1e-8,
98
+ interpolation_mode='bilinear'):
99
+ super(ModulatedConv2d, self).__init__()
100
+ self.in_channels = in_channels
101
+ self.out_channels = out_channels
102
+ self.kernel_size = kernel_size
103
+ self.demodulate = demodulate
104
+ self.sample_mode = sample_mode
105
+ self.eps = eps
106
+ self.interpolation_mode = interpolation_mode
107
+ if self.interpolation_mode == 'nearest':
108
+ self.align_corners = None
109
+ else:
110
+ self.align_corners = False
111
+
112
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
113
+ # modulation inside each modulated conv
114
+ self.modulation = EqualLinear(
115
+ num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None)
116
+
117
+ self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size))
118
+ self.padding = kernel_size // 2
119
+
120
+ def forward(self, x, style):
121
+ """Forward function.
122
+
123
+ Args:
124
+ x (Tensor): Tensor with shape (b, c, h, w).
125
+ style (Tensor): Tensor with shape (b, num_style_feat).
126
+
127
+ Returns:
128
+ Tensor: Modulated tensor after convolution.
129
+ """
130
+ b, c, h, w = x.shape # c = c_in
131
+ # weight modulation
132
+ style = self.modulation(style).view(b, 1, c, 1, 1)
133
+ # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
134
+ weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
135
+
136
+ if self.demodulate:
137
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
138
+ weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
139
+
140
+ weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
141
+
142
+ if self.sample_mode == 'upsample':
143
+ x = F.interpolate(x, scale_factor=2, mode=self.interpolation_mode, align_corners=self.align_corners)
144
+ elif self.sample_mode == 'downsample':
145
+ x = F.interpolate(x, scale_factor=0.5, mode=self.interpolation_mode, align_corners=self.align_corners)
146
+
147
+ b, c, h, w = x.shape
148
+ x = x.view(1, b * c, h, w)
149
+ # weight: (b*c_out, c_in, k, k), groups=b
150
+ out = F.conv2d(x, weight, padding=self.padding, groups=b)
151
+ out = out.view(b, self.out_channels, *out.shape[2:4])
152
+
153
+ return out
154
+
155
+ def __repr__(self):
156
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
157
+ f'out_channels={self.out_channels}, '
158
+ f'kernel_size={self.kernel_size}, '
159
+ f'demodulate={self.demodulate}, sample_mode={self.sample_mode})')
160
+
161
+
162
+ class StyleConv(nn.Module):
163
+ """Style conv.
164
+
165
+ Args:
166
+ in_channels (int): Channel number of the input.
167
+ out_channels (int): Channel number of the output.
168
+ kernel_size (int): Size of the convolving kernel.
169
+ num_style_feat (int): Channel number of style features.
170
+ demodulate (bool): Whether demodulate in the conv layer. Default: True.
171
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
172
+ Default: None.
173
+ """
174
+
175
+ def __init__(self,
176
+ in_channels,
177
+ out_channels,
178
+ kernel_size,
179
+ num_style_feat,
180
+ demodulate=True,
181
+ sample_mode=None,
182
+ interpolation_mode='bilinear'):
183
+ super(StyleConv, self).__init__()
184
+ self.modulated_conv = ModulatedConv2d(
185
+ in_channels,
186
+ out_channels,
187
+ kernel_size,
188
+ num_style_feat,
189
+ demodulate=demodulate,
190
+ sample_mode=sample_mode,
191
+ interpolation_mode=interpolation_mode)
192
+ self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
193
+ self.activate = FusedLeakyReLU(out_channels)
194
+
195
+ def forward(self, x, style, noise=None):
196
+ # modulate
197
+ out = self.modulated_conv(x, style)
198
+ # noise injection
199
+ if noise is None:
200
+ b, _, h, w = out.shape
201
+ noise = out.new_empty(b, 1, h, w).normal_()
202
+ out = out + self.weight * noise
203
+ # activation (with bias)
204
+ out = self.activate(out)
205
+ return out
206
+
207
+
208
+ class ToRGB(nn.Module):
209
+ """To RGB from features.
210
+
211
+ Args:
212
+ in_channels (int): Channel number of input.
213
+ num_style_feat (int): Channel number of style features.
214
+ upsample (bool): Whether to upsample. Default: True.
215
+ """
216
+
217
+ def __init__(self, in_channels, num_style_feat, upsample=True, interpolation_mode='bilinear'):
218
+ super(ToRGB, self).__init__()
219
+ self.upsample = upsample
220
+ self.interpolation_mode = interpolation_mode
221
+ if self.interpolation_mode == 'nearest':
222
+ self.align_corners = None
223
+ else:
224
+ self.align_corners = False
225
+ self.modulated_conv = ModulatedConv2d(
226
+ in_channels,
227
+ 3,
228
+ kernel_size=1,
229
+ num_style_feat=num_style_feat,
230
+ demodulate=False,
231
+ sample_mode=None,
232
+ interpolation_mode=interpolation_mode)
233
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
234
+
235
+ def forward(self, x, style, skip=None):
236
+ """Forward function.
237
+
238
+ Args:
239
+ x (Tensor): Feature tensor with shape (b, c, h, w).
240
+ style (Tensor): Tensor with shape (b, num_style_feat).
241
+ skip (Tensor): Base/skip tensor. Default: None.
242
+
243
+ Returns:
244
+ Tensor: RGB images.
245
+ """
246
+ out = self.modulated_conv(x, style)
247
+ out = out + self.bias
248
+ if skip is not None:
249
+ if self.upsample:
250
+ skip = F.interpolate(
251
+ skip, scale_factor=2, mode=self.interpolation_mode, align_corners=self.align_corners)
252
+ out = out + skip
253
+ return out
254
+
255
+
256
+ class ConstantInput(nn.Module):
257
+ """Constant input.
258
+
259
+ Args:
260
+ num_channel (int): Channel number of constant input.
261
+ size (int): Spatial size of constant input.
262
+ """
263
+
264
+ def __init__(self, num_channel, size):
265
+ super(ConstantInput, self).__init__()
266
+ self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
267
+
268
+ def forward(self, batch):
269
+ out = self.weight.repeat(batch, 1, 1, 1)
270
+ return out
271
+
272
+
273
+ @ARCH_REGISTRY.register()
274
+ class StyleGAN2GeneratorBilinear(nn.Module):
275
+ """StyleGAN2 Generator.
276
+
277
+ Args:
278
+ out_size (int): The spatial size of outputs.
279
+ num_style_feat (int): Channel number of style features. Default: 512.
280
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
281
+ channel_multiplier (int): Channel multiplier for large networks of
282
+ StyleGAN2. Default: 2.
283
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
284
+ narrow (float): Narrow ratio for channels. Default: 1.0.
285
+ """
286
+
287
+ def __init__(self,
288
+ out_size,
289
+ num_style_feat=512,
290
+ num_mlp=8,
291
+ channel_multiplier=2,
292
+ lr_mlp=0.01,
293
+ narrow=1,
294
+ interpolation_mode='bilinear'):
295
+ super(StyleGAN2GeneratorBilinear, self).__init__()
296
+ # Style MLP layers
297
+ self.num_style_feat = num_style_feat
298
+ style_mlp_layers = [NormStyleCode()]
299
+ for i in range(num_mlp):
300
+ style_mlp_layers.append(
301
+ EqualLinear(
302
+ num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp,
303
+ activation='fused_lrelu'))
304
+ self.style_mlp = nn.Sequential(*style_mlp_layers)
305
+
306
+ channels = {
307
+ '4': int(512 * narrow),
308
+ '8': int(512 * narrow),
309
+ '16': int(512 * narrow),
310
+ '32': int(512 * narrow),
311
+ '64': int(256 * channel_multiplier * narrow),
312
+ '128': int(128 * channel_multiplier * narrow),
313
+ '256': int(64 * channel_multiplier * narrow),
314
+ '512': int(32 * channel_multiplier * narrow),
315
+ '1024': int(16 * channel_multiplier * narrow)
316
+ }
317
+ self.channels = channels
318
+
319
+ self.constant_input = ConstantInput(channels['4'], size=4)
320
+ self.style_conv1 = StyleConv(
321
+ channels['4'],
322
+ channels['4'],
323
+ kernel_size=3,
324
+ num_style_feat=num_style_feat,
325
+ demodulate=True,
326
+ sample_mode=None,
327
+ interpolation_mode=interpolation_mode)
328
+ self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, interpolation_mode=interpolation_mode)
329
+
330
+ self.log_size = int(math.log(out_size, 2))
331
+ self.num_layers = (self.log_size - 2) * 2 + 1
332
+ self.num_latent = self.log_size * 2 - 2
333
+
334
+ self.style_convs = nn.ModuleList()
335
+ self.to_rgbs = nn.ModuleList()
336
+ self.noises = nn.Module()
337
+
338
+ in_channels = channels['4']
339
+ # noise
340
+ for layer_idx in range(self.num_layers):
341
+ resolution = 2**((layer_idx + 5) // 2)
342
+ shape = [1, 1, resolution, resolution]
343
+ self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
344
+ # style convs and to_rgbs
345
+ for i in range(3, self.log_size + 1):
346
+ out_channels = channels[f'{2**i}']
347
+ self.style_convs.append(
348
+ StyleConv(
349
+ in_channels,
350
+ out_channels,
351
+ kernel_size=3,
352
+ num_style_feat=num_style_feat,
353
+ demodulate=True,
354
+ sample_mode='upsample',
355
+ interpolation_mode=interpolation_mode))
356
+ self.style_convs.append(
357
+ StyleConv(
358
+ out_channels,
359
+ out_channels,
360
+ kernel_size=3,
361
+ num_style_feat=num_style_feat,
362
+ demodulate=True,
363
+ sample_mode=None,
364
+ interpolation_mode=interpolation_mode))
365
+ self.to_rgbs.append(
366
+ ToRGB(out_channels, num_style_feat, upsample=True, interpolation_mode=interpolation_mode))
367
+ in_channels = out_channels
368
+
369
+ def make_noise(self):
370
+ """Make noise for noise injection."""
