Spaces:
Sleeping
Sleeping
File size: 15,142 Bytes
2267956 0b7d288 11f76af 68cd7b9 2267956 0b7d288 2267956 0b7d288 68cd7b9 0b7d288 35baca6 0b7d288 11f76af 0b7d288 11f76af 0b7d288 11f76af 0b7d288 11f76af 233eb38 0b7d288 11f76af 0b7d288 11f76af 0b7d288 68cd7b9 0b7d288 68cd7b9 11f76af 0b7d288 11f76af 35baca6 11f76af 233eb38 35baca6 11f76af 35baca6 11f76af 35baca6 68cd7b9 0b7d288 11f76af 0b7d288 11f76af 0b7d288 68cd7b9 0b7d288 11f76af 35baca6 11f76af 35baca6 3fd9ed7 f48c7dd 35baca6 68cd7b9 35baca6 11f76af 0b7d288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import gradio as gr
import pickle
import pandas as pd
import ast
import numpy as np
import os
import matplotlib.pyplot as plt
# Set the option to opt into future behavior
pd.set_option('future.no_silent_downcasting', True)
# List of options for the dropdown
[("SVM - Jerome Agius", 0), ("Logistic Regression - Isaac Muscat", 1), ("Random Forest - Kyle Demicoli", 2)]
workclass_options = [('State Government', 'State-gov'),
('Self Employed Not Incorporated', 'Self-emp-not-inc'),
'Private', ('Federal Government', 'Federal-gov'), ('Local Government', 'Local-gov'), ('Self Employed Incorporated', 'Self-emp-inc'), ('Without Pay', 'Without-pay')]
education_option = [('Pre-School', 'Preschool'), '1st-4th', '5th-6th', '7th-8th', '9th', '10th', '11th', '12th', ('High School Graduate', 'HS-grad'), ('Collage', 'Some-college'), ('Associate Degree - Vocational', 'Assoc-voc'), ('Associate Degree - Academic', 'Assoc-acdm'), 'Bachelors', 'Masters', ('Professional School', 'Prof-school'), 'Doctorate']
marital_status_option = [('Never Married','Never-married'), ('Married Civilian Spouse', 'Married-civ-spouse'), 'Divorced', 'Separated', ('Married Armed Forces Spouse', 'Married-AF-spouse'), 'Widowed', ('Married Spouse Absent', 'Married-spouse-absent')]
occupation_option = [('Administrative Clerical', 'Adm-clerical'), ('Executive Managerial', 'Exec-managerial'), ('Handlers and Cleaners', 'Handlers-cleaners'), ('Professional Specialty', 'Prof-specialty'), 'Sales', ('Farming and Fishing', 'Farming-fishing'), ('Machine Operator and Inspector', 'Machine-op-inspct'), ('Other Service', 'Other-service'), ('Transport and Moving', 'Transport-moving'), ('Technical Support', 'Tech-support'), ('Craft and Repair', 'Craft-repair'), ('Protective Services', 'Protective-serv'), ('Armed Forces', 'Armed-Forces'), ('Private Household Services' ,'Priv-house-serv')]
relationship_option = [('Not In Family', 'Not-in-family'), 'Husband', 'Wife', ('Biological Child', 'Own-child'), 'Unmarried', ('Other Relative', 'Other-relative')]
race_option = ['White', 'Black', 'Other', ('Asian', 'Asian-Pac-Islander'), ('Indian', 'Amer-Indian-Eskimo')]
sex_option = sorted(['Male', 'Female'])
age = [0, 100]
capital_gain = [0, 99999]
capital_loss = [0, 4356]
hours_per_week = [20, 60]
children_count = [0, 15]
bmi = [10, 100]
region_option = ['southwest', 'southeast', 'northwest', 'northeast']
smoker_option = ['yes', 'no']
# Mapping for education
education_mapping = "{'Preschool': 1, '1st-4th': 2, '5th-6th': 3, '7th-8th': 4, '9th': 5, '10th': 6, '11th': 7, '12th': 8, 'HS-grad': 9, 'Some-college': 10, 'Assoc-voc': 11, 'Assoc-acdm': 12, 'Bachelors': 13, 'Masters': 14, 'Prof-school': 15, 'Doctorate': 16}"
education_dict = ast.literal_eval(education_mapping)
# List of the columns present in dataframe used to train the model
salary_columns = ['age', 'education-num', 'sex', 'capital-gain', 'capital-loss',
'hours-per-week', 'workclass_Local-gov', 'workclass_Private',
'workclass_Self-emp-inc', 'workclass_Self-emp-not-inc',