371
+ device = self.constant_input.weight.device
372
+ noises = [torch.randn(1, 1, 4, 4, device=device)]
373
+
374
+ for i in range(3, self.log_size + 1):
375
+ for _ in range(2):
376
+ noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
377
+
378
+ return noises
379
+
380
+ def get_latent(self, x):
381
+ return self.style_mlp(x)
382
+
383
+ def mean_latent(self, num_latent):
384
+ latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
385
+ latent = self.style_mlp(latent_in).mean(0, keepdim=True)
386
+ return latent
387
+
388
+ def forward(self,
389
+ styles,
390
+ input_is_latent=False,
391
+ noise=None,
392
+ randomize_noise=True,
393
+ truncation=1,
394
+ truncation_latent=None,
395
+ inject_index=None,
396
+ return_latents=False):
397
+ """Forward function for StyleGAN2Generator.
398
+
399
+ Args:
400
+ styles (list[Tensor]): Sample codes of styles.
401
+ input_is_latent (bool): Whether input is latent style.
402
+ Default: False.
403
+ noise (Tensor | None): Input noise or None. Default: None.
404
+ randomize_noise (bool): Randomize noise, used when 'noise' is
405
+ False. Default: True.
406
+ truncation (float): TODO. Default: 1.
407
+ truncation_latent (Tensor | None): TODO. Default: None.
408
+ inject_index (int | None): The injection index for mixing noise.
409
+ Default: None.
410
+ return_latents (bool): Whether to return style latents.
411
+ Default: False.
412
+ """
413
+ # style codes -> latents with Style MLP layer
414
+ if not input_is_latent:
415
+ styles = [self.style_mlp(s) for s in styles]
416
+ # noises
417
+ if noise is None:
418
+ if randomize_noise:
419
+ noise = [None] * self.num_layers # for each style conv layer
420
+ else: # use the stored noise
421
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
422
+ # style truncation
423
+ if truncation < 1:
424
+ style_truncation = []
425
+ for style in styles:
426
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
427
+ styles = style_truncation
428
+ # get style latent with injection
429
+ if len(styles) == 1:
430
+ inject_index = self.num_latent
431
+
432
+ if styles[0].ndim < 3:
433
+ # repeat latent code for all the layers
434
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
435
+ else: # used for encoder with different latent code for each layer
436
+ latent = styles[0]
437
+ elif len(styles) == 2: # mixing noises
438
+ if inject_index is None:
439
+ inject_index = random.randint(1, self.num_latent - 1)
440
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
441
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
442
+ latent = torch.cat([latent1, latent2], 1)
443
+
444
+ # main generation
445
+ out = self.constant_input(latent.shape[0])
446
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
447
+ skip = self.to_rgb1(out, latent[:, 1])
448
+
449
+ i = 1
450
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
451
+ noise[2::2], self.to_rgbs):
452
+ out = conv1(out, latent[:, i], noise=noise1)
453
+ out = conv2(out, latent[:, i + 1], noise=noise2)
454
+ skip = to_rgb(out, latent[:, i + 2], skip)
455
+ i += 2
456
+
457
+ image = skip
458
+
459
+ if return_latents:
460
+ return image, latent
461
+ else:
462
+ return image, None
463
+
464
+
465
+ class ScaledLeakyReLU(nn.Module):
466
+ """Scaled LeakyReLU.
467
+
468
+ Args:
469
+ negative_slope (float): Negative slope. Default: 0.2.
470
+ """
471
+
472
+ def __init__(self, negative_slope=0.2):
473
+ super(ScaledLeakyReLU, self).__init__()
474
+ self.negative_slope = negative_slope
475
+
476
+ def forward(self, x):
477
+ out = F.leaky_relu(x, negative_slope=self.negative_slope)
478
+ return out * math.sqrt(2)
479
+
480
+
481
+ class EqualConv2d(nn.Module):
482
+ """Equalized Linear as StyleGAN2.
483
+
484
+ Args:
485
+ in_channels (int): Channel number of the input.
486
+ out_channels (int): Channel number of the output.
487
+ kernel_size (int): Size of the convolving kernel.
488
+ stride (int): Stride of the convolution. Default: 1
489
+ padding (int): Zero-padding added to both sides of the input.
490
+ Default: 0.
491
+ bias (bool): If ``True``, adds a learnable bias to the output.
492
+ Default: ``True``.
493
+ bias_init_val (float): Bias initialized value. Default: 0.
494
+ """
495
+
496
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0):
497
+ super(EqualConv2d, self).__init__()
498
+ self.in_channels = in_channels
499
+ self.out_channels = out_channels
500
+ self.kernel_size = kernel_size
501
+ self.stride = stride
502
+ self.padding = padding
503
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
504
+
505
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
506
+ if bias:
507
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
508
+ else:
509
+ self.register_parameter('bias', None)
510
+
511
+ def forward(self, x):
512
+ out = F.conv2d(
513
+ x,
514
+ self.weight * self.scale,
515
+ bias=self.bias,
516
+ stride=self.stride,
517
+ padding=self.padding,
518
+ )
519
+
520
+ return out
521
+
522
+ def __repr__(self):
523
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
524
+ f'out_channels={self.out_channels}, '
525
+ f'kernel_size={self.kernel_size},'
526
+ f' stride={self.stride}, padding={self.padding}, '
527
+ f'bias={self.bias is not None})')
528
+
529
+
530
+ class ConvLayer(nn.Sequential):
531
+ """Conv Layer used in StyleGAN2 Discriminator.
532
+
533
+ Args:
534
+ in_channels (int): Channel number of the input.
535
+ out_channels (int): Channel number of the output.
536
+ kernel_size (int): Kernel size.
537
+ downsample (bool): Whether downsample by a factor of 2.
538
+ Default: False.
539
+ bias (bool): Whether with bias. Default: True.
540
+ activate (bool): Whether use activateion. Default: True.
541
+ """
542
+
543
+ def __init__(self,
544
+ in_channels,
545
+ out_channels,
546
+ kernel_size,
547
+ downsample=False,
548
+ bias=True,
549
+ activate=True,
550
+ interpolation_mode='bilinear'):
551
+ layers = []
552
+ self.interpolation_mode = interpolation_mode
553
+ # downsample
554
+ if downsample:
555
+ if self.interpolation_mode == 'nearest':
556
+ self.align_corners = None
557
+ else:
558
+ self.align_corners = False
559
+
560
+ layers.append(
561
+ torch.nn.Upsample(scale_factor=0.5, mode=interpolation_mode, align_corners=self.align_corners))
562
+ stride = 1
563
+ self.padding = kernel_size // 2
564
+ # conv
565
+ layers.append(
566
+ EqualConv2d(
567
+ in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias
568
+ and not activate))
569
+ # activation
570
+ if activate:
571
+ if bias:
572
+ layers.append(FusedLeakyReLU(out_channels))
573
+ else:
574
+ layers.append(ScaledLeakyReLU(0.2))
575
+
576
+ super(ConvLayer, self).__init__(*layers)
577
+
578
+
579
+ class ResBlock(nn.Module):
580
+ """Residual block used in StyleGAN2 Discriminator.
581
+
582
+ Args:
583
+ in_channels (int): Channel number of the input.
584
+ out_channels (int): Channel number of the output.
585
+ """
586
+
587
+ def __init__(self, in_channels, out_channels, interpolation_mode='bilinear'):
588
+ super(ResBlock, self).__init__()
589
+
590
+ self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
591
+ self.conv2 = ConvLayer(
592
+ in_channels,
593
+ out_channels,
594
+ 3,
595
+ downsample=True,
596
+ interpolation_mode=interpolation_mode,
597
+ bias=True,
598
+ activate=True)
599
+ self.skip = ConvLayer(
600
+ in_channels,
601
+ out_channels,
602
+ 1,
603
+ downsample=True,
604
+ interpolation_mode=interpolation_mode,
605
+ bias=False,
606
+ activate=False)
607
+
608
+ def forward(self, x):
609
+ out = self.conv1(x)
610
+ out = self.conv2(out)
611
+ skip = self.skip(x)
612
+ out = (out + skip) / math.sqrt(2)
613
+ return out
third_part/GFPGAN/gfpgan/archs/stylegan2_clean_arch.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.archs.arch_util import default_init_weights
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+
10
+ class NormStyleCode(nn.Module):
11
+
12
+ def forward(self, x):
13
+ """Normalize the style codes.
14
+
15
+ Args:
16
+ x (Tensor): Style codes with shape (b, c).
17
+
18
+ Returns:
19
+ Tensor: Normalized tensor.
20
+ """
21
+ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
22
+
23
+
24
+ class ModulatedConv2d(nn.Module):
25
+ """Modulated Conv2d used in StyleGAN2.
26
+
27
+ There is no bias in ModulatedConv2d.
28
+
29
+ Args:
30
+ in_channels (int): Channel number of the input.
31
+ out_channels (int): Channel number of the output.
32
+ kernel_size (int): Size of the convolving kernel.
33
+ num_style_feat (int): Channel number of style features.
34
+ demodulate (bool): Whether to demodulate in the conv layer. Default: True.
35
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
36
+ eps (float): A value added to the denominator for numerical stability. Default: 1e-8.
37
+ """
38
+
39
+ def __init__(self,
40
+ in_channels,
41
+ out_channels,
42
+ kernel_size,
43
+ num_style_feat,
44
+ demodulate=True,
45
+ sample_mode=None,
46
+ eps=1e-8):
47
+ super(ModulatedConv2d, self).__init__()
48
+ self.in_channels = in_channels
49
+ self.out_channels = out_channels
50
+ self.kernel_size = kernel_size
51
+ self.demodulate = demodulate
52
+ self.sample_mode = sample_mode
53
+ self.eps = eps
54
+
55
+ # modulation inside each modulated conv
56
+ self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
57
+ # initialization
58
+ default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
59
+
60
+ self.weight = nn.Parameter(
61
+ torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
62
+ math.sqrt(in_channels * kernel_size**2))
63
+ self.padding = kernel_size // 2
64
+
65
+ def forward(self, x, style):
66
+ """Forward function.
67
+
68
+ Args:
69
+ x (Tensor): Tensor with shape (b, c, h, w).
70
+ style (Tensor): Tensor with shape (b, num_style_feat).
71
+
72
+ Returns:
73
+ Tensor: Modulated tensor after convolution.