'workclass_State-gov', 'workclass_Without-pay',
'marital-status_Married-AF-spouse', 'marital-status_Married-civ-spouse',
'marital-status_Married-spouse-absent', 'marital-status_Never-married',
'marital-status_Separated', 'marital-status_Widowed',
'occupation_Armed-Forces', 'occupation_Craft-repair',
'occupation_Exec-managerial', 'occupation_Farming-fishing',
'occupation_Handlers-cleaners', 'occupation_Machine-op-inspct',
'occupation_Other-service', 'occupation_Priv-house-serv',
'occupation_Prof-specialty', 'occupation_Protective-serv',
'occupation_Sales', 'occupation_Tech-support',
'occupation_Transport-moving', 'relationship_Not-in-family',
'relationship_Other-relative', 'relationship_Own-child',
'relationship_Unmarried', 'relationship_Wife', 'race_Asian-Pac-Islander',
'race_Black', 'race_Other', 'race_White']
health_columns = ['age', 'sex', 'bmi', 'children', 'smoker', 'region_northwest', 'region_southeast', 'region_southwest']
# Code for SVM
def Salary(model, workclass, education, marital_status, occupation, relationship, race, sex, age, capital_gain, capital_loss, hours_per_week):
# Set the working directory to the script's directory
os.chdir(os.path.dirname(os.path.abspath(__file__)))
if model == 0:
model_used = "SVM"
with open('models/best_svm_OvM_Salary_Classification.pkl', 'rb') as f:
loaded_model = pickle.load(f)
# Loading the scaler and transform the data
with open('models/z-score_scaler_svm_salary_classification.pkl', 'rb') as f:
scaler = pickle.load(f)
elif model == 1:
model_used = "Logistic Regression"
with open('models/best_lr_Salary_Classification.pkl', 'rb') as f:
loaded_model = pickle.load(f)
# Loading the scaler and transform the data
with open('models/z-score_scaler_lr_salary_classification.pkl', 'rb') as f:
scaler = pickle.load(f)
elif model == 2:
model_used = "Random Forest"
with open('models/best_rf_Salary_Classification.pkl', 'rb') as f:
loaded_model = pickle.load(f)
# Loading the scaler and transform the data
with open('models/z-score_scaler_rf_salary_classification.pkl', 'rb') as f:
scaler = pickle.load(f)
new_data = {
'age': age,
'workclass': workclass,
'education': education,
'marital-status': marital_status,
'occupation': occupation,
'relationship': relationship,
'race': race,
'sex': sex,
'capital-gain': capital_gain,
'capital-loss': capital_loss,
'hours-per-week': hours_per_week,
}
new_data = pd.DataFrame([new_data])
new_data['education'] = new_data['education'].map(education_dict)
new_data = new_data.rename(columns={'education': 'education-num'})
# Create an empty DataFrame with these columns
formattedDF = pd.DataFrame(columns=salary_columns)
# Copying over the continuous columns
formattedDF['age'] = new_data['age']
formattedDF['education-num'] = new_data['education-num']
formattedDF['capital-gain'] = new_data['capital-gain']
formattedDF['capital-loss'] = new_data['capital-loss']
formattedDF['hours-per-week'] = new_data['hours-per-week']
formattedDF['workclass_'+new_data['workclass']] = 1
formattedDF['marital-status_'+new_data['marital-status']] = 1
formattedDF['occupation_'+new_data['occupation']] = 1
formattedDF['relationship_'+new_data['relationship']] = 1
formattedDF['race_'+new_data['race']] = 1
formattedDF['sex'] = formattedDF['sex'].apply(lambda x: 1 if x == 'Male' else 0)
# Fill remaining columns with 0
formattedDF.fillna(0, inplace=True)
formattedDF = formattedDF.astype(int)
formattedDF = formattedDF[formattedDF.columns.intersection(salary_columns)]