74
+ """
75
+ b, c, h, w = x.shape # c = c_in
76
+ # weight modulation
77
+ style = self.modulation(style).view(b, 1, c, 1, 1)
78
+ # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
79
+ weight = self.weight * style # (b, c_out, c_in, k, k)
80
+
81
+ if self.demodulate:
82
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
83
+ weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
84
+
85
+ weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
86
+
87
+ # upsample or downsample if necessary
88
+ if self.sample_mode == 'upsample':
89
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
90
+ elif self.sample_mode == 'downsample':
91
+ x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
92
+
93
+ b, c, h, w = x.shape
94
+ x = x.view(1, b * c, h, w)
95
+ # weight: (b*c_out, c_in, k, k), groups=b
96
+ out = F.conv2d(x, weight, padding=self.padding, groups=b)
97
+ out = out.view(b, self.out_channels, *out.shape[2:4])
98
+
99
+ return out
100
+
101
+ def __repr__(self):
102
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
103
+ f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
104
+
105
+
106
+ class StyleConv(nn.Module):
107
+ """Style conv used in StyleGAN2.
108
+
109
+ Args:
110
+ in_channels (int): Channel number of the input.
111
+ out_channels (int): Channel number of the output.
112
+ kernel_size (int): Size of the convolving kernel.
113
+ num_style_feat (int): Channel number of style features.
114
+ demodulate (bool): Whether demodulate in the conv layer. Default: True.
115
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
116
+ """
117
+
118
+ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
119
+ super(StyleConv, self).__init__()
120
+ self.modulated_conv = ModulatedConv2d(
121
+ in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
122
+ self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
123
+ self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
124
+ self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
125
+
126
+ def forward(self, x, style, noise=None):
127
+ # modulate
128
+ out = self.modulated_conv(x, style) * 2**0.5 # for conversion
129
+ # noise injection
130
+ if noise is None:
131
+ b, _, h, w = out.shape
132
+ noise = out.new_empty(b, 1, h, w).normal_()
133
+ out = out + self.weight * noise
134
+ # add bias
135
+ out = out + self.bias
136
+ # activation
137
+ out = self.activate(out)
138
+ return out
139
+
140
+
141
+ class ToRGB(nn.Module):
142
+ """To RGB (image space) from features.
143
+
144
+ Args:
145
+ in_channels (int): Channel number of input.
146
+ num_style_feat (int): Channel number of style features.
147
+ upsample (bool): Whether to upsample. Default: True.
148
+ """
149
+
150
+ def __init__(self, in_channels, num_style_feat, upsample=True):
151
+ super(ToRGB, self).__init__()
152
+ self.upsample = upsample
153
+ self.modulated_conv = ModulatedConv2d(
154
+ in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
155
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
156
+
157
+ def forward(self, x, style, skip=None):
158
+ """Forward function.
159
+
160
+ Args:
161
+ x (Tensor): Feature tensor with shape (b, c, h, w).
162
+ style (Tensor): Tensor with shape (b, num_style_feat).
163
+ skip (Tensor): Base/skip tensor. Default: None.
164
+
165
+ Returns:
166
+ Tensor: RGB images.
167
+ """
168
+ out = self.modulated_conv(x, style)
169
+ out = out + self.bias
170
+ if skip is not None:
171
+ if self.upsample:
172
+ skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
173
+ out = out + skip
174
+ return out
175
+
176
+
177
+ class ConstantInput(nn.Module):
178
+ """Constant input.
179
+
180
+ Args:
181
+ num_channel (int): Channel number of constant input.
182
+ size (int): Spatial size of constant input.
183
+ """
184
+
185
+ def __init__(self, num_channel, size):
186
+ super(ConstantInput, self).__init__()
187
+ self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
188
+
189
+ def forward(self, batch):
190
+ out = self.weight.repeat(batch, 1, 1, 1)
191
+ return out
192
+
193
+
194
+ @ARCH_REGISTRY.register()
195
+ class StyleGAN2GeneratorClean(nn.Module):
196
+ """Clean version of StyleGAN2 Generator.
197
+
198
+ Args:
199
+ out_size (int): The spatial size of outputs.
200
+ num_style_feat (int): Channel number of style features. Default: 512.
201
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
202
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
203
+ narrow (float): Narrow ratio for channels. Default: 1.0.
204
+ """
205
+
206
+ def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1):
207
+ super(StyleGAN2GeneratorClean, self).__init__()
208
+ # Style MLP layers
209
+ self.num_style_feat = num_style_feat
210
+ style_mlp_layers = [NormStyleCode()]
211
+ for i in range(num_mlp):
212
+ style_mlp_layers.extend(
213
+ [nn.Linear(num_style_feat, num_style_feat, bias=True),
214
+ nn.LeakyReLU(negative_slope=0.2, inplace=True)])
215
+ self.style_mlp = nn.Sequential(*style_mlp_layers)
216
+ # initialization
217
+ default_init_weights(self.style_mlp, scale=1, bias_fill=0, a=0.2, mode='fan_in', nonlinearity='leaky_relu')
218
+
219
+ # channel list
220
+ channels = {
221
+ '4': int(512 * narrow),
222
+ '8': int(512 * narrow),
223
+ '16': int(512 * narrow),
224
+ '32': int(512 * narrow),
225
+ '64': int(256 * channel_multiplier * narrow),
226
+ '128': int(128 * channel_multiplier * narrow),
227
+ '256': int(64 * channel_multiplier * narrow),
228
+ '512': int(32 * channel_multiplier * narrow),
229
+ '1024': int(16 * channel_multiplier * narrow)
230
+ }
231
+ self.channels = channels
232
+
233
+ self.constant_input = ConstantInput(channels['4'], size=4)
234
+ self.style_conv1 = StyleConv(
235
+ channels['4'],
236
+ channels['4'],
237
+ kernel_size=3,
238
+ num_style_feat=num_style_feat,
239
+ demodulate=True,
240
+ sample_mode=None)
241
+ self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False)
242
+
243
+ self.log_size = int(math.log(out_size, 2))
244
+ self.num_layers = (self.log_size - 2) * 2 + 1
245
+ self.num_latent = self.log_size * 2 - 2
246
+
247
+ self.style_convs = nn.ModuleList()
248
+ self.to_rgbs = nn.ModuleList()
249
+ self.noises = nn.Module()
250
+
251
+ in_channels = channels['4']
252
+ # noise
253
+ for layer_idx in range(self.num_layers):
254
+ resolution = 2**((layer_idx + 5) // 2)
255
+ shape = [1, 1, resolution, resolution]
256
+ self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
257
+ # style convs and to_rgbs
258
+ for i in range(3, self.log_size + 1):
259
+ out_channels = channels[f'{2**i}']
260
+ self.style_convs.append(
261
+ StyleConv(
262
+ in_channels,
263
+ out_channels,
264
+ kernel_size=3,
265
+ num_style_feat=num_style_feat,
266
+ demodulate=True,
267
+ sample_mode='upsample'))
268
+ self.style_convs.append(
269
+ StyleConv(
270
+ out_channels,
271
+ out_channels,
272
+ kernel_size=3,
273
+ num_style_feat=num_style_feat,
274
+ demodulate=True,
275
+ sample_mode=None))
276
+ self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
277
+ in_channels = out_channels
278
+
279
+ def make_noise(self):
280
+ """Make noise for noise injection."""
281
+ device = self.constant_input.weight.device
282
+ noises = [torch.randn(1, 1, 4, 4, device=device)]
283
+
284
+ for i in range(3, self.log_size + 1):
285
+ for _ in range(2):
286
+ noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
287
+
288
+ return noises
289
+
290
+ def get_latent(self, x):
291
+ return self.style_mlp(x)
292
+
293
+ def mean_latent(self, num_latent):
294
+ latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
295
+ latent = self.style_mlp(latent_in).mean(0, keepdim=True)
296
+ return latent
297
+
298
+ def forward(self,
299
+ styles,
300
+ input_is_latent=False,
301
+ noise=None,
302
+ randomize_noise=True,
303
+ truncation=1,
304
+ truncation_latent=None,
305
+ inject_index=None,
306
+ return_latents=False):
307
+ """Forward function for StyleGAN2GeneratorClean.
308
+
309
+ Args:
310
+ styles (list[Tensor]): Sample codes of styles.
311
+ input_is_latent (bool): Whether input is latent style. Default: False.
312
+ noise (Tensor | None): Input noise or None. Default: None.
313
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
314
+ truncation (float): The truncation ratio. Default: 1.
315
+ truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
316
+ inject_index (int | None): The injection index for mixing noise. Default: None.
317
+ return_latents (bool): Whether to return style latents. Default: False.
318
+ """
319
+ # style codes -> latents with Style MLP layer
320
+ if not input_is_latent:
321
+ styles = [self.style_mlp(s) for s in styles]
322
+ # noises
323
+ if noise is None:
324
+ if randomize_noise:
325
+ noise = [None] * self.num_layers # for each style conv layer
326
+ else: # use the stored noise
327
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
328
+ # style truncation
329
+ if truncation < 1:
330
+ style_truncation = []
331
+ for style in styles:
332
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
333
+ styles = style_truncation
334
+ # get style latents with injection
335
+ if len(styles) == 1:
336
+ inject_index = self.num_latent
337
+
338
+ if styles[0].ndim < 3:
339
+ # repeat latent code for all the layers
340
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
341
+ else: # used for encoder with different latent code for each layer
342
+ latent = styles[0]
343
+ elif len(styles) == 2: # mixing noises
344
+ if inject_index is None:
345
+ inject_index = random.randint(1, self.num_latent - 1)
346
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
347
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
348
+ latent = torch.cat([latent1, latent2], 1)
349
+
350
+ # main generation
351
+ out = self.constant_input(latent.shape[0])
352
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
353
+ skip = self.to_rgb1(out, latent[:, 1])
354
+
355
+ i = 1
356
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
357
+ noise[2::2], self.to_rgbs):
358
+ out = conv1(out, latent[:, i], noise=noise1)
359
+ out = conv2(out, latent[:, i + 1], noise=noise2)
360
+ skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
361
+ i += 2
362
+
363
+ image = skip
364
+
365
+ if return_latents:
366
+ return image, latent
367
+ else:
368
+ return image, None
third_part/GFPGAN/gfpgan/data/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import dataset modules for registry
6
+ # scan all the files that end with '_dataset.py' under the data folder
7
+ data_folder = osp.dirname(osp.abspath(__file__))
8
+ dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
9
+ # import all the dataset modules
10
+ _dataset_modules = [importlib.import_module(f'gfpgan.data.{file_name}') for file_name in dataset_filenames]
third_part/GFPGAN/gfpgan/data/ffhq_degradation_dataset.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os.path as osp
5
+ import torch
6
+ import torch.utils.data as data
7
+ from basicsr.data import degradations as degradations
8
+ from basicsr.data.data_util import paths_from_folder
9
+ from basicsr.data.transforms import augment
10
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
11
+ from basicsr.utils.registry import DATASET_REGISTRY
12
+ from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, adjust_hue, adjust_saturation,
13
+ normalize)
14
+
15
+
16
+ @DATASET_REGISTRY.register()
17
+ class FFHQDegradationDataset(data.Dataset):
18
+ """FFHQ dataset for GFPGAN.
19
+
20
+ It reads high resolution images, and then generate low-quality (LQ) images on-the-fly.
21
+
22
+ Args:
23
+ opt (dict): Config for train datasets. It contains the following keys:
24
+ dataroot_gt (str): Data root path for gt.
25
+ io_backend (dict): IO backend type and other kwarg.
26
+ mean (list | tuple): Image mean.
27
+ std (list | tuple): Image std.
28
+ use_hflip (bool): Whether to horizontally flip.
29
+ Please see more options in the codes.
30
+ """
31
+
32
+ def __init__(self, opt):
33
+ super(FFHQDegradationDataset, self).__init__()
34
+ self.opt = opt
35
+ # file client (io backend)
36
+ self.file_client = None
37
+ self.io_backend_opt = opt['io_backend']
38
+
39
+ self.gt_folder = opt['dataroot_gt']
40
+ self.mean = opt['mean']
41
+ self.std = opt['std']
42
+ self.out_size = opt['out_size']
43
+
44
+ self.crop_components = opt.get('crop_components', False) # facial components
45
+ self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1) # whether enlarge eye regions
46
+
47
+ if self.crop_components:
48
+ # load component list from a pre-process pth files
49
+ self.components_list = torch.load(opt.get('component_path'))
50
+
51
+ # file client (lmdb io backend)
52
+ if self.io_backend_opt['type'] == 'lmdb':
53
+ self.io_backend_opt['db_paths'] = self.gt_folder
54
+ if not self.gt_folder.endswith('.lmdb'):
55
+ raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
56
+ with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
57
+ self.paths = [line.split('.')[0] for line in fin]
58
+ else:
59
+ # disk backend: scan file list from a folder
60
+ self.paths = paths_from_folder(self.gt_folder)
61
+
62
+ # degradation configurations
63
+ self.blur_kernel_size = opt['blur_kernel_size']
64
+ self.kernel_list = opt['kernel_list']
65
+ self.kernel_prob = opt['kernel_prob']
66
+ self.blur_sigma = opt['blur_sigma']
67
+ self.downsample_range = opt['downsample_range']
68
+ self.noise_range = opt['noise_range']
69
+ self.jpeg_range = opt['jpeg_range']
70
+
71
+ # color jitter
72
+ self.color_jitter_prob = opt.get('color_jitter_prob')
73
+ self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob')
74
+ self.color_jitter_shift = opt.get('color_jitter_shift', 20)
75
+ # to gray
76
+ self.gray_prob = opt.get('gray_prob')
77
+
78
+ logger = get_root_logger()
79
+ logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
80
+ logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
81
+ logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
82
+ logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
83
+
84
+ if self.color_jitter_prob is not None:
85
+ logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
86
+ if self.gray_prob is not None:
87
+ logger.info(f'Use random gray. Prob: {self.gray_prob}')
88
+ self.color_jitter_shift /= 255.
89
+
90
+ @staticmethod
91
+ def color_jitter(img, shift):
92
+ """jitter color: randomly jitter the RGB values, in numpy formats"""
93
+ jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
94
+ img = img + jitter_val
95
+ img = np.clip(img, 0, 1)
96
+ return img
97
+
98
+ @staticmethod
99
+ def color_jitter_pt(img, brightness, contrast, saturation, hue):
100
+ """jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
101
+ fn_idx = torch.randperm(4)
102
+ for fn_id in fn_idx:
103
+ if fn_id == 0 and brightness is not None:
104
+ brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
105
+ img = adjust_brightness(img, brightness_factor)
106
+
107
+ if fn_id == 1 and contrast is not None:
108
+ contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
109
+ img = adjust_contrast(img, contrast_factor)
110
+
111
+ if fn_id == 2 and saturation is not None:
112
+ saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
113
+ img = adjust_saturation(img, saturation_factor)
114
+
115
+ if fn_id == 3 and hue is not None:
116
+ hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
117
+ img = adjust_hue(img, hue_factor)
118
+ return img
119
+
120
+ def get_component_coordinates(self, index, status):
121
+ """Get facial component (left_eye, right_eye, mouth) coordinates from a pre-loaded pth file"""
122
+ components_bbox = self.components_list[f'{index:08d}']
123
+ if status[0]: # hflip
124
+ # exchange right and left eye
125
+ tmp = components_bbox['left_eye']
126
+ components_bbox['left_eye'] = components_bbox['right_eye']
127
+ components_bbox['right_eye'] = tmp
128
+ # modify the width coordinate
129
+ components_bbox['left_eye'][0] = self.out_size - components_bbox['left_eye'][0]
130
+ components_bbox['right_eye'][0] = self.out_size - components_bbox['right_eye'][0]
131
+ components_bbox['mouth'][0] = self.out_size - components_bbox['mouth'][0]
132
+
133
+ # get coordinates
134
+ locations = []
135
+ for part in ['left_eye', 'right_eye', 'mouth']:
136
+ mean = components_bbox[part][0:2]
137
+ half_len = components_bbox[part][2]
138
+ if 'eye' in part:
139
+ half_len *= self.eye_enlarge_ratio
140
+ loc = np.hstack((mean - half_len + 1, mean + half_len))
141
+ loc = torch.from_numpy(loc).float()
142
+ locations.append(loc)
143
+ return locations
144
+
145
+ def __getitem__(self, index):
146
+ if self.file_client is None:
147
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
148
+
149
+ # load gt image
150
+ # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
151
+ gt_path = self.paths[index]
152
+ img_bytes = self.file_client.get(gt_path)
153
+ img_gt = imfrombytes(img_bytes, float32=True)
154
+
155
+ # random horizontal flip
156
+ img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
157
+ h, w, _ = img_gt.shape
158
+
159
+ # get facial component coordinates
160
+ if self.crop_components:
161
+ locations = self.get_component_coordinates(index, status)
162
+ loc_left_eye, loc_right_eye, loc_mouth = locations
163
+
164
+ # ------------------------ generate lq image ------------------------ #
165
+ # blur
166
+ kernel = degradations.random_mixed_kernels(
167
+ self.kernel_list,
168
+ self.kernel_prob,
169
+ self.blur_kernel_size,
170
+ self.blur_sigma,
171
+ self.blur_sigma, [-math.pi, math.pi],
172
+ noise_range=None)
173
+ img_lq = cv2.filter2D(img_gt, -1, kernel)
174
+ # downsample
175
+ scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
176
+ img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR)
177
+ # noise
178
+ if self.noise_range is not None:
179
+ img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range)
180
+ # jpeg compression
181
+ if self.jpeg_range is not None:
182
+ img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range)
183
+
184
+ # resize to original size
185
+ img_lq = cv2.resize(img_lq, (w, h), interpolation=cv2.INTER_LINEAR)
186
+
187
+ # random color jitter (only for lq)
188
+ if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
189
+ img_lq = self.color_jitter(img_lq, self.color_jitter_shift)
190
+ # random to gray (only for lq)
191
+ if self.gray_prob and np.random.uniform() < self.gray_prob:
192
+ img_lq = cv2.cvtColor(img_lq, cv2.COLOR_BGR2GRAY)
193
+ img_lq = np.tile(img_lq[:, :, None], [1, 1, 3])
194
+ if self.opt.get('gt_gray'): # whether convert GT to gray images
195
+ img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY)
196
+ img_gt = np.tile(img_gt[:, :, None], [1, 1, 3]) # repeat the color channels
197
+
198
+ # BGR to RGB, HWC to CHW, numpy to tensor
199
+ img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
200
+
201
+ # random color jitter (pytorch version) (only for lq)
202
+ if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
203
+ brightness = self.opt.get('brightness', (0.5, 1.5))
204
+ contrast = self.opt.get('contrast', (0.5, 1.5))
205
+ saturation = self.opt.get('saturation', (0, 1.5))
206
+ hue = self.opt.get('hue', (-0.1, 0.1))
207
+ img_lq = self.color_jitter_pt(img_lq, brightness, contrast, saturation, hue)
208
+
209
+ # round and clip
210
+ img_lq = torch.clamp((img_lq * 255.0).round(), 0, 255) / 255.