# Assuming 'high_skew_columns' from training is a list of columns with high skewness
for column in ['capital-gain', 'capital-loss']:
formattedDF[column] = np.log1p(formattedDF[column])
# Apply the scaler to the unseen data
continuous_columns = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']
formattedDF[continuous_columns] = scaler.transform(formattedDF[continuous_columns])
# Make predictions with the loaded model
prediction = loaded_model.predict(formattedDF)
probability = loaded_model.predict_proba(formattedDF)
# Get the number of classes
num_classes = probability.shape[1]
class_dict = {
0: '<=50K',
1: '>50K'
}
# Select the probabilities for a single sample (e.g., the first sample)
probabilities = probability[0]
class_labels = [class_dict[i] for i in range(num_classes)]
colors = plt.cm.viridis(np.linspace(0, 1, num_classes)) # Use a colormap for consistent colors
fig, ax = plt.subplots(figsize=(10, 10))
_, _, autotexts = ax.pie(probabilities, colors=colors, autopct='%1.1f%%', startangle=140, pctdistance=1.1)
# Create a legend with colored boxes
legend_elements = []
for i, (color, label) in enumerate(zip(colors, class_labels)):
legend_elements.append(plt.Rectangle((0, 0), 1, 1, color=color, label=label))
ax.legend(handles=legend_elements, loc='upper left')
ax.set_title("Predicted Class Probabilities")
for i, p in enumerate(probabilities):
prob = float(round(p*100, 2))
if prob > 0:
autotexts[i].set_text(f"{prob}%")
else:
autotexts[i].set_text('')
salary_result = '<=50K' if prediction[0] == 0 else '>50K'
return f"Predicted using {model_used} Salary Class: {salary_result}", fig
def Health(model, age, sex, bmi, children, smoker, region):
# Set the working directory to the script's directory
os.chdir(os.path.dirname(os.path.abspath(__file__)))
if model == 0:
model_used = "SVM"
with open('models/best_health_svm_OvM_Charges_Classification.pkl', 'rb') as f:
loaded_model = pickle.load(f)
# Loading the scaler and transform the data
with open('models/z-score_scaler_svm_charges_classification.pkl', 'rb') as f:
scaler = pickle.load(f)
elif model == 1:
model_used = "Logistic Regression"
with open('models/best_health_lr_Charges_Classification.pkl', 'rb') as f:
loaded_model = pickle.load(f)
# Loading the scaler and transform the data
with open('models/z-score_scaler_lr_charges_classification.pkl', 'rb') as f:
scaler = pickle.load(f)
elif model == 2:
model_used = "Random Forest"
with open('models/best_rf_Charges_Classification.pkl', 'rb') as f:
loaded_model = pickle.load(f)
# Loading the scaler and transform the data
with open('models/z-score_scaler_rf_charges_classification.pkl', 'rb') as f:
scaler = pickle.load(f)
#Inverting the dict to map the 'charges' values back to 'charges' labels
inverse_mapping_charges = {
0: 'Very Low (<= 5000)',
1: 'Low (5001 - 10000)',
2: 'Moderate (10001 - 15000)',
3: 'High (15001 - 20000)',
4: 'Very High (> 20001)',
}
new_data = {
'age': age,
'sex': sex,
'bmi': bmi,
'children': children,
'smoker': smoker,
'region': region,
}
new_data = pd.DataFrame([new_data])
# Create an empty DataFrame with these columns
formattedDF = pd.DataFrame(columns=health_columns)
# Copying over the continuous columns
formattedDF['age'] = new_data['age']
formattedDF['sex'] = new_data['sex'].apply(lambda x: 1 if x == 'Male' else 0)
formattedDF['bmi'] = new_data['bmi']
formattedDF['children'] = new_data['children']
formattedDF['smoker'] = new_data['smoker'].apply(lambda x: 1 if x == 'Yes' else 0)
formattedDF['region_'+new_data['region']] = 1
# Fill remaining columns with 0
formattedDF.fillna(0, inplace=True)
formattedDF = formattedDF.astype(int)