211
+
212
+ # normalize
213
+ normalize(img_gt, self.mean, self.std, inplace=True)
214
+ normalize(img_lq, self.mean, self.std, inplace=True)
215
+
216
+ if self.crop_components:
217
+ return_dict = {
218
+ 'lq': img_lq,
219
+ 'gt': img_gt,
220
+ 'gt_path': gt_path,
221
+ 'loc_left_eye': loc_left_eye,
222
+ 'loc_right_eye': loc_right_eye,
223
+ 'loc_mouth': loc_mouth
224
+ }
225
+ return return_dict
226
+ else:
227
+ return {'lq': img_lq, 'gt': img_gt, 'gt_path': gt_path}
228
+
229
+ def __len__(self):
230
+ return len(self.paths)
third_part/GFPGAN/gfpgan/models/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import model modules for registry
6
+ # scan all the files that end with '_model.py' under the model folder
7
+ model_folder = osp.dirname(osp.abspath(__file__))
8
+ model_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(model_folder) if v.endswith('_model.py')]
9
+ # import all the model modules
10
+ _model_modules = [importlib.import_module(f'gfpgan.models.{file_name}') for file_name in model_filenames]
third_part/GFPGAN/gfpgan/models/gfpgan_model.py ADDED
@@ -0,0 +1,580 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os.path as osp
3
+ import torch
4
+ from basicsr.archs import build_network
5
+ from basicsr.losses import build_loss
6
+ # from basicsr.losses.losses import r1_penalty
7
+ from basicsr.losses import r1_penalty
8
+ from basicsr.metrics import calculate_metric
9
+ from basicsr.models.base_model import BaseModel
10
+ from basicsr.utils import get_root_logger, imwrite, tensor2img
11
+ from basicsr.utils.registry import MODEL_REGISTRY
12
+ from collections import OrderedDict
13
+ from torch.nn import functional as F
14
+ from torchvision.ops import roi_align
15
+ from tqdm import tqdm
16
+
17
+
18
+ @MODEL_REGISTRY.register()
19
+ class GFPGANModel(BaseModel):
20
+ """The GFPGAN model for Towards real-world blind face restoratin with generative facial prior"""
21
+
22
+ def __init__(self, opt):
23
+ super(GFPGANModel, self).__init__(opt)
24
+ self.idx = 0 # it is used for saving data for check
25
+
26
+ # define network
27
+ self.net_g = build_network(opt['network_g'])
28
+ self.net_g = self.model_to_device(self.net_g)
29
+ self.print_network(self.net_g)
30
+
31
+ # load pretrained model
32
+ load_path = self.opt['path'].get('pretrain_network_g', None)
33
+ if load_path is not None:
34
+ param_key = self.opt['path'].get('param_key_g', 'params')
35
+ self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
36
+
37
+ self.log_size = int(math.log(self.opt['network_g']['out_size'], 2))
38
+
39
+ if self.is_train:
40
+ self.init_training_settings()
41
+
42
+ def init_training_settings(self):
43
+ train_opt = self.opt['train']
44
+
45
+ # ----------- define net_d ----------- #
46
+ self.net_d = build_network(self.opt['network_d'])
47
+ self.net_d = self.model_to_device(self.net_d)
48
+ self.print_network(self.net_d)
49
+ # load pretrained model
50
+ load_path = self.opt['path'].get('pretrain_network_d', None)
51
+ if load_path is not None:
52
+ self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
53
+
54
+ # ----------- define net_g with Exponential Moving Average (EMA) ----------- #
55
+ # net_g_ema only used for testing on one GPU and saving. There is no need to wrap with DistributedDataParallel
56
+ self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
57
+ # load pretrained model
58
+ load_path = self.opt['path'].get('pretrain_network_g', None)
59
+ if load_path is not None:
60
+ self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
61
+ else:
62
+ self.model_ema(0) # copy net_g weight
63
+
64
+ self.net_g.train()
65
+ self.net_d.train()
66
+ self.net_g_ema.eval()
67
+
68
+ # ----------- facial component networks ----------- #
69
+ if ('network_d_left_eye' in self.opt and 'network_d_right_eye' in self.opt and 'network_d_mouth' in self.opt):
70
+ self.use_facial_disc = True
71
+ else:
72
+ self.use_facial_disc = False
73
+
74
+ if self.use_facial_disc:
75
+ # left eye
76
+ self.net_d_left_eye = build_network(self.opt['network_d_left_eye'])
77
+ self.net_d_left_eye = self.model_to_device(self.net_d_left_eye)
78
+ self.print_network(self.net_d_left_eye)
79
+ load_path = self.opt['path'].get('pretrain_network_d_left_eye')
80
+ if load_path is not None:
81
+ self.load_network(self.net_d_left_eye, load_path, True, 'params')
82
+ # right eye
83
+ self.net_d_right_eye = build_network(self.opt['network_d_right_eye'])
84
+ self.net_d_right_eye = self.model_to_device(self.net_d_right_eye)
85
+ self.print_network(self.net_d_right_eye)
86
+ load_path = self.opt['path'].get('pretrain_network_d_right_eye')
87
+ if load_path is not None:
88
+ self.load_network(self.net_d_right_eye, load_path, True, 'params')
89
+ # mouth
90
+ self.net_d_mouth = build_network(self.opt['network_d_mouth'])
91
+ self.net_d_mouth = self.model_to_device(self.net_d_mouth)
92
+ self.print_network(self.net_d_mouth)
93
+ load_path = self.opt['path'].get('pretrain_network_d_mouth')
94
+ if load_path is not None:
95
+ self.load_network(self.net_d_mouth, load_path, True, 'params')
96
+
97
+ self.net_d_left_eye.train()
98
+ self.net_d_right_eye.train()
99
+ self.net_d_mouth.train()
100
+
101
+ # ----------- define facial component gan loss ----------- #
102
+ self.cri_component = build_loss(train_opt['gan_component_opt']).to(self.device)
103
+
104
+ # ----------- define losses ----------- #
105
+ # pixel loss
106
+ if train_opt.get('pixel_opt'):
107
+ self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
108
+ else:
109
+ self.cri_pix = None
110
+
111
+ # perceptual loss
112
+ if train_opt.get('perceptual_opt'):
113
+ self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
114
+ else:
115
+ self.cri_perceptual = None
116
+
117
+ # L1 loss is used in pyramid loss, component style loss and identity loss
118
+ self.cri_l1 = build_loss(train_opt['L1_opt']).to(self.device)
119
+
120
+ # gan loss (wgan)
121
+ self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
122
+
123
+ # ----------- define identity loss ----------- #
124
+ if 'network_identity' in self.opt:
125
+ self.use_identity = True
126
+ else:
127
+ self.use_identity = False
128
+
129
+ if self.use_identity:
130
+ # define identity network
131
+ self.network_identity = build_network(self.opt['network_identity'])
132
+ self.network_identity = self.model_to_device(self.network_identity)
133
+ self.print_network(self.network_identity)
134
+ load_path = self.opt['path'].get('pretrain_network_identity')
135
+ if load_path is not None:
136
+ self.load_network(self.network_identity, load_path, True, None)
137
+ self.network_identity.eval()
138
+ for param in self.network_identity.parameters():
139
+ param.requires_grad = False
140
+
141
+ # regularization weights
142
+ self.r1_reg_weight = train_opt['r1_reg_weight'] # for discriminator
143
+ self.net_d_iters = train_opt.get('net_d_iters', 1)
144
+ self.net_d_init_iters = train_opt.get('net_d_init_iters', 0)
145
+ self.net_d_reg_every = train_opt['net_d_reg_every']
146
+
147
+ # set up optimizers and schedulers
148
+ self.setup_optimizers()
149
+ self.setup_schedulers()
150
+
151
+ def setup_optimizers(self):
152
+ train_opt = self.opt['train']
153
+
154
+ # ----------- optimizer g ----------- #
155
+ net_g_reg_ratio = 1
156
+ normal_params = []
157
+ for _, param in self.net_g.named_parameters():
158
+ normal_params.append(param)
159
+ optim_params_g = [{ # add normal params first
160
+ 'params': normal_params,
161
+ 'lr': train_opt['optim_g']['lr']
162
+ }]
163
+ optim_type = train_opt['optim_g'].pop('type')
164
+ lr = train_opt['optim_g']['lr'] * net_g_reg_ratio
165
+ betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio)
166
+ self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas)
167
+ self.optimizers.append(self.optimizer_g)
168
+
169
+ # ----------- optimizer d ----------- #
170
+ net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1)
171
+ normal_params = []
172
+ for _, param in self.net_d.named_parameters():
173
+ normal_params.append(param)
174
+ optim_params_d = [{ # add normal params first
175
+ 'params': normal_params,
176
+ 'lr': train_opt['optim_d']['lr']
177
+ }]
178
+ optim_type = train_opt['optim_d'].pop('type')
179
+ lr = train_opt['optim_d']['lr'] * net_d_reg_ratio
180
+ betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio)
181
+ self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas)
182
+ self.optimizers.append(self.optimizer_d)
183
+
184
+ # ----------- optimizers for facial component networks ----------- #
185
+ if self.use_facial_disc:
186
+ # setup optimizers for facial component discriminators
187
+ optim_type = train_opt['optim_component'].pop('type')
188
+ lr = train_opt['optim_component']['lr']
189
+ # left eye
190
+ self.optimizer_d_left_eye = self.get_optimizer(
191
+ optim_type, self.net_d_left_eye.parameters(), lr, betas=(0.9, 0.99))
192
+ self.optimizers.append(self.optimizer_d_left_eye)
193
+ # right eye
194
+ self.optimizer_d_right_eye = self.get_optimizer(
195
+ optim_type, self.net_d_right_eye.parameters(), lr, betas=(0.9, 0.99))
196
+ self.optimizers.append(self.optimizer_d_right_eye)
197
+ # mouth
198
+ self.optimizer_d_mouth = self.get_optimizer(
199
+ optim_type, self.net_d_mouth.parameters(), lr, betas=(0.9, 0.99))
200
+ self.optimizers.append(self.optimizer_d_mouth)
201
+
202
+ def feed_data(self, data):
203
+ self.lq = data['lq'].to(self.device)
204
+ if 'gt' in data:
205
+ self.gt = data['gt'].to(self.device)
206
+
207
+ if 'loc_left_eye' in data:
208
+ # get facial component locations, shape (batch, 4)
209
+ self.loc_left_eyes = data['loc_left_eye']
210
+ self.loc_right_eyes = data['loc_right_eye']
211
+ self.loc_mouths = data['loc_mouth']
212
+
213
+ # uncomment to check data
214
+ # import torchvision
215
+ # if self.opt['rank'] == 0:
216
+ # import os
217
+ # os.makedirs('tmp/gt', exist_ok=True)
218
+ # os.makedirs('tmp/lq', exist_ok=True)
219
+ # print(self.idx)
220
+ # torchvision.utils.save_image(
221
+ # self.gt, f'tmp/gt/gt_{self.idx}.png', nrow=4, padding=2, normalize=True, range=(-1, 1))
222
+ # torchvision.utils.save_image(
223
+ # self.lq, f'tmp/lq/lq{self.idx}.png', nrow=4, padding=2, normalize=True, range=(-1, 1))
224
+ # self.idx = self.idx + 1
225
+
226
+ def construct_img_pyramid(self):
227
+ """Construct image pyramid for intermediate restoration loss"""
228
+ pyramid_gt = [self.gt]
229
+ down_img = self.gt
230
+ for _ in range(0, self.log_size - 3):
231
+ down_img = F.interpolate(down_img, scale_factor=0.5, mode='bilinear', align_corners=False)
232
+ pyramid_gt.insert(0, down_img)
233
+ return pyramid_gt
234
+
235
+ def get_roi_regions(self, eye_out_size=80, mouth_out_size=120):
236
+ face_ratio = int(self.opt['network_g']['out_size'] / 512)
237
+ eye_out_size *= face_ratio
238
+ mouth_out_size *= face_ratio
239
+
240
+ rois_eyes = []
241
+ rois_mouths = []
242
+ for b in range(self.loc_left_eyes.size(0)): # loop for batch size
243
+ # left eye and right eye
244
+ img_inds = self.loc_left_eyes.new_full((2, 1), b)
245
+ bbox = torch.stack([self.loc_left_eyes[b, :], self.loc_right_eyes[b, :]], dim=0) # shape: (2, 4)
246
+ rois = torch.cat([img_inds, bbox], dim=-1) # shape: (2, 5)
247
+ rois_eyes.append(rois)
248
+ # mouse
249
+ img_inds = self.loc_left_eyes.new_full((1, 1), b)
250
+ rois = torch.cat([img_inds, self.loc_mouths[b:b + 1, :]], dim=-1) # shape: (1, 5)
251
+ rois_mouths.append(rois)
252
+
253
+ rois_eyes = torch.cat(rois_eyes, 0).to(self.device)
254
+ rois_mouths = torch.cat(rois_mouths, 0).to(self.device)
255
+
256
+ # real images
257
+ all_eyes = roi_align(self.gt, boxes=rois_eyes, output_size=eye_out_size) * face_ratio
258
+ self.left_eyes_gt = all_eyes[0::2, :, :, :]
259
+ self.right_eyes_gt = all_eyes[1::2, :, :, :]
260
+ self.mouths_gt = roi_align(self.gt, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio
261
+ # output
262
+ all_eyes = roi_align(self.output, boxes=rois_eyes, output_size=eye_out_size) * face_ratio
263
+ self.left_eyes = all_eyes[0::2, :, :, :]
264
+ self.right_eyes = all_eyes[1::2, :, :, :]
265
+ self.mouths = roi_align(self.output, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio
266
+
267
+ def _gram_mat(self, x):
268
+ """Calculate Gram matrix.
269
+
270
+ Args:
271
+ x (torch.Tensor): Tensor with shape of (n, c, h, w).
272
+
273
+ Returns:
274
+ torch.Tensor: Gram matrix.
275
+ """
276
+ n, c, h, w = x.size()
277
+ features = x.view(n, c, w * h)
278
+ features_t = features.transpose(1, 2)
279
+ gram = features.bmm(features_t) / (c * h * w)
280
+ return gram
281
+
282
+ def gray_resize_for_identity(self, out, size=128):
283
+ out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :])
284
+ out_gray = out_gray.unsqueeze(1)
285
+ out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False)
286
+ return out_gray
287
+
288
+ def optimize_parameters(self, current_iter):
289
+ # optimize net_g
290
+ for p in self.net_d.parameters():
291
+ p.requires_grad = False
292
+ self.optimizer_g.zero_grad()
293
+
294
+ # do not update facial component net_d
295
+ if self.use_facial_disc:
296
+ for p in self.net_d_left_eye.parameters():
297
+ p.requires_grad = False
298
+ for p in self.net_d_right_eye.parameters():
299
+ p.requires_grad = False
300
+ for p in self.net_d_mouth.parameters():
301
+ p.requires_grad = False
302
+
303
+ # image pyramid loss weight
304
+ pyramid_loss_weight = self.opt['train'].get('pyramid_loss_weight', 0)
305
+ if pyramid_loss_weight > 0 and current_iter > self.opt['train'].get('remove_pyramid_loss', float('inf')):
306
+ pyramid_loss_weight = 1e-12 # very small weight to avoid unused param error
307
+ if pyramid_loss_weight > 0:
308
+ self.output, out_rgbs = self.net_g(self.lq, return_rgb=True)
309
+ pyramid_gt = self.construct_img_pyramid()
310
+ else:
311
+ self.output, out_rgbs = self.net_g(self.lq, return_rgb=False)
312
+
313
+ # get roi-align regions
314
+ if self.use_facial_disc:
315
+ self.get_roi_regions(eye_out_size=80, mouth_out_size=120)
316
+
317
+ l_g_total = 0
318
+ loss_dict = OrderedDict()
319
+ if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
320
+ # pixel loss
321
+ if self.cri_pix:
322
+ l_g_pix = self.cri_pix(self.output, self.gt)
323
+ l_g_total += l_g_pix
324
+ loss_dict['l_g_pix'] = l_g_pix
325
+
326
+ # image pyramid loss
327
+ if pyramid_loss_weight > 0:
328
+ for i in range(0, self.log_size - 2):
329
+ l_pyramid = self.cri_l1(out_rgbs[i], pyramid_gt[i]) * pyramid_loss_weight
330
+ l_g_total += l_pyramid
331
+ loss_dict[f'l_p_{2**(i+3)}'] = l_pyramid
332
+
333
+ # perceptual loss
334
+ if self.cri_perceptual:
335
+ l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt)
336
+ if l_g_percep is not None:
337
+ l_g_total += l_g_percep
338
+ loss_dict['l_g_percep'] = l_g_percep
339
+ if l_g_style is not None:
340
+ l_g_total += l_g_style
341
+ loss_dict['l_g_style'] = l_g_style
342
+
343
+ # gan loss
344
+ fake_g_pred = self.net_d(self.output)
345
+ l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
346
+ l_g_total += l_g_gan
347
+ loss_dict['l_g_gan'] = l_g_gan
348
+
349
+ # facial component loss
350
+ if self.use_facial_disc:
351
+ # left eye
352
+ fake_left_eye, fake_left_eye_feats = self.net_d_left_eye(self.left_eyes, return_feats=True)
353
+ l_g_gan = self.cri_component(fake_left_eye, True, is_disc=False)
354
+ l_g_total += l_g_gan
355
+ loss_dict['l_g_gan_left_eye'] = l_g_gan
356
+ # right eye
357
+ fake_right_eye, fake_right_eye_feats = self.net_d_right_eye(self.right_eyes, return_feats=True)
358
+ l_g_gan = self.cri_component(fake_right_eye, True, is_disc=False)
359
+ l_g_total += l_g_gan
360
+ loss_dict['l_g_gan_right_eye'] = l_g_gan
361
+ # mouth
362
+ fake_mouth, fake_mouth_feats = self.net_d_mouth(self.mouths, return_feats=True)
363
+ l_g_gan = self.cri_component(fake_mouth, True, is_disc=False)
364
+ l_g_total += l_g_gan
365
+ loss_dict['l_g_gan_mouth'] = l_g_gan
366
+
367
+ if self.opt['train'].get('comp_style_weight', 0) > 0:
368
+ # get gt feat
369
+ _, real_left_eye_feats = self.net_d_left_eye(self.left_eyes_gt, return_feats=True)
370
+ _, real_right_eye_feats = self.net_d_right_eye(self.right_eyes_gt, return_feats=True)
371
+ _, real_mouth_feats = self.net_d_mouth(self.mouths_gt, return_feats=True)
372
+
373
+ def _comp_style(feat, feat_gt, criterion):
374
+ return criterion(self._gram_mat(feat[0]), self._gram_mat(
375
+ feat_gt[0].detach())) * 0.5 + criterion(
376
+ self._gram_mat(feat[1]), self._gram_mat(feat_gt[1].detach()))
377
+
378
+ # facial component style loss
379
+ comp_style_loss = 0
380
+ comp_style_loss += _comp_style(fake_left_eye_feats, real_left_eye_feats, self.cri_l1)
381
+ comp_style_loss += _comp_style(fake_right_eye_feats, real_right_eye_feats, self.cri_l1)
382
+ comp_style_loss += _comp_style(fake_mouth_feats, real_mouth_feats, self.cri_l1)
383
+ comp_style_loss = comp_style_loss * self.opt['train']['comp_style_weight']
384
+ l_g_total += comp_style_loss
385
+ loss_dict['l_g_comp_style_loss'] = comp_style_loss
386
+
387
+ # identity loss
388
+ if self.use_identity:
389
+ identity_weight = self.opt['train']['identity_weight']
390
+ # get gray images and resize
391
+ out_gray = self.gray_resize_for_identity(self.output)
392
+ gt_gray = self.gray_resize_for_identity(self.gt)
393
+
394
+ identity_gt = self.network_identity(gt_gray).detach()
395
+ identity_out = self.network_identity(out_gray)
396
+ l_identity = self.cri_l1(identity_out, identity_gt) * identity_weight
397
+ l_g_total += l_identity
398
+ loss_dict['l_identity'] = l_identity
399
+
400
+ l_g_total.backward()
401
+ self.optimizer_g.step()
402
+
403
+ # EMA
404
+ self.model_ema(decay=0.5**(32 / (10 * 1000)))
405
+
406
+ # ----------- optimize net_d ----------- #
407
+ for p in self.net_d.parameters():
408
+ p.requires_grad = True
409
+ self.optimizer_d.zero_grad()
410
+ if self.use_facial_disc:
411
+ for p in self.net_d_left_eye.parameters():
412
+ p.requires_grad = True
413
+ for p in self.net_d_right_eye.parameters():
414
+ p.requires_grad = True
415
+ for p in self.net_d_mouth.parameters():
416
+ p.requires_grad = True
417
+ self.optimizer_d_left_eye.zero_grad()
418
+ self.optimizer_d_right_eye.zero_grad()
419
+ self.optimizer_d_mouth.zero_grad()
420
+
421
+ fake_d_pred = self.net_d(self.output.detach())
422
+ real_d_pred = self.net_d(self.gt)
423
+ l_d = self.cri_gan(real_d_pred, True, is_disc=True) + self.cri_gan(fake_d_pred, False, is_disc=True)
424
+ loss_dict['l_d'] = l_d
425
+ # In WGAN, real_score should be positive and fake_score should be negative
426
+ loss_dict['real_score'] = real_d_pred.detach().mean()
427
+ loss_dict['fake_score'] = fake_d_pred.detach().mean()
428
+ l_d.backward()
429
+
430
+ # regularization loss
431
+ if current_iter % self.net_d_reg_every == 0:
432
+ self.gt.requires_grad = True
433
+ real_pred = self.net_d(self.gt)
434
+ l_d_r1 = r1_penalty(real_pred, self.gt)
435
+ l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0])
436
+ loss_dict['l_d_r1'] = l_d_r1.detach().mean()
437
+ l_d_r1.backward()
438
+
439
+ self.optimizer_d.step()
440
+
441
+ # optimize facial component discriminators
442
+ if self.use_facial_disc:
443
+ # left eye
444
+ fake_d_pred, _ = self.net_d_left_eye(self.left_eyes.detach())
445
+ real_d_pred, _ = self.net_d_left_eye(self.left_eyes_gt)
446
+ l_d_left_eye = self.cri_component(
447
+ real_d_pred, True, is_disc=True) + self.cri_gan(
448
+ fake_d_pred, False, is_disc=True)
449
+ loss_dict['l_d_left_eye'] = l_d_left_eye
450
+ l_d_left_eye.backward()
451
+ # right eye
452
+ fake_d_pred, _ = self.net_d_right_eye(self.right_eyes.detach())
453
+ real_d_pred, _ = self.net_d_right_eye(self.right_eyes_gt)
454
+ l_d_right_eye = self.cri_component(
455
+ real_d_pred, True, is_disc=True) + self.cri_gan(
456
+ fake_d_pred, False, is_disc=True)
457
+ loss_dict['l_d_right_eye'] = l_d_right_eye
458
+ l_d_right_eye.backward()
459
+ # mouth
460
+ fake_d_pred, _ = self.net_d_mouth(self.mouths.detach())
461
+ real_d_pred, _ = self.net_d_mouth(self.mouths_gt)
462
+ l_d_mouth = self.cri_component(
463
+ real_d_pred, True, is_disc=True) + self.cri_gan(
464
+ fake_d_pred, False, is_disc=True)
465
+ loss_dict['l_d_mouth'] = l_d_mouth
466
+ l_d_mouth.backward()
467
+
468
+ self.optimizer_d_left_eye.step()
469
+ self.optimizer_d_right_eye.step()
470
+ self.optimizer_d_mouth.step()
471
+
472
+ self.log_dict = self.reduce_loss_dict(loss_dict)
473
+
474
+ def test(self):
475
+ with torch.no_grad():
476
+ if hasattr(self, 'net_g_ema'):
477
+ self.net_g_ema.eval()
478
+ self.output, _ = self.net_g_ema(self.lq)
479
+ else:
480
+ logger = get_root_logger()
481
+ logger.warning('Do not have self.net_g_ema, use self.net_g.')