formattedDF = formattedDF[formattedDF.columns.intersection(health_columns)]
# Apply the scaler to the unseen data
continuous_columns = ['age', 'bmi']
formattedDF[continuous_columns] = scaler.transform(formattedDF[continuous_columns])
# Make predictions with the loaded model
prediction = loaded_model.predict(formattedDF)[0]
prediction = inverse_mapping_charges[prediction]
probability = loaded_model.predict_proba(formattedDF)
# Get the number of classes
num_classes = probability.shape[1]
class_dict = {
0: 'Very Low (<= 5000)',
1: 'Low (5001 - 10000)',
2: 'Moderate (10001 - 15000)',
3: 'High (15001 - 20000)',
4: 'Very High (> 20001)',
}
# Select the probabilities for a single sample (e.g., the first sample)
probabilities = probability[0]
class_labels = [class_dict[i] for i in range(num_classes)]
colors = plt.cm.viridis(np.linspace(0, 1, num_classes)) # Use a colormap for consistent colors
fig, ax = plt.subplots(figsize=(10, 10))
_, _, autotexts = ax.pie(probabilities, colors=colors, autopct='%1.1f%%', startangle=140, pctdistance=1.1)
# Create a legend with colored boxes
legend_elements = []
for i, (color, label) in enumerate(zip(colors, class_labels)):
legend_elements.append(plt.Rectangle((0, 0), 1, 1, color=color, label=label))
ax.legend(handles=legend_elements, loc='upper left')
ax.set_title("Predicted Class Probabilities")
for i, p in enumerate(probabilities):
prob = float(round(p*100, 2))
if prob > 0:
autotexts[i].set_text(f"{prob}%")
else:
autotexts[i].set_text('')
return f"Predicted using {model_used} Charges Class: {prediction}", fig
# interface one
iface1 = gr.Interface(
fn=Salary,
inputs=[
gr.Dropdown(choices=[("SVM - Jerome Agius", 0), ("Logistic Regression - Isaac Muscat", 1), ("Random Forest - Kyle Demicoli", 2)], label="Model", value=0),
gr.Dropdown(choices=workclass_options, label="Workclass"),
gr.Dropdown(choices=education_option, label="Education"),
gr.Dropdown(choices=marital_status_option, label="Marital Status"),
gr.Dropdown(choices=occupation_option, label="Occupation"),
gr.Dropdown(choices=relationship_option, label="Relationship"),
gr.Dropdown(choices=race_option, label="Race"),
gr.Dropdown(choices=sex_option, label="Sex"),
gr.Slider(minimum=age[0], maximum=age[1], step=1, label="Age"),
gr.Slider(minimum=capital_gain[0], maximum=capital_gain[1], step=1, label="Capital Gain"),
gr.Slider(minimum=capital_loss[0], maximum=capital_loss[1], step=1, label="Capital Loss"),
gr.Slider(minimum=hours_per_week[0], maximum=hours_per_week[1], step=1, label="Hours per Week"),
],
outputs=[gr.Text(label="Predicted Label"), gr.Plot(label="Predicted Class Probabilities")],
title="SVM - Salary",
flagging_mode="never"
)
# interface two
iface2 = gr.Interface(
fn=Health,
inputs=[
gr.Dropdown(choices=[("SVM - Jerome Agius", 0), ("Logistic Regression - Isaac Muscat", 1), ("Random Forest - Kyle Demicoli", 2)], label="Model", value=0),
gr.Slider(minimum=age[0], maximum=age[1], step=1, label="Age"),
gr.Dropdown(choices=sex_option, label="Sex"),
gr.Slider(minimum=bmi[0], maximum=bmi[1], step=0.1, label="BMI"),
gr.Slider(minimum=children_count[0], maximum=children_count[1], step=1, label="No. of Children"),
gr.Dropdown(choices=smoker_option, label="Is Smoker"),
gr.Dropdown(choices=region_option, label="Region"),
],
outputs=[gr.Text(label="Predicted Label"), gr.Plot(label="Predicted Class Probabilities")],
title="SVM - Health",
flagging_mode="never"
)
demo = gr.TabbedInterface([iface1, iface2], ["Salary Prediction", "Health Charges Prediction"])
# Run the interface
demo.launch(share=True) |