482
+ self.net_g.eval()
483
+ self.output, _ = self.net_g(self.lq)
484
+ self.net_g.train()
485
+
486
+ def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
487
+ if self.opt['rank'] == 0:
488
+ self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
489
+
490
+ def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
491
+ dataset_name = dataloader.dataset.opt['name']
492
+ with_metrics = self.opt['val'].get('metrics') is not None
493
+ use_pbar = self.opt['val'].get('pbar', False)
494
+
495
+ if with_metrics:
496
+ if not hasattr(self, 'metric_results'): # only execute in the first run
497
+ self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
498
+ # initialize the best metric results for each dataset_name (supporting multiple validation datasets)
499
+ self._initialize_best_metric_results(dataset_name)
500
+ # zero self.metric_results
501
+ self.metric_results = {metric: 0 for metric in self.metric_results}
502
+
503
+ metric_data = dict()
504
+ if use_pbar:
505
+ pbar = tqdm(total=len(dataloader), unit='image')
506
+
507
+ for idx, val_data in enumerate(dataloader):
508
+ img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
509
+ self.feed_data(val_data)
510
+ self.test()
511
+
512
+ sr_img = tensor2img(self.output.detach().cpu(), min_max=(-1, 1))
513
+ metric_data['img'] = sr_img
514
+ if hasattr(self, 'gt'):
515
+ gt_img = tensor2img(self.gt.detach().cpu(), min_max=(-1, 1))
516
+ metric_data['img2'] = gt_img
517
+ del self.gt
518
+
519
+ # tentative for out of GPU memory
520
+ del self.lq
521
+ del self.output
522
+ torch.cuda.empty_cache()
523
+
524
+ if save_img:
525
+ if self.opt['is_train']:
526
+ save_img_path = osp.join(self.opt['path']['visualization'], img_name,
527
+ f'{img_name}_{current_iter}.png')
528
+ else:
529
+ if self.opt['val']['suffix']:
530
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
531
+ f'{img_name}_{self.opt["val"]["suffix"]}.png')
532
+ else:
533
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
534
+ f'{img_name}_{self.opt["name"]}.png')
535
+ imwrite(sr_img, save_img_path)
536
+
537
+ if with_metrics:
538
+ # calculate metrics
539
+ for name, opt_ in self.opt['val']['metrics'].items():
540
+ self.metric_results[name] += calculate_metric(metric_data, opt_)
541
+ if use_pbar:
542
+ pbar.update(1)
543
+ pbar.set_description(f'Test {img_name}')
544
+ if use_pbar:
545
+ pbar.close()
546
+
547
+ if with_metrics:
548
+ for metric in self.metric_results.keys():
549
+ self.metric_results[metric] /= (idx + 1)
550
+ # update the best metric result
551
+ self._update_best_metric_result(dataset_name, metric, self.metric_results[metric], current_iter)
552
+
553
+ self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
554
+
555
+ def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
556
+ log_str = f'Validation {dataset_name}\n'
557
+ for metric, value in self.metric_results.items():
558
+ log_str += f'\t # {metric}: {value:.4f}'
559
+ if hasattr(self, 'best_metric_results'):
560
+ log_str += (f'\tBest: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ '
561
+ f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')
562
+ log_str += '\n'
563
+
564
+ logger = get_root_logger()
565
+ logger.info(log_str)
566
+ if tb_logger:
567
+ for metric, value in self.metric_results.items():
568
+ tb_logger.add_scalar(f'metrics/{dataset_name}/{metric}', value, current_iter)
569
+
570
+ def save(self, epoch, current_iter):
571
+ # save net_g and net_d
572
+ self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
573
+ self.save_network(self.net_d, 'net_d', current_iter)
574
+ # save component discriminators
575
+ if self.use_facial_disc:
576
+ self.save_network(self.net_d_left_eye, 'net_d_left_eye', current_iter)
577
+ self.save_network(self.net_d_right_eye, 'net_d_right_eye', current_iter)
578
+ self.save_network(self.net_d_mouth, 'net_d_mouth', current_iter)
579
+ # save training state
580
+ self.save_training_state(epoch, current_iter)
third_part/GFPGAN/gfpgan/train.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ import os.path as osp
3
+ from basicsr.train import train_pipeline
4
+
5
+ import gfpgan.archs
6
+ import gfpgan.data
7
+ import gfpgan.models
8
+
9
+ if __name__ == '__main__':
10
+ root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
11
+ train_pipeline(root_path)
third_part/GFPGAN/gfpgan/utils.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import os
3
+ import torch
4
+ from basicsr.utils import img2tensor, tensor2img
5
+ from basicsr.utils.download_util import load_file_from_url
6
+ from facexlib.utils.face_restoration_helper import FaceRestoreHelper
7
+ from torchvision.transforms.functional import normalize
8
+
9
+ from gfpgan.archs.gfpgan_bilinear_arch import GFPGANBilinear
10
+ from gfpgan.archs.gfpganv1_arch import GFPGANv1
11
+ from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean
12
+
13
+ ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
14
+
15
+
16
+ class GFPGANer():
17
+ """Helper for restoration with GFPGAN.
18
+
19
+ It will detect and crop faces, and then resize the faces to 512x512.
20
+ GFPGAN is used to restored the resized faces.
21
+ The background is upsampled with the bg_upsampler.
22
+ Finally, the faces will be pasted back to the upsample background image.
23
+
24
+ Args:
25
+ model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
26
+ upscale (float): The upscale of the final output. Default: 2.
27
+ arch (str): The GFPGAN architecture. Option: clean | original. Default: clean.
28
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
29
+ bg_upsampler (nn.Module): The upsampler for the background. Default: None.
30
+ """
31
+
32
+ def __init__(self, model_path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None):
33
+ self.upscale = upscale
34
+ self.bg_upsampler = bg_upsampler
35
+
36
+ # initialize model
37
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
38
+ # initialize the GFP-GAN
39
+ if arch == 'clean':
40
+ self.gfpgan = GFPGANv1Clean(
41
+ out_size=512,
42
+ num_style_feat=512,
43
+ channel_multiplier=channel_multiplier,
44
+ decoder_load_path=None,
45
+ fix_decoder=False,
46
+ num_mlp=8,
47
+ input_is_latent=True,
48
+ different_w=True,
49
+ narrow=1,
50
+ sft_half=True)
51
+ elif arch == 'bilinear':
52
+ self.gfpgan = GFPGANBilinear(
53
+ out_size=512,
54
+ num_style_feat=512,
55
+ channel_multiplier=channel_multiplier,
56
+ decoder_load_path=None,
57
+ fix_decoder=False,
58
+ num_mlp=8,
59
+ input_is_latent=True,
60
+ different_w=True,
61
+ narrow=1,
62
+ sft_half=True)
63
+ elif arch == 'original':
64
+ self.gfpgan = GFPGANv1(
65
+ out_size=512,
66
+ num_style_feat=512,
67
+ channel_multiplier=channel_multiplier,
68
+ decoder_load_path=None,
69
+ fix_decoder=True,
70
+ num_mlp=8,
71
+ input_is_latent=True,
72
+ different_w=True,
73
+ narrow=1,
74
+ sft_half=True)
75
+ # initialize face helper
76
+ self.face_helper = FaceRestoreHelper(
77
+ upscale,
78
+ face_size=512,
79
+ crop_ratio=(1, 1),
80
+ det_model='retinaface_resnet50',
81
+ save_ext='png',
82
+ device=self.device)
83
+
84
+ if model_path.startswith('https://'):
85
+ model_path = load_file_from_url(
86
+ url=model_path, model_dir=os.path.join(ROOT_DIR, 'gfpgan/weights'), progress=True, file_name=None)
87
+ loadnet = torch.load(model_path)
88
+ if 'params_ema' in loadnet:
89
+ keyname = 'params_ema'
90
+ else:
91
+ keyname = 'params'
92
+ self.gfpgan.load_state_dict(loadnet[keyname], strict=True)
93
+ self.gfpgan.eval()
94
+ self.gfpgan = self.gfpgan.to(self.device)
95
+
96
+ @torch.no_grad()
97
+ def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True):
98
+ self.face_helper.clean_all()
99
+
100
+ if has_aligned: # the inputs are already aligned
101
+ img = cv2.resize(img, (512, 512))
102
+ self.face_helper.cropped_faces = [img]
103
+ else:
104
+ self.face_helper.read_image(img)
105
+ # get face landmarks for each face
106
+ self.face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
107
+ # eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
108
+ # TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
109
+ # align and warp each face
110
+ self.face_helper.align_warp_face()
111
+
112
+ # face restoration
113
+ for cropped_face in self.face_helper.cropped_faces:
114
+ # prepare data
115
+ cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
116
+ normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
117
+ cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
118
+
119
+ try:
120
+ output = self.gfpgan(cropped_face_t, return_rgb=False)[0]
121
+ # convert to image
122
+ restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
123
+ except RuntimeError as error:
124
+ print(f'\tFailed inference for GFPGAN: {error}.')
125
+ restored_face = cropped_face
126
+
127
+ restored_face = restored_face.astype('uint8')
128
+ self.face_helper.add_restored_face(restored_face)
129
+
130
+ if not has_aligned and paste_back:
131
+ # upsample the background
132
+ if self.bg_upsampler is not None:
133
+ # Now only support RealESRGAN for upsampling background
134
+ bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0]
135
+ else:
136
+ bg_img = None
137
+
138
+ self.face_helper.get_inverse_affine(None)
139
+ # paste each restored face to the input image
140
+ restored_img = self.face_helper.paste_faces_to_input_image(upsample_img=bg_img)
141
+ return self.face_helper.cropped_faces, self.face_helper.restored_faces, restored_img
142
+ else:
143
+ return self.face_helper.cropped_faces, self.face_helper.restored_faces, None
third_part/GFPGAN/gfpgan/version.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # GENERATED VERSION FILE
2
+ # TIME: Wed Apr 20 14:43:06 2022
3
+ __version__ = '1.3.2'
4
+ __gitsha__ = '924ce47'
5
+ version_info = (1, 3, 2)
third_part/GFPGAN/gfpgan/weights/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Weights
2
+
3
+ Put the downloaded weights to this folder.
third_part/GFPGAN/options/train_gfpgan_v1.yml ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_GFPGANv1_512
3
+ model_type: GFPGANModel
4
+ num_gpu: auto # officially, we use 4 GPUs
5
+ manual_seed: 0
6
+
7
+ # dataset and data loader settings
8
+ datasets:
9
+ train:
10
+ name: FFHQ
11
+ type: FFHQDegradationDataset
12
+ # dataroot_gt: datasets/ffhq/ffhq_512.lmdb
13
+ dataroot_gt: datasets/ffhq/ffhq_512
14
+ io_backend:
15
+ # type: lmdb
16
+ type: disk
17
+
18
+ use_hflip: true
19
+ mean: [0.5, 0.5, 0.5]
20
+ std: [0.5, 0.5, 0.5]
21
+ out_size: 512
22
+
23
+ blur_kernel_size: 41
24
+ kernel_list: ['iso', 'aniso']
25
+ kernel_prob: [0.5, 0.5]
26
+ blur_sigma: [0.1, 10]
27
+ downsample_range: [0.8, 8]
28
+ noise_range: [0, 20]
29
+ jpeg_range: [60, 100]
30
+
31
+ # color jitter and gray
32
+ color_jitter_prob: 0.3
33
+ color_jitter_shift: 20
34
+ color_jitter_pt_prob: 0.3
35
+ gray_prob: 0.01
36
+
37
+ # If you do not want colorization, please set
38
+ # color_jitter_prob: ~
39
+ # color_jitter_pt_prob: ~
40
+ # gray_prob: 0.01
41
+ # gt_gray: True
42
+
43
+ crop_components: true
44
+ component_path: experiments/pretrained_models/FFHQ_eye_mouth_landmarks_512.pth
45
+ eye_enlarge_ratio: 1.4
46
+
47
+ # data loader
48
+ use_shuffle: true
49
+ num_worker_per_gpu: 6
50
+ batch_size_per_gpu: 3
51
+ dataset_enlarge_ratio: 1
52
+ prefetch_mode: ~
53
+
54
+ val:
55
+ # Please modify accordingly to use your own validation
56
+ # Or comment the val block if do not need validation during training
57
+ name: validation
58
+ type: PairedImageDataset
59
+ dataroot_lq: datasets/faces/validation/input
60
+ dataroot_gt: datasets/faces/validation/reference
61
+ io_backend:
62
+ type: disk
63
+ mean: [0.5, 0.5, 0.5]
64
+ std: [0.5, 0.5, 0.5]
65
+ scale: 1
66
+
67
+ # network structures
68
+ network_g:
69
+ type: GFPGANv1
70
+ out_size: 512
71
+ num_style_feat: 512
72
+ channel_multiplier: 1
73
+ resample_kernel: [1, 3, 3, 1]
74
+ decoder_load_path: experiments/pretrained_models/StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth
75
+ fix_decoder: true
76
+ num_mlp: 8
77
+ lr_mlp: 0.01
78
+ input_is_latent: true
79
+ different_w: true
80
+ narrow: 1
81
+ sft_half: true
82
+
83
+ network_d:
84
+ type: StyleGAN2Discriminator
85
+ out_size: 512
86
+ channel_multiplier: 1
87
+ resample_kernel: [1, 3, 3, 1]
88
+
89
+ network_d_left_eye:
90
+ type: FacialComponentDiscriminator
91
+
92
+ network_d_right_eye:
93
+ type: FacialComponentDiscriminator
94
+
95
+ network_d_mouth:
96
+ type: FacialComponentDiscriminator
97
+
98
+ network_identity:
99
+ type: ResNetArcFace
100
+ block: IRBlock
101
+ layers: [2, 2, 2, 2]
102
+ use_se: False
103
+
104
+ # path
105
+ path:
106
+ pretrain_network_g: ~
107
+ param_key_g: params_ema
108
+ strict_load_g: ~
109
+ pretrain_network_d: ~
110
+ pretrain_network_d_left_eye: ~
111
+ pretrain_network_d_right_eye: ~
112
+ pretrain_network_d_mouth: ~
113
+ pretrain_network_identity: experiments/pretrained_models/arcface_resnet18.pth
114
+ # resume
115
+ resume_state: ~
116
+ ignore_resume_networks: ['network_identity']
117
+
118
+ # training settings
119
+ train:
120
+ optim_g:
121
+ type: Adam
122
+ lr: !!float 2e-3
123
+ optim_d:
124
+ type: Adam
125
+ lr: !!float 2e-3
126
+ optim_component:
127
+ type: Adam
128
+ lr: !!float 2e-3
129
+
130
+ scheduler:
131
+ type: MultiStepLR
132
+ milestones: [600000, 700000]
133
+ gamma: 0.5
134
+
135
+ total_iter: 800000
136
+ warmup_iter: -1 # no warm up
137
+
138
+ # losses
139
+ # pixel loss
140
+ pixel_opt:
141
+ type: L1Loss
142
+ loss_weight: !!float 1e-1
143
+ reduction: mean
144
+ # L1 loss used in pyramid loss, component style loss and identity loss
145
+ L1_opt:
146
+ type: L1Loss
147
+ loss_weight: 1
148
+ reduction: mean
149
+
150
+ # image pyramid loss
151
+ pyramid_loss_weight: 1
152
+ remove_pyramid_loss: 50000
153
+ # perceptual loss (content and style losses)
154
+ perceptual_opt:
155
+ type: PerceptualLoss
156
+ layer_weights:
157
+ # before relu
158
+ 'conv1_2': 0.1
159
+ 'conv2_2': 0.1
160
+ 'conv3_4': 1
161
+ 'conv4_4': 1
162
+ 'conv5_4': 1
163
+ vgg_type: vgg19
164
+ use_input_norm: true
165
+ perceptual_weight: !!float 1
166
+ style_weight: 50
167
+ range_norm: true
168
+ criterion: l1
169
+ # gan loss
170
+ gan_opt:
171
+ type: GANLoss
172
+ gan_type: wgan_softplus
173
+ loss_weight: !!float 1e-1
174
+ # r1 regularization for discriminator
175
+ r1_reg_weight: 10
176
+ # facial component loss
177
+ gan_component_opt:
178
+ type: GANLoss
179
+ gan_type: vanilla
180
+ real_label_val: 1.0
181
+ fake_label_val: 0.0
182
+ loss_weight: !!float 1
183
+ comp_style_weight: 200
184
+ # identity loss
185
+ identity_weight: 10
186
+
187
+ net_d_iters: 1
188
+ net_d_init_iters: 0
189
+ net_d_reg_every: 16
190
+
191
+ # validation settings
192
+ val:
193
+ val_freq: !!float 5e3
194
+ save_img: true
195
+
196
+ metrics:
197
+ psnr: # metric name
198
+ type: calculate_psnr
199
+ crop_border: 0
200
+ test_y_channel: false
201
+
202
+ # logging settings
203
+ logger:
204
+ print_freq: 100
205
+ save_checkpoint_freq: !!float 5e3
206
+ use_tb_logger: true
207
+ wandb:
208
+ project: ~
209
+ resume_id: ~
210
+
211
+ # dist training settings
212
+ dist_params:
213
+ backend: nccl
214
+ port: 29500
215
+
216
+ find_unused_parameters: